10/09/24, 19:11 Overview | Prometheus

> INTRODUCTION

Overview (/docs/introduction/overview/)

First steps (/docs/introduction/first_steps/)

Comparison to alternatives (/docs/introduction/comparison/)
FAQ (/docs/introduction/faqg/)

Roadmap (/docs/introduction/roadmap/)

Design Documents (/docs/introduction/design-doc/)

Media (/docs/introduction/media/)

Glossary (/docs/introduction/glossary/)

Long-Term Support (/docs/introduction/release-cycle/)

A CONCEPTS

PROMETHEUS SERVER
|~ VISUALIZATION

</> INSTRUMENTING

£# OPERATING

L\ ALERT MANAGER

) BEST PRACTICES

[IJ GUIDES

& TUTORIALS

https://prometheus.io/docs/introduction/overview/ 1/5

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/introduction/faq/
https://prometheus.io/docs/introduction/roadmap/
https://prometheus.io/docs/introduction/design-doc/
https://prometheus.io/docs/introduction/media/
https://prometheus.io/docs/introduction/glossary/
https://prometheus.io/docs/introduction/release-cycle/

10/09/24, 19:11 Overview | Prometheus

[8 SPECIFICATIONS

OVERVIEW

What is Prometheus? e What is Prometheus?

o Features

Prometheus (https://github.com/prometheus) o What are metrics?

is an open-source systems monitoring and o Components
alerting toolkit originally built at SoundCloud o Architecture
(https://soundcloud.com). Since its inception e When does it fit?

in 2012, many companies and organizations e When does it not fit?
have adopted Prometheus, and the project

has a very active developer and user

community (/community). It is now a standalone open source project and
maintained independently of any company. To emphasize this, and to clarify
the project's governance structure, Prometheus joined the Cloud Native
Computing Foundation (https://cncf.io/) in 2016 as the second hosted project,
after Kubernetes (http://kubernetes.io/).

Prometheus collects and stores its metrics as time series data, i.e. metrics
information is stored with the timestamp at which it was recorded, alongside
optional key-value pairs called labels.

For more elaborate overviews of Prometheus, see the resources linked from
the media (/docs/introduction/media/) section.

Features
Prometheus's main features are:

e a multi-dimensional data model (/docs/concepts/data_model/) with time
series data identified by metric name and key/value pairs

e PromQL, a flexible query language
(/docs/prometheus/latest/querying/basics/) to leverage this
dimensionality

https://prometheus.io/docs/introduction/overview/ 2/5

https://github.com/prometheus
https://github.com/prometheus
https://soundcloud.com/
https://soundcloud.com/
https://prometheus.io/community
https://prometheus.io/community
https://cncf.io/
https://cncf.io/
https://cncf.io/
http://kubernetes.io/
http://kubernetes.io/
https://prometheus.io/docs/introduction/media/
https://prometheus.io/docs/introduction/media/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/

10/09/24, 19:11 Overview | Prometheus

e no reliance on distributed storage; single server nodes are autonomous

e time series collection happens via a pull model over HTTP

e pushing time series (/docs/instrumenting/pushing/) is supported via an
intermediary gateway

e targets are discovered via service discovery or static configuration

e multiple modes of graphing and dashboarding support

What are metrics?

Metrics are numerical measurements in layperson terms. The term time series
refers to the recording of changes over time. What users want to measure
differs from application to application. For a web server, it could be request
times; for a database, it could be the number of active connections or active
queries, and so on.

Metrics play an important role in understanding why your application is
working in a certain way. Let's assume you are running a web application and
discover that it is slow. To learn what is happening with your application, you
will need some information. For example, when the number of requests is high,
the application may become slow. If you have the request count metric, you can
determine the cause and increase the number of servers to handle the load.

Components

The Prometheus ecosystem consists of multiple components, many of which
are optional:

e the main Prometheus server
(https://github.com/prometheus/prometheus) which scrapes and stores
time series data

e client libraries (/docs/instrumenting/clientlibs/) for instrumenting
application code

e a push gateway (https://github.com/prometheus/pushgateway) for
supporting short-lived jobs

e special-purpose exporters (/docs/instrumenting/exporters/) for services
like HAProxy, StatsD, Graphite, etc.

e an alertmanager (https://github.com/prometheus/alertmanager) to
handle alerts

https://prometheus.io/docs/introduction/overview/ 3/5

https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/
https://github.com/prometheus/prometheus
https://github.com/prometheus/prometheus
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://github.com/prometheus/pushgateway
https://github.com/prometheus/pushgateway
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/exporters/
https://github.com/prometheus/alertmanager
https://github.com/prometheus/alertmanager

10/09/24, 19:11

Overview | Prometheus

e various support tools

Most Prometheus components are written in Go (https://golang.org/), making
them easy to build and deploy as static binaries.

Architecture

This diagram illustrates the architecture of Prometheus and some of its
ecosystem components:

Service discovery Prometheus

Sho'rt-lived a|erting
jobs

= pagerduty

kubernetes file_sd
push r';'lecrics ; Alertmanager """"""" 7 Email
atexit !
! discover -
¥ targets ¥ notify
™ etc
Pushgateway | Prometheus server
. | push
alerts
————— pull | Retrieval = TSDB |«—{ HTTP i
metrics server
PromQL

9 Prometheus
web Ul

Jobs/ Node Grafana Data
""""""""" o visualization

exporters
and export

Prometheus

targets . APl clients

Prometheus scrapes metrics from instrumented jobs, either directly or via an
intermediary push gateway for short-lived jobs. It stores all scraped samples
locally and runs rules over this data to either aggregate and record new time
series from existing data or generate alerts. Grafana (https://grafana.com/) or
other APl consumers can be used to visualize the collected data.

When does it fit?

Prometheus works well for recording any purely numeric time series. It fits both
machine-centric monitoring as well as monitoring of highly dynamic service-
oriented architectures. In a world of microservices, its support for multi-
dimensional data collection and querying is a particular strength.

https://prometheus.io/docs/introduction/overview/

4/5

https://golang.org/
https://golang.org/
https://grafana.com/
https://grafana.com/

10/09/24, 19:11

Overview | Prometheus

Prometheus is designed for reliability, to be the system you go to during an
outage to allow you to quickly diagnose problems. Each Prometheus server is
standalone, not depending on network storage or other remote services. You
can rely on it when other parts of your infrastructure are broken, and you do
not need to setup extensive infrastructure to use it.

When does it not fit?

Prometheus values reliability. You can always view what statistics are available
about your system, even under failure conditions. If you need 100% accuracy,
such as for per-request billing, Prometheus is not a good choice as the collected
data will likely not be detailed and complete enough. In such a case you would
be best off using some other system to collect and analyze the data for billing,
and Prometheus for the rest of your monitoring.

I This documentation is open-source
(https://github.com/prometheus/docs#contributing-changes). Please help
improve it by filing issues or pull requests.

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and
uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage
(https://www.linuxfoundation.org/trademark-usage) page.

https://prometheus.io/docs/introduction/overview/

5/5

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

10/09/24, 19:13 First steps | Prometheus

> INTRODUCTION

Overview (/docs/introduction/overview/)

First steps (/docs/introduction/first_steps/)

Comparison to alternatives (/docs/introduction/comparison/)
FAQ (/docs/introduction/faqg/)

Roadmap (/docs/introduction/roadmap/)

Design Documents (/docs/introduction/design-doc/)

Media (/docs/introduction/media/)

Glossary (/docs/introduction/glossary/)

Long-Term Support (/docs/introduction/release-cycle/)

A CONCEPTS

PROMETHEUS SERVER
|~ VISUALIZATION

</> INSTRUMENTING

£# OPERATING

L\ ALERT MANAGER

) BEST PRACTICES

[IJ GUIDES

& TUTORIALS

https://prometheus.io/docs/introduction/first_steps/ 1/6

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/introduction/faq/
https://prometheus.io/docs/introduction/roadmap/
https://prometheus.io/docs/introduction/design-doc/
https://prometheus.io/docs/introduction/media/
https://prometheus.io/docs/introduction/glossary/
https://prometheus.io/docs/introduction/release-cycle/

10/09/24, 19:13 First steps | Prometheus

[8 SPECIFICATIONS

FIRST STEPS WITH PROMETHEUS

Welcome to Prometheus! Prometheus is a
monitoring platform that collects metrics from
monitored targets by scraping metrics HTTP
endpoints on these targets. This guide will
show you how to install, configure and
monitor our first resource with Prometheus.
You'll download, install and run Prometheus.
You'll also download and install an exporter,
tools that expose time series data on hosts
and services. Our first exporter will be
Prometheus itself, which provides a wide
variety of host-level metrics about memory
usage, garbage collection, and more.

Downloading Prometheus

Downloading
Prometheus
Configuring
Prometheus
Starting Prometheus
Using the expression
browser

Using the graphing
interface

Monitoring other
targets

Summary

Download the latest release (/download) of Prometheus for your platform, then

extract it:

tar xvfz prometheus-*.tar.gz
cd prometheus-*

The Prometheus server is a single binary called prometheus (or prometheus.exe
on Microsoft Windows). We can run the binary and see help on its options by

passing the --help flag.

https://prometheus.io/docs/introduction/first_steps/

2/6

https://prometheus.io/download
https://prometheus.io/download

10/09/24, 19:13 First steps | Prometheus

./prometheus --help
usage: prometheus [<flags>]

The Prometheus monitoring server

Before starting Prometheus, let's configure it.

Configuring Prometheus

Prometheus configuration is YAML (https://yaml.org/). The Prometheus
download comes with a sample configuration in a file called prometheus.yml
that is a good place to get started.

We've stripped out most of the comments in the example file to make it more
succinct (comments are the lines prefixed with a #).

global:
scrape_interval: 15s
evaluation_interval: 15s

rule_files:
- "first.rules"
- "second.rules"

scrape_configs:
- job_name: prometheus
static_configs:
- targets: ['localhost:9090']

There are three blocks of configuration in the example configuration file:
global, rule files, and scrape_configs.

The global block controls the Prometheus server's global configuration. We
have two options present. The first, scrape_interval, controls how often
Prometheus will scrape targets. You can override this for individual targets. In

https://prometheus.io/docs/introduction/first_steps/ 3/6

https://yaml.org/
https://yaml.org/

10/09/24, 19:13 First steps | Prometheus

this case the global setting is to scrape every 15 seconds. The
evaluation_interval option controls how often Prometheus will evaluate rules.
Prometheus uses rules to create new time series and to generate alerts.

The rule_files block specifies the location of any rules we want the
Prometheus server to load. For now we've got no rules.

The last block, scrape_configs, controls what resources Prometheus monitors.
Since Prometheus also exposes data about itself as an HTTP endpoint it can
scrape and monitor its own health. In the default configuration there is a single
job, called prometheus , which scrapes the time series data exposed by the
Prometheus server. The job contains a single, statically configured, target, the
localhost on port 9090 . Prometheus expects metrics to be available on
targets on a path of /metrics . So this default job is scraping via the URL:
http://localhost:9090/metrics (http://localhost:9090/metrics).

The time series data returned will detail the state and performance of the
Prometheus server.

For a complete specification of configuration options, see the configuration
documentation (/docs/operating/configuration).

Starting Prometheus

To start Prometheus with our newly created configuration file, change to the
directory containing the Prometheus binary and run:

./prometheus --config.file=prometheus.yml

Prometheus should start up. You should also be able to browse to a status
page about itself at http://localhost:9090 (http://localhost:9090). Give it about
30 seconds to collect data about itself from its own HTTP metrics endpoint.

You can also verify that Prometheus is serving metrics about itself by navigating
to its own metrics endpoint: http://localhost:9090/metrics
(http://localhost:9090/metrics).

https://prometheus.io/docs/introduction/first_steps/ 4/6

http://localhost:9090/metrics
http://localhost:9090/metrics
https://prometheus.io/docs/operating/configuration
https://prometheus.io/docs/operating/configuration
https://prometheus.io/docs/operating/configuration
http://localhost:9090/
http://localhost:9090/
http://localhost:9090/metrics
http://localhost:9090/metrics

10/09/24, 19:13 First steps | Prometheus

Using the expression browser

Let us try looking at some data that Prometheus has collected about itself. To
use Prometheus's built-in expression browser, navigate to
http://localhost:9090/graph (http://localhost:9090/graph) and choose the
"Table" view within the "Graph" tab.

As you can gather from http://localhost:9090/metrics
(http://localhost:9090/metrics), one metric that Prometheus exports about itself
is called promhttp_metric_handler_requests_total (the total number of
/metrics requests the Prometheus server has served). Go ahead and enter this
into the expression console:

promhttp_metric_handler_requests_total

This should return a number of different time series (along with the latest value
recorded for each), all with the metric name
promhttp_metric_handler_requests_total, but with different labels. These
labels designate different requests statuses.

If we were only interested in requests that resulted in HTTP code 200, we could
use this query to retrieve that information:

promhttp_metric_handler_requests_total{code="200"}

To count the number of returned time series, you could write:

count(promhttp_metric_handler_requests_total)

For more about the expression language, see the expression language
documentation (/docs/querying/basics/).

Using the graphing interface

To graph expressions, navigate to http://localhost:9090/graph
(http://localhost:9090/graph) and use the "Graph" tab.

https://prometheus.io/docs/introduction/first_steps/

5/6

http://localhost:9090/graph
http://localhost:9090/graph
http://localhost:9090/metrics
http://localhost:9090/metrics
https://prometheus.io/docs/querying/basics/
https://prometheus.io/docs/querying/basics/
https://prometheus.io/docs/querying/basics/
http://localhost:9090/graph
http://localhost:9090/graph

10/09/24, 19:13

First steps | Prometheus

For example, enter the following expression to graph the per-second HTTP
request rate returning status code 200 happening in the self-scraped
Prometheus:

rate(promhttp_metric_handler_requests_total{code="200"}[1m])

You can experiment with the graph range parameters and other settings.

Monitoring other targets

Collecting metrics from Prometheus alone isn't a great representation of
Prometheus' capabilities. To get a better sense of what Prometheus can do, we
recommend exploring documentation about other exporters. The Monitoring
Linux or macOS host metrics using a node exporter (/docs/guides/node-
exporter) guide is a good place to start.

Summary

In this guide, you installed Prometheus, configured a Prometheus instance to
monitor resources, and learned some basics of working with time series data in
Prometheus' expression browser. To continue learning about Prometheus,
check out the Overview (/docs/introduction/overview) for some ideas about
what to explore next.

I This documentation is open-source
(https://github.com/prometheus/docs#contributing-changes). Please help
improve it by filing issues or pull requests.

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and
uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage
(https://www.linuxfoundation.org/trademark-usage) page.

https://prometheus.io/docs/introduction/first_steps/

6/6

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://prometheus.io/docs/guides/node-exporter
https://prometheus.io/docs/guides/node-exporter
https://prometheus.io/docs/guides/node-exporter
https://prometheus.io/docs/guides/node-exporter
https://prometheus.io/docs/introduction/overview
https://prometheus.io/docs/introduction/overview
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

10/09/24, 19:13 Comparison to alternatives | Prometheus

> INTRODUCTION

Overview (/docs/introduction/overview/)

First steps (/docs/introduction/first_steps/)

Comparison to alternatives (/docs/introduction/comparison/)
FAQ (/docs/introduction/faqg/)

Roadmap (/docs/introduction/roadmap/)

Design Documents (/docs/introduction/design-doc/)

Media (/docs/introduction/media/)

Glossary (/docs/introduction/glossary/)

Long-Term Support (/docs/introduction/release-cycle/)

A CONCEPTS

= PROMETHEUS SERVER
|~ VISUALIZATION

</> INSTRUMENTING

£# OPERATING

L\ ALERT MANAGER

) BEST PRACTICES

[IJ GUIDES

& TUTORIALS

https://prometheus.io/docs/introduction/comparison/ 111

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/introduction/faq/
https://prometheus.io/docs/introduction/roadmap/
https://prometheus.io/docs/introduction/design-doc/
https://prometheus.io/docs/introduction/media/
https://prometheus.io/docs/introduction/glossary/
https://prometheus.io/docs/introduction/release-cycle/

10/09/24, 19:13 Comparison to alternatives | Prometheus

[8 SPECIFICATIONS

COMPARISON TO ALTERNATIVES

Prometheus vs. Graphite e Prometheus vs.
Graphite

Scope o Scope

Graphite o Data model
o Storage

(http://graphite.readthedocs.org/en/latest/)
focuses on being a passive time series
database with a query language and graphing
features. Any other concerns are addressed by
external components.

o Summary

e Prometheus vs.
InfluxDB
o Scope
o Data model / storage
o Architecture
o Summary

e Prometheus vs.

Prometheus is a full monitoring and trending
system that includes built-in and active
scraping, storing, querying, graphing, and

, . : OpenTSDB

alerting based on time series data. It has opSco o

knowledge about what the world should look o Dats nodel

like (which endpoints should exist, what time o Storage

series patterns mean trouble, etc.), and o Summary

actively tries to find faults. e Prometheus vs. Nagios
o Scope

Data model o Data model

Graphite stores numeric samples for named © Storgge

time series, much like Prometheus does. © Architecture

However, Prometheus's metadata model is ° Summary

richer: while Graphite metric names consist of * Pro;netheus vs. Sensu

dot-separated components which implicitly ° DCC;pe del

: : o Data mode

encode dimensions, Prometheus encodes Storage
@]

dimensions explicitly as key-value pairs, called o Architecture

https://prometheus.io/docs/introduction/comparison/ 2/11

http://graphite.readthedocs.org/en/latest/
http://graphite.readthedocs.org/en/latest/

10/09/24, 19:13

Comparison to alternatives | Prometheus

labels, attached to a metric name. This allows o Summary
easy filtering, grouping, and matching by these
labels via the query language.

Further, especially when Graphite is used in combination with StatsD
(https://github.com/etsy/statsd/), it is common to store only aggregated data
over all monitored instances, rather than preserving the instance as a
dimension and being able to drill down into individual problematic instances.

For example, storing the number of HTTP requests to APl servers with the
response code 500 and the method PosT to the /tracks endpoint would
commonly be encoded like this in Graphite/StatsD:

stats.api-server.tracks.post.500 -> 93

In Prometheus the same data could be encoded like this (assuming three api-
server instances):

api_server_http_requests_total{method="POST",handler="/tracks",status="500",inst:
api_server_http_requests_total{method="POST",handler="/tracks",status="500",inst:
api_server_http_requests_total{method="POST",handler="/tracks",status="500",inst:

4

Storage

Graphite stores time series data on local disk in the Whisper
(http://graphite.readthedocs.org/en/latest/whisper.html) format, an RRD-style
database that expects samples to arrive at regular intervals. Every time series is
stored in a separate file, and new samples overwrite old ones after a certain
amount of time.

Prometheus also creates one local file per time series, but allows storing
samples at arbitrary intervals as scrapes or rule evaluations occur. Since new
samples are simply appended, old data may be kept arbitrarily long.
Prometheus also works well for many short-lived, frequently changing sets of
time series.

https://prometheus.io/docs/introduction/comparison/

3

https://github.com/etsy/statsd/
https://github.com/etsy/statsd/
http://graphite.readthedocs.org/en/latest/whisper.html
http://graphite.readthedocs.org/en/latest/whisper.html

10/09/24, 19:13

Comparison to alternatives | Prometheus

Ssummary

Prometheus offers a richer data model and query language, in addition to being
easier to run and integrate into your environment. If you want a clustered
solution that can hold historical data long term, Graphite may be a better
choice.

Prometheus vs. InfluxDB

InfluxDB (https://influxdata.com/) is an open-source time series database, with
a commercial option for scaling and clustering. The InfluxDB project was
released almost a year after Prometheus development began, so we were
unable to consider it as an alternative at the time. Still, there are significant
differences between Prometheus and InfluxDB, and both systems are geared
towards slightly different use cases.

Scope

For a fair comparison, we must also consider Kapacitor
(https://github.com/influxdata/kapacitor) together with InfluxDB, as in
combination they address the same problem space as Prometheus and the
Alertmanager.

The same scope differences as in the case of Graphite apply here for InfluxDB
itself. In addition InfluxDB offers continuous queries, which are equivalent to
Prometheus recording rules.

Kapacitor's scope is a combination of Prometheus recording rules, alerting
rules, and the Alertmanager's notification functionality. Prometheus offers a
more powerful query language for graphing and alerting
(https://www.robustperception.io/translating-between-monitoring-languages/).
The Prometheus Alertmanager additionally offers grouping, deduplication and
silencing functionality.

https://prometheus.io/docs/introduction/comparison/

4/11

https://influxdata.com/
https://influxdata.com/
https://github.com/influxdata/kapacitor
https://github.com/influxdata/kapacitor
https://www.robustperception.io/translating-between-monitoring-languages/
https://www.robustperception.io/translating-between-monitoring-languages/
https://www.robustperception.io/translating-between-monitoring-languages/

10/09/24, 19:13

Comparison to alternatives | Prometheus

Data model / storage

Like Prometheus, the InfluxDB data model has key-value pairs as labels, which
are called tags. In addition, InfluxDB has a second level of labels called fields,
which are more limited in use. InfluxDB supports timestamps with up to
nanosecond resolution, and float64, inté4, bool, and string data types.
Prometheus, by contrast, supports the floaté4 data type with limited support
for strings, and millisecond resolution timestamps.

InfluxDB uses a variant of a log-structured merge tree for storage with a write
ahead log
(https://docs.influxdata.com/influxdb/v1.7/concepts/storage_engine/), sharded
by time. This is much more suitable to event logging than Prometheus's
append-only file per time series approach.

Logs and Metrics and Graphs, Oh My!
(https://grafana.com/blog/2016/01/05/logs-and-metrics-and-graphs-oh-myy/)
describes the differences between event logging and metrics recording.

Architecture

Prometheus servers run independently of each other and only rely on their
local storage for their core functionality: scraping, rule processing, and alerting.
The open source version of InfluxDB is similar.

The commercial InfluxDB offering is, by design, a distributed storage cluster
with storage and queries being handled by many nodes at once.

This means that the commercial InfluxDB will be easier to scale horizontally, but
it also means that you have to manage the complexity of a distributed storage
system from the beginning. Prometheus will be simpler to run, but at some
point you will need to shard servers explicitly along scalability boundaries like
products, services, datacenters, or similar aspects. Independent servers (which
can be run redundantly in parallel) may also give you better reliability and
failure isolation.

https://prometheus.io/docs/introduction/comparison/

5/11

https://docs.influxdata.com/influxdb/v1.7/concepts/storage_engine/
https://docs.influxdata.com/influxdb/v1.7/concepts/storage_engine/
https://docs.influxdata.com/influxdb/v1.7/concepts/storage_engine/
https://grafana.com/blog/2016/01/05/logs-and-metrics-and-graphs-oh-my/
https://grafana.com/blog/2016/01/05/logs-and-metrics-and-graphs-oh-my/

10/09/24, 19:13

Comparison to alternatives | Prometheus

Kapacitor's open-source release has no built-in distributed/redundant options
for rules, alerting, or notifications. The open-source release of Kapacitor can be
scaled via manual sharding by the user, similar to Prometheus itself. Influx
offers Enterprise Kapacitor (https://docs.influxdata.com/enterprise_kapacitor),
which supports an HA/redundant alerting system.

Prometheus and the Alertmanager by contrast offer a fully open-source
redundant option via running redundant replicas of Prometheus and using the
Alertmanager's High Availability
(https://github.com/prometheus/alertmanager#high-availability) mode.

summary

There are many similarities between the systems. Both have labels (called tags
in InfluxDB) to efficiently support multi-dimensional metrics. Both use basically
the same data compression algorithms. Both have extensive integrations,
including with each other. Both have hooks allowing you to extend them
further, such as analyzing data in statistical tools or performing automated
actions.

Where InfluxDB is better:

e If you're doing event logging.

e Commercial option offers clustering for InfluxDB, which is also better for
long term data storage.

e Eventually consistent view of data between replicas.

Where Prometheus is better:

e If you're primarily doing metrics.
e More powerful query language, alerting, and notification functionality.
e Higher availability and uptime for graphing and alerting.

InfluxDB is maintained by a single commercial company following the open-
core model, offering premium features like closed-source clustering, hosting
and support. Prometheus is a fully open source and independent project
(/community/), maintained by a number of companies and individuals, some of
whom also offer commercial services and support.

https://prometheus.io/docs/introduction/comparison/ 6/11

https://docs.influxdata.com/enterprise_kapacitor
https://docs.influxdata.com/enterprise_kapacitor
https://github.com/prometheus/alertmanager#high-availability
https://github.com/prometheus/alertmanager#high-availability
https://prometheus.io/community/
https://prometheus.io/community/

10/09/24, 19:13 Comparison to alternatives | Prometheus

Prometheus vs. OpenTSDB

OpenTSDB (http://opentsdb.net/) is a distributed time series database based on
Hadoop (http://hadoop.apache.org/) and HBase (http://hbase.apache.org/).

Scope

The same scope differences as in the case of Graphite
(/docs/introduction/comparison/#prometheus-vs-graphite) apply here.

Data model

OpenTSDB's data model is almost identical to Prometheus's: time series are
identified by a set of arbitrary key-value pairs (OpenTSDB tags are Prometheus
labels). All data for a metric is stored together
(http://opentsdb.net/docs/build/html/user_guide/writing/index.html#time-
series-cardinality), limiting the cardinality of metrics. There are minor
differences though: Prometheus allows arbitrary characters in label values,
while OpenTSDB is more restrictive. OpenTSDB also lacks a full query language,
only allowing simple aggregation and math via its API.

Storage

OpenTSDB (http://opentsdb.net/)'s storage is implemented on top of Hadoop
(http://hadoop.apache.org/) and HBase (http://hbase.apache.org/). This means
that it is easy to scale OpenTSDB horizontally, but you have to accept the
overall complexity of running a Hadoop/HBase cluster from the beginning.

Prometheus will be simpler to run initially, but will require explicit sharding
once the capacity of a single node is exceeded.

Ssummary

Prometheus offers a much richer query language, can handle higher cardinality
metrics, and forms part of a complete monitoring system. If you're already
running Hadoop and value long term storage over these benefits, OpenTSDB is
a good choice.

https://prometheus.io/docs/introduction/comparison/ 711

http://opentsdb.net/
http://opentsdb.net/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hbase.apache.org/
http://hbase.apache.org/
http://opentsdb.net/docs/build/html/user_guide/writing/index.html#time-series-cardinality
http://opentsdb.net/docs/build/html/user_guide/writing/index.html#time-series-cardinality
http://opentsdb.net/docs/build/html/user_guide/writing/index.html#time-series-cardinality
http://opentsdb.net/
http://opentsdb.net/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hbase.apache.org/
http://hbase.apache.org/

10/09/24, 19:13

Comparison to alternatives | Prometheus

Prometheus vs. Nagios

Nagios (https://www.nagios.org/) is a monitoring system that originated in the
1990s as NetSaint.

Scope

Nagios is primarily about alerting based on the exit codes of scripts. These are
called “checks”. There is silencing of individual alerts, however no grouping,
routing or deduplication.

There are a variety of plugins. For example, piping the few kilobytes of perfData
plugins are allowed to return to a time series database such as Graphite
(https://github.com/shawn-sterling/graphios) or using NRPE to run checks on
remote machines (https://exchange.nagios.org/directory/Addons/Monitoring-
Agents/NRPE--2D-Nagios-Remote-Plugin-Executor/details).

Data model

Nagios is host-based. Each host can have one or more services and each service
can perform one check.

There is no notion of labels or a query language.

Storage

Nagios has no storage per-se, beyond the current check state. There are
plugins which can store data such as for visualisation
(https://docs.pnp4nagios.org/).

Architecture

Nagios servers are standalone. All configuration of checks is via file.

Ssummary

Nagios is suitable for basic monitoring of small and/or static systems where
blackbox probing is sufficient.

https://prometheus.io/docs/introduction/comparison/ 8/11

https://www.nagios.org/
https://www.nagios.org/
https://github.com/shawn-sterling/graphios
https://github.com/shawn-sterling/graphios
https://exchange.nagios.org/directory/Addons/Monitoring-Agents/NRPE--2D-Nagios-Remote-Plugin-Executor/details
https://exchange.nagios.org/directory/Addons/Monitoring-Agents/NRPE--2D-Nagios-Remote-Plugin-Executor/details
https://exchange.nagios.org/directory/Addons/Monitoring-Agents/NRPE--2D-Nagios-Remote-Plugin-Executor/details
https://exchange.nagios.org/directory/Addons/Monitoring-Agents/NRPE--2D-Nagios-Remote-Plugin-Executor/details
https://docs.pnp4nagios.org/
https://docs.pnp4nagios.org/

10/09/24, 19:13

Comparison to alternatives | Prometheus

If you want to do whitebox monitoring, or have a dynamic or cloud based
environment, then Prometheus is a good choice.

Prometheus vs. Sensu

Sensu (https://sensu.io) is an open source monitoring and observability pipeline

with a commercial distribution which offers additional features for scalability. It
can reuse existing Nagios plugins.

Scope

Sensu is an observability pipeline that focuses on processing and alerting of
observability data as a stream of Events (https://docs.sensu.io/sensu-
go/latest/observability-pipeline/observe-events/events/). It provides an
extensible framework for event filtering (https://docs.sensu.io/sensu-
go/latest/observability-pipeline/observe-filter/), aggregation, transformation
(https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-
transform/), and processing (https://docs.sensu.io/sensu-
go/latest/observability-pipeline/observe-process/) - including sending alerts to
other systems and storing events in third-party systems. Sensu's event
processing capabilities are similar in scope to Prometheus alerting rules and
Alertmanager.

Data model

Sensu Events (https://docs.sensu.io/sensu-go/latest/observability-
pipeline/observe-events/events/) represent service health and/or metrics
(https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-
events/events/#metric-attributes) in a structured data format identified by an
entity (https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-
entities/entities/) name (e.g. server, cloud compute instance, container, or
service), an event name, and optional key-value metadata
(https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-
events/events/#metadata-attributes) called "labels" or "annotations". The
Sensu Event payload may include one or more metric points

https://prometheus.io/docs/introduction/comparison/

911

https://sensu.io/
https://sensu.io/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-filter/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-filter/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-filter/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-transform/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-transform/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-transform/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-process/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-process/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-process/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/#metric-attributes
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/#metric-attributes
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/#metric-attributes
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-entities/entities/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-entities/entities/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-entities/entities/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/#metadata-attributes
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/#metadata-attributes
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/#metadata-attributes
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/#points-attributes

10/09/24, 19:13

Comparison to alternatives | Prometheus

(https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-
events/events/#points-attributes), represented as a JSON object containing a
name , tags (key/value pairs), timestamp, and value (always a float).

Storage

Sensu stores current and recent event status information and real-time
inventory data in an embedded database (etcd) or an external RDBMS
(PostgreSQL).

Architecture

All components of a Sensu deployment can be clustered for high availability
and improved event-processing throughput.

summary

Sensu and Prometheus have a few capabilities in common, but they take very
different approaches to monitoring. Both offer extensible discovery
mechanisms for dynamic cloud-based environments and ephemeral compute
platforms, though the underlying mechanisms are quite different. Both provide
support for collecting multi-dimensional metrics via labels and annotations.
Both have extensive integrations, and Sensu natively supports collecting
metrics from all Prometheus exporters. Both are capable of forwarding
observability data to third-party data platforms (e.g. event stores or TSDBs).
Where Sensu and Prometheus differ the most is in their use cases.

Where Sensu is better:

e If you're collecting and processing hybrid observability data (including
metrics and/or events)

e |f you're consolidating multiple monitoring tools and need support for
metrics and Nagios-style plugins or check scripts

e More powerful event-processing platform

Where Prometheus is better:

e If you're primarily collecting and evaluating metrics

https://prometheus.io/docs/introduction/comparison/

10/11

https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/#points-attributes
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/#points-attributes

10/09/24, 19:13 Comparison to alternatives | Prometheus

e If you're monitoring homogeneous Kubernetes infrastructure (if 100% of
the workloads you're monitoring are in K8s, Prometheus offers better K8s
integration)

e More powerful query language, and built-in support for historical data
analysis

Sensu is maintained by a single commercial company following the open-core
business model, offering premium features like closed-source event correlation
and aggregation, federation, and support. Prometheus is a fully open source
and independent project, maintained by a number of companies and
individuals, some of whom also offer commercial services and support.

I This documentation is open-source
(https://github.com/prometheus/docs#contributing-changes). Please help
improve it by filing issues or pull requests.

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and
uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage
(https://www.linuxfoundation.org/trademark-usage) page.

https://prometheus.io/docs/introduction/comparison/ 11/11

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

10/09/24, 19:13 FAQ | Prometheus

> INTRODUCTION

Overview (/docs/introduction/overview/)

First steps (/docs/introduction/first_steps/)

Comparison to alternatives (/docs/introduction/comparison/)
FAQ (/docs/introduction/faq/)

Roadmap (/docs/introduction/roadmap/)

Design Documents (/docs/introduction/design-doc/)

Media (/docs/introduction/media/)

Glossary (/docs/introduction/glossary/)

Long-Term Support (/docs/introduction/release-cycle/)

A CONCEPTS

= PROMETHEUS SERVER
l#~ VISUALIZATION

</> INSTRUMENTING

£+ OPERATING

L\ ALERT MANAGER

¢y BEST PRACTICES

(I GUIDES

& TUTORIALS

[2) SPECIFICATIONS

https://prometheus.io/docs/introduction/faqg/ 1/8

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/introduction/faq/
https://prometheus.io/docs/introduction/roadmap/
https://prometheus.io/docs/introduction/design-doc/
https://prometheus.io/docs/introduction/media/
https://prometheus.io/docs/introduction/glossary/
https://prometheus.io/docs/introduction/release-cycle/

10/09/24, 19:13

FAQ | Prometheus

FREQUENTLY ASKED QUESTIONS

e General

O

0O O O 0O 0O 0O o o o 0o o o o o

o

What is Prometheus?

How does Prometheus compare against other monitoring systems?
What dependencies does Prometheus have?

Can Prometheus be made highly available?

| was told Prometheus “doesn't scale”.

What language is Prometheus written in?

How stable are Prometheus features, storage formats, and APIs?
Why do you pull rather than push?

How to feed logs into Prometheus?

Who wrote Prometheus?

What license is Prometheus released under?

What is the plural of Prometheus?

Can | reload Prometheus's configuration?

Can | send alerts?

Can | create dashboards?

Can | change the timezone? Why is everything in UTC?

e |nstrumentation

e}

O O O O O

O

Which languages have instrumentation libraries?

Can | monitor machines?

Can | monitor network devices?

Can | monitor batch jobs?

What applications can Prometheus monitor out of the box?
Can | monitor JVM applications via JMX?

What is the performance impact of instrumentation?

e Implementation

o

Why are all sample values 64-bit floats?

https://prometheus.io/docs/introduction/faqg/ 2/8

10/09/24, 19:13

FAQ | Prometheus

General

What is Prometheus?

Prometheus is an open-source systems monitoring and alerting toolkit with an
active ecosystem. It is the only system directly supported by Kubernetes
(https://kubernetes.io/) and the de facto standard across the cloud native
ecosystem (https://landscape.cncf.io/). See the overview
(/docs/introduction/overview/).

How does Prometheus compare against other monitoring
systems?

See the comparison (/docs/introduction/comparison/) page.

What dependencies does Prometheus have?

The main Prometheus server runs standalone as a single monolithic binary and
has no external dependencies.

Is this cloud native?

Yes.

Cloud native is a flexible operating model, breaking up old service boundaries to
allow for more flexible and scalable deployments.

Prometheus's service discovery
(https://prometheus.io/docs/prometheus/latest/configuration/configuration/)
integrates with most tools and clouds. Its dimensional data model and scale into
the tens of millions of active series allows it to monitor large cloud-native
deployments. There are always trade-offs to make when running services, and
Prometheus values reliably getting alerts out to humans above all else.

Can Prometheus be made highly available?

Yes, run identical Prometheus servers on two or more separate machines.
|dentical alerts will be deduplicated by the Alertmanager
(https://github.com/prometheus/alertmanager).

https://prometheus.io/docs/introduction/faqg/

3/8

https://kubernetes.io/
https://kubernetes.io/
https://landscape.cncf.io/
https://landscape.cncf.io/
https://landscape.cncf.io/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://github.com/prometheus/alertmanager
https://github.com/prometheus/alertmanager

10/09/24, 19:13 FAQ | Prometheus

Alertmanager supports high availability
(https://github.com/prometheus/alertmanager#high-availability) by
interconnecting multiple Alertmanager instances to build an Alertmanager
cluster. Instances of a cluster communicate using a gossip protocol managed via
HashiCorp's Memberlist (https://github.com/hashicorp/memberlist) library.

| was told Prometheus “doesn't scale”.
This is often more of a marketing claim than anything else.

A single instance of Prometheus can be more performant than some systems
positioning themselves as long term storage solution for Prometheus. You can
run Prometheus reliably with tens of millions of active series.

If you need more than that, there are several options. Scaling and Federating
Prometheus (https://www.robustperception.io/scaling-and-federating-
prometheus/) on the Robust Perception blog is a good starting point, as are the
long storage systems listed on our integrations page
(https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-
storage).

What language is Prometheus written in?

Most Prometheus components are written in Go. Some are also written in Java,
Python, and Ruby.

How stable are Prometheus features, storage formats, and
APIs?

All repositories in the Prometheus GitHub organization that have reached version
1.0.0 broadly follow semantic versioning (http://semver.org/). Breaking changes
are indicated by increments of the major version. Exceptions are possible for
experimental components, which are clearly marked as such in announcements.

Even repositories that have not yet reached version 1.0.0 are, in general, quite
stable. We aim for a proper release process and an eventual 1.0.0 release for
each repository. In any case, breaking changes will be pointed out in release
notes (marked by [CHANGE]) or communicated clearly for components that do
not have formal releases yet.

https://prometheus.io/docs/introduction/faqg/ 4/8

https://github.com/prometheus/alertmanager#high-availability
https://github.com/prometheus/alertmanager#high-availability
https://github.com/hashicorp/memberlist
https://github.com/hashicorp/memberlist
https://www.robustperception.io/scaling-and-federating-prometheus/
https://www.robustperception.io/scaling-and-federating-prometheus/
https://www.robustperception.io/scaling-and-federating-prometheus/
https://www.robustperception.io/scaling-and-federating-prometheus/
https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
http://semver.org/
http://semver.org/

10/09/24, 19:13 FAQ | Prometheus

Why do you pull rather than push?
Pulling over HTTP offers a number of advantages:

e You can start extra monitoring instances as needed, e.g. on your laptop
when developing changes.

e You can more easily and reliably tell if a target is down.

e You can manually go to a target and inspect its health with a web browser.

Overall, we believe that pulling is slightly better than pushing, but it should not be
considered a major point when considering a monitoring system.

For cases where you must push, we offer the Pushgateway
(/docs/instrumenting/pushing/).

How to feed logs into Prometheus?

Short answer: Don't! Use something like Grafana Loki
(https://grafana.com/oss/loki/) or OpenSearch (https://opensearch.org/) instead.

Longer answer: Prometheus is a system to collect and process metrics, not an
event logging system. The Grafana blog post Logs and Metrics and Graphs, Oh
My! (https://grafana.com/blog/2016/01/05/logs-and-metrics-and-graphs-oh-myy/)
provides more details about the differences between logs and metrics.

If you want to extract Prometheus metrics from application logs, Grafana Loki is
designed for just that. See Loki's metric queries
(https://grafana.com/docs/loki/latest/logqgl/metric_queries/) documentation.

Who wrote Prometheus?

Prometheus was initially started privately by Matt T. Proud
(http://www.matttproud.com) and Julius Volz (http://juliusv.com). The majority of
its initial development was sponsored by SoundCloud (https://soundcloud.com).

It's now maintained and extended by a wide range of companies
(https://prometheus.devstats.cncf.io/d/5/companies-table?orgld=1) and
individuals (https://prometheus.io/governance).

https://prometheus.io/docs/introduction/faqg/ 5/8

https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/
https://grafana.com/oss/loki/
https://grafana.com/oss/loki/
https://opensearch.org/
https://opensearch.org/
https://grafana.com/blog/2016/01/05/logs-and-metrics-and-graphs-oh-my/
https://grafana.com/blog/2016/01/05/logs-and-metrics-and-graphs-oh-my/
https://grafana.com/blog/2016/01/05/logs-and-metrics-and-graphs-oh-my/
https://grafana.com/docs/loki/latest/logql/metric_queries/
https://grafana.com/docs/loki/latest/logql/metric_queries/
http://www.matttproud.com/
http://www.matttproud.com/
http://juliusv.com/
http://juliusv.com/
https://soundcloud.com/
https://soundcloud.com/
https://prometheus.devstats.cncf.io/d/5/companies-table?orgId=1
https://prometheus.devstats.cncf.io/d/5/companies-table?orgId=1
https://prometheus.io/governance
https://prometheus.io/governance

10/09/24, 19:13 FAQ | Prometheus

What license is Prometheus released under?

Prometheus is released under the Apache 2.0
(https://github.com/prometheus/prometheus/blob/main/LICENSE) license.

What is the plural of Prometheus?

After extensive research (https://youtu.be/B_CDeYrgxjQ), it has been determined
that the correct plural of 'Prometheus' is 'Prometheis'.

If you can not remember this, "Prometheus instances" is a good workaround.

Can | reload Prometheus's configuration?

Yes, sending SIGHUP to the Prometheus process or an HTTP POST request to the
/-/reload endpoint will reload and apply the configuration file. The various
components attempt to handle failing changes gracefully.

Can | send alerts?

Yes, with the Alertmanager (https://github.com/prometheus/alertmanager).

We support sending alerts through email, various native integrations
(https://prometheus.io/docs/alerting/latest/configuration/), and a webhook
system anyone can add integrations to
(https://prometheus.io/docs/operating/integrations/#alertmanager-webhook-
receiver).

Can | create dashboards?

Yes, we recommend Grafana (/docs/visualization/grafana/) for production usage.
There are also Console templates (/docs/visualization/consoles/).

Can | change the timezone? Why is everything in UTC?

To avoid any kind of timezone confusion, especially when the so-called daylight
saving time is involved, we decided to exclusively use Unix time internally and
UTC for display purposes in all components of Prometheus. A carefully done
timezone selection could be introduced into the Ul. Contributions are welcome.
See issue #500 (https://github.com/prometheus/prometheus/issues/500) for the
current state of this effort.

https://prometheus.io/docs/introduction/faqg/ 6/8

https://github.com/prometheus/prometheus/blob/main/LICENSE
https://github.com/prometheus/prometheus/blob/main/LICENSE
https://youtu.be/B_CDeYrqxjQ
https://youtu.be/B_CDeYrqxjQ
https://github.com/prometheus/alertmanager
https://github.com/prometheus/alertmanager
https://prometheus.io/docs/alerting/latest/configuration/
https://prometheus.io/docs/alerting/latest/configuration/
https://prometheus.io/docs/operating/integrations/#alertmanager-webhook-receiver
https://prometheus.io/docs/operating/integrations/#alertmanager-webhook-receiver
https://prometheus.io/docs/operating/integrations/#alertmanager-webhook-receiver
https://prometheus.io/docs/operating/integrations/#alertmanager-webhook-receiver
https://prometheus.io/docs/visualization/grafana/
https://prometheus.io/docs/visualization/grafana/
https://prometheus.io/docs/visualization/consoles/
https://prometheus.io/docs/visualization/consoles/
https://github.com/prometheus/prometheus/issues/500
https://github.com/prometheus/prometheus/issues/500

10/09/24, 19:13

FAQ | Prometheus

Instrumentation

Which languages have instrumentation libraries?

There are a number of client libraries for instrumenting your services with
Prometheus metrics. See the client libraries (/docs/instrumenting/clientlibs/)
documentation for details.

If you are interested in contributing a client library for a new language, see the
exposition formats (/docs/instrumenting/exposition_formats/).

Can | monitor machines?

Yes, the Node Exporter (https://github.com/prometheus/node_exporter) exposes
an extensive set of machine-level metrics on Linux and other Unix systems such
as CPU usage, memory, disk utilization, filesystem fullness, and network
bandwidth.

Can | monitor network devices?

Yes, the SNMP Exporter (https://github.com/prometheus/snmp_exporter) allows
monitoring of devices that support SNMP. For industrial networks, there's also a
Modbus exporter (https://github.com/RichiH/modbus_exporter).

Can | monitor batch jobs?

Yes, using the Pushgateway (/docs/instrumenting/pushing/). See also the best
practices (/docs/practices/instrumentation/#batch-jobs) for monitoring batch
jobs.

What applications can Prometheus monitor out of the box?

See the list of exporters and integrations (/docs/instrumenting/exporters/).

Can | monitor JVM applications via JMX?

Yes, for applications that you cannot instrument directly with the Java client, you
can use the JMX Exporter (https://github.com/prometheus/jmx_exporter) either
standalone or as a Java Agent.

https://prometheus.io/docs/introduction/faqg/

7/8

https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/snmp_exporter
https://github.com/prometheus/snmp_exporter
https://github.com/RichiH/modbus_exporter
https://github.com/RichiH/modbus_exporter
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/practices/instrumentation/#batch-jobs
https://prometheus.io/docs/practices/instrumentation/#batch-jobs
https://prometheus.io/docs/practices/instrumentation/#batch-jobs
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/exporters/
https://github.com/prometheus/jmx_exporter
https://github.com/prometheus/jmx_exporter

10/09/24, 19:13 FAQ | Prometheus

What is the performance impact of instrumentation?

Performance across client libraries and languages may vary. For Java,

benchmarks
(https://github.com/prometheus/client_java/blob/master/benchmarks/README.md)
indicate that incrementing a counter/gauge with the Java client will take 12-17ns,
depending on contention. This is negligible for all but the most latency-critical

code.

Implementation

Why are all sample values 64-bit floats?

We restrained ourselves to 64-bit floats to simplify the design. The IEEE 754
double-precision binary floating-point format
(https://en.wikipedia.org/wiki/Double-precision_floating-point_format) supports
integer precision for values up to 2°3. Supporting native 64 bit integers would
(only) help if you need integer precision above 2°3 but below 293, In principle,
support for different sample value types (including some kind of big integer,
supporting even more than 64 bit) could be implemented, but it is not a priority
right now. A counter, even if incremented one million times per second, will only
run into precision issues after over 285 years.

B This documentation is open-source
(https://github.com/prometheus/docs#contributing-changes). Please help
improve it by filing issues or pull requests.

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses
trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage
(https://www.linuxfoundation.org/trademark-usage) page.

https://prometheus.io/docs/introduction/faqg/ 8/8

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/client_java/blob/master/benchmarks/README.md
https://github.com/prometheus/client_java/blob/master/benchmarks/README.md
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

10/09/24, 19:13 Roadmap | Prometheus

> INTRODUCTION

Overview (/docs/introduction/overview/)

First steps (/docs/introduction/first_steps/)

Comparison to alternatives (/docs/introduction/comparison/)
FAQ (/docs/introduction/faqg/)

Roadmap (/docs/introduction/roadmap/)

Design Documents (/docs/introduction/design-doc/)

Media (/docs/introduction/media/)

Glossary (/docs/introduction/glossary/)

Long-Term Support (/docs/introduction/release-cycle/)

A CONCEPTS

= PROMETHEUS SERVER
|~ VISUALIZATION

</> INSTRUMENTING

£# OPERATING

L\ ALERT MANAGER

) BEST PRACTICES

[IJ GUIDES

& TUTORIALS

https://prometheus.io/docs/introduction/roadmap/ 1/3

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/introduction/faq/
https://prometheus.io/docs/introduction/roadmap/
https://prometheus.io/docs/introduction/design-doc/
https://prometheus.io/docs/introduction/media/
https://prometheus.io/docs/introduction/glossary/
https://prometheus.io/docs/introduction/release-cycle/

10/09/24, 19:13 Roadmap | Prometheus

[8 SPECIFICATIONS

ROADMAP

The following is only a selection of some of the
major features we plan to implement in the metadata support
near future. To get a more complete overview « Adopt OpenMetrics

of planned features and current work, see the e Retroactive rule

issue trackers for the various repositories, for evaluations

example, the Prometheus server e TLS and authentication

e Server-side metric

in HTTP serving
endpoints
e Support the Ecosystem

(https://github.com/prometheus/prometheus/issues).

Server-side metric metadata support

At this time, metric types and other metadata are only used in the client
libraries and in the exposition format, but not persisted or utilized in the
Prometheus server. We plan on making use of this metadata in the future. The
first step is to aggregate this data in-memory in Prometheus and provide it via
an experimental API endpoint.

Adopt OpenMetrics

The OpenMetrics working group is developing a new standard for metric
exposition. We plan to support this format in our client libraries and
Prometheus itself.

Retroactive rule evaluations

Add support for retroactive rule evaluations making use of backfill.

https://prometheus.io/docs/introduction/roadmap/ 2/3

https://github.com/prometheus/prometheus/issues
https://github.com/prometheus/prometheus/issues

10/09/24, 19:13 Roadmap | Prometheus

TLS and authentication in HTTP serving endpoints

TLS and authentication are currently being rolled out to the Prometheus,
Alertmanager, and the official exporters. Adding this support will make it easier
for people to deploy Prometheus components securely without requiring a
reverse proxy to add those features externally.

Support the Ecosystem

Prometheus has a range of client libraries and exporters. There are always
more languages that could be supported, or systems that would be useful to
export metrics from. We will support the ecosystem in creating and expanding
these.

I This documentation is open-source
(https://github.com/prometheus/docs#contributing-changes). Please help
improve it by filing issues or pull requests.

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and
uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage
(https://www.linuxfoundation.org/trademark-usage) page.

https://prometheus.io/docs/introduction/roadmap/ 3/3

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

10/09/24, 19:13 Design Documents | Prometheus

> INTRODUCTION

Overview (/docs/introduction/overview/)

First steps (/docs/introduction/first_steps/)

Comparison to alternatives (/docs/introduction/comparison/)
FAQ (/docs/introduction/faq/)

Roadmap (/docs/introduction/roadmap/)

Design Documents (/docs/introduction/design-doc/)
Media (/docs/introduction/media/)

Glossary (/docs/introduction/glossary/)

Long-Term Support (/docs/introduction/release-cycle/)

A CONCEPTS

& PROMETHEUS SERVER
|#* VISUALIZATION

</> INSTRUMENTING

£+ OPERATING

L\ ALERT MANAGER

) BEST PRACTICES

[0 GUIDES

& TUTORIALS

[&) SPECIFICATIONS

DESIGN DOCUMENTS

See the github.com/prometheus/proposals (https://github.com/prometheus/proposals) repository to
see all the past and current proposals for the Prometheus Ecosystem.

https://prometheus.io/docs/introduction/design-doc/ 1/2

https://github.com/prometheus/proposals
https://github.com/prometheus/proposals
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/introduction/faq/
https://prometheus.io/docs/introduction/roadmap/
https://prometheus.io/docs/introduction/design-doc/
https://prometheus.io/docs/introduction/media/
https://prometheus.io/docs/introduction/glossary/
https://prometheus.io/docs/introduction/release-cycle/

10/09/24, 19:13 Design Documents | Prometheus

If you are interested in creating a new proposal, read our proposal process
(https://github.com/prometheus/proposals#proposal-process).

PROBLEM STATEMENTS AND EXPLORATORY
DOCUMENTS

Sometimes we're looking even further into potential futures. The documents in this section are largely
exploratory. They should be taken as informing our collective thoughts, not as anything concrete or

specific.
Initial
Document date
Prometheus is not feature complete (https://docs.google.com/document/d/1IEP7pGYM2- 2020-
5GTOfAIDqrOecG86VRUS8-1gAV8b6XxZ29Q) 05
Thoughts about timestamps and durations in PromQL 2020-

(https://docs.google.com/document/d/1jMeDsLvDf092Qnry_JLAXalvMRzMSB1sBroV7LolpYM) 10

Prometheus, OpenMetrics & OTLP (https://docs.google.com/document/d/1hn- 2021-
ubWKLHxIsqYT1_u6eh94lyQeXrFaAouMsh]cQFXs) 03
Prometheus Sparse Histograms and PromQL 2021-
(https://docs.google.com/document/d/1ch6ru8GKg03NO2jRjYriurt- 10
CZqUVY09evPgbyKTATs/edit)

Quoting Prometheus names 2023-
(https://docs.google.com/document/d/1yFj5QSd1AgCYecZ9E)8f2t40gF2KBZgJYVde- 01
uzVEtl/edit)

I This documentation is open-source (https://github.com/prometheus/docs#contributing-
changes). Please help improve it by filing issues or pull requests.

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list of
trademarks of The Linux Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-usage) page.

https://prometheus.io/docs/introduction/design-doc/ 2/2

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/proposals#proposal-process
https://github.com/prometheus/proposals#proposal-process
https://docs.google.com/document/d/1lEP7pGYM2-5GT9fAIDqrOecG86VRU8-1qAV8b6xZ29Q
https://docs.google.com/document/d/1lEP7pGYM2-5GT9fAIDqrOecG86VRU8-1qAV8b6xZ29Q
https://docs.google.com/document/d/1lEP7pGYM2-5GT9fAIDqrOecG86VRU8-1qAV8b6xZ29Q
https://docs.google.com/document/d/1jMeDsLvDfO92Qnry_JLAXalvMRzMSB1sBr9V7LolpYM
https://docs.google.com/document/d/1jMeDsLvDfO92Qnry_JLAXalvMRzMSB1sBr9V7LolpYM
https://docs.google.com/document/d/1hn-u6WKLHxIsqYT1_u6eh94lyQeXrFaAouMshJcQFXs
https://docs.google.com/document/d/1hn-u6WKLHxIsqYT1_u6eh94lyQeXrFaAouMshJcQFXs
https://docs.google.com/document/d/1hn-u6WKLHxIsqYT1_u6eh94lyQeXrFaAouMshJcQFXs
https://docs.google.com/document/d/1ch6ru8GKg03N02jRjYriurt-CZqUVY09evPg6yKTA1s/edit
https://docs.google.com/document/d/1ch6ru8GKg03N02jRjYriurt-CZqUVY09evPg6yKTA1s/edit
https://docs.google.com/document/d/1ch6ru8GKg03N02jRjYriurt-CZqUVY09evPg6yKTA1s/edit
https://docs.google.com/document/d/1yFj5QSd1AgCYecZ9EJ8f2t4OgF2KBZgJYVde-uzVEtI/edit
https://docs.google.com/document/d/1yFj5QSd1AgCYecZ9EJ8f2t4OgF2KBZgJYVde-uzVEtI/edit
https://docs.google.com/document/d/1yFj5QSd1AgCYecZ9EJ8f2t4OgF2KBZgJYVde-uzVEtI/edit
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

10/09/24, 19:13 Media | Prometheus

> INTRODUCTION

Overview (/docs/introduction/overview/)

First steps (/docs/introduction/first_steps/)

Comparison to alternatives (/docs/introduction/comparison/)
FAQ (/docs/introduction/faq/)

Roadmap (/docs/introduction/roadmap/)

Design Documents (/docs/introduction/design-doc/)

Media (/docs/introduction/media/)

Glossary (/docs/introduction/glossary/)

Long-Term Support (/docs/introduction/release-cycle/)

& CONCEPTS

£ PROMETHEUS SERVER
l#* VISUALIZATION

</> INSTRUMENTING

£+ OPERATING

L\ ALERT MANAGER

¢y BEST PRACTICES

10 GUIDES

& TUTORIALS

[@ SPECIFICATIONS

MEDIA

There is a subreddit
(https://www.reddit.com/r/prometheusmonitoring) collecting
all Prometheus-related resources on the internet.

Blogs

Tutorials

Podcasts and interviews
Recorded talks

https://prometheus.io/docs/introduction/media/ 1/3

https://www.reddit.com/r/prometheusmonitoring
https://www.reddit.com/r/prometheusmonitoring
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/introduction/faq/
https://prometheus.io/docs/introduction/roadmap/
https://prometheus.io/docs/introduction/design-doc/
https://prometheus.io/docs/introduction/media/
https://prometheus.io/docs/introduction/glossary/
https://prometheus.io/docs/introduction/release-cycle/

10/09/24, 19:13 Media | Prometheus

The following selection of resources are particularly useful to e Presentation slides
get started with Prometheus. Awesome Prometheus o General
(https://github.com/roaldnefs/awesome-prometheus) o Docker
contains a more comprehensive community-maintained list of o Python
resources.

Blogs

e This site has its own blog (/blog/).

e SoundCloud's blog post announcing Prometheus
(https://developers.soundcloud.com/blog/prometheus-monitoring-at-soundcloud) - a more
elaborate overview than the one given on this site.

e Prometheus-related posts on the Robust Perception blog
(https://www.robustperception.io/tag/prometheus/).

Tutorials

e Instructions and example code for a Prometheus workshop
(https://github.com/juliusv/prometheus_workshop).

e How To Install Prometheus using Docker on Ubuntu 14.04
(https://www.digitalocean.com/community/tutorials/how-to-install-prometheus-using-docker-on-
ubuntu-14-04).

Podcasts and interviews

e Prometheus on FLOSS Weekly 357 (https://twit.tv/shows/floss-weekly/episodes/357) - Julius Volz on
the FLOSS Weekly TWIT.tv (https://twit.tv/shows/floss-weekly/) show.

e Prometheus and Service Monitoring (https://changelog.com/podcast/168) - Julius Volz on the
Changelog (https://changelog.com/) podcast.

Recorded talks

e Prometheus: A Next-Generation Monitoring System
(https://www.usenix.org/conference/srecon15europe/program/presentation/rabenstein) - Julius
Volz and Bjérn Rabenstein at SREcon15 Europe, Dublin.

e Prometheus: A Next-Generation Monitoring System (https://www.youtube.com/watch?
v=cwWwRmMXqgXKGtk) - Brian Brazil at FOSDEM 2016 (slides
(http://www.slideshare.net/brianbrazil/prometheus-a-next-generation-monitoring-system-fosdem-
2016)).

e What is your application doing right now? (https://youtu.be/Z0LIiIINpX1U) - Matthias Gruter,
Transmode, at DevOps Stockholm Meetup.

e Prometheus workshop (https://vimeo.com/131581353) - Jamie Wilkinson at Monitorama PDX 2015
(slides
(https://docs.google.com/presentation/d/1X1rKozAUUF2MVc1YXEIFWq9wkcWv3AxdIdIBLOH9Vik/edit)).

e Monitoring Hadoop with Prometheus (https://www.youtube.com/watch?v=qs2sqOLNGtw) - Brian
Brazil at the Hadoop User Group Ireland (slides (http://www.slideshare.net/brianbrazil/monitoring-
hadoop-with-prometheus-hadoop-user-group-ireland-december-2015)).

¢ In German: Monitoring mit Prometheus (https://media.ccc.de/v/eh16-43-
monitoring_mit_prometheus#video&t=2804) - Michael Stapelberg at Easterhegg 2016
(https://eh16.easterhegg.eu/).

https://prometheus.io/docs/introduction/media/ 2/3

https://github.com/roaldnefs/awesome-prometheus
https://github.com/roaldnefs/awesome-prometheus
https://prometheus.io/blog/
https://prometheus.io/blog/
https://developers.soundcloud.com/blog/prometheus-monitoring-at-soundcloud
https://developers.soundcloud.com/blog/prometheus-monitoring-at-soundcloud
https://www.robustperception.io/tag/prometheus/
https://www.robustperception.io/tag/prometheus/
https://github.com/juliusv/prometheus_workshop
https://github.com/juliusv/prometheus_workshop
https://www.digitalocean.com/community/tutorials/how-to-install-prometheus-using-docker-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-install-prometheus-using-docker-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-install-prometheus-using-docker-on-ubuntu-14-04
https://twit.tv/shows/floss-weekly/episodes/357
https://twit.tv/shows/floss-weekly/episodes/357
https://twit.tv/shows/floss-weekly/
https://twit.tv/shows/floss-weekly/
https://changelog.com/podcast/168
https://changelog.com/podcast/168
https://changelog.com/
https://changelog.com/
https://www.usenix.org/conference/srecon15europe/program/presentation/rabenstein
https://www.usenix.org/conference/srecon15europe/program/presentation/rabenstein
https://www.youtube.com/watch?v=cwRmXqXKGtk
https://www.youtube.com/watch?v=cwRmXqXKGtk
https://www.youtube.com/watch?v=cwRmXqXKGtk
http://www.slideshare.net/brianbrazil/prometheus-a-next-generation-monitoring-system-fosdem-2016
http://www.slideshare.net/brianbrazil/prometheus-a-next-generation-monitoring-system-fosdem-2016
http://www.slideshare.net/brianbrazil/prometheus-a-next-generation-monitoring-system-fosdem-2016
https://youtu.be/Z0LlilNpX1U
https://youtu.be/Z0LlilNpX1U
https://vimeo.com/131581353
https://vimeo.com/131581353
https://docs.google.com/presentation/d/1X1rKozAUuF2MVc1YXElFWq9wkcWv3Axdldl8LOH9Vik/edit
https://docs.google.com/presentation/d/1X1rKozAUuF2MVc1YXElFWq9wkcWv3Axdldl8LOH9Vik/edit
https://www.youtube.com/watch?v=qs2sqOLNGtw
https://www.youtube.com/watch?v=qs2sqOLNGtw
http://www.slideshare.net/brianbrazil/monitoring-hadoop-with-prometheus-hadoop-user-group-ireland-december-2015
http://www.slideshare.net/brianbrazil/monitoring-hadoop-with-prometheus-hadoop-user-group-ireland-december-2015
http://www.slideshare.net/brianbrazil/monitoring-hadoop-with-prometheus-hadoop-user-group-ireland-december-2015
https://media.ccc.de/v/eh16-43-monitoring_mit_prometheus#video&t=2804
https://media.ccc.de/v/eh16-43-monitoring_mit_prometheus#video&t=2804
https://media.ccc.de/v/eh16-43-monitoring_mit_prometheus#video&t=2804
https://eh16.easterhegg.eu/
https://eh16.easterhegg.eu/

10/09/24, 19:13 Media | Prometheus

¢ In German: Prometheus in der Praxis (https://media.ccc.de/v/MRMCD16-7754-
prometheus_in_der_praxis) - Jonas Grof3e Sundrup at MRMCD 2016 (https://2016.mrmcd.net/)

Presentation slides

General
e Prometheus Overview (http://www.slideshare.net/brianbrazil/prometheus-overview) - by Brian

Brazil.
e Systems Monitoring with Prometheus (http://www.slideshare.net/brianbrazil/devops-ireland-

systems-monitoring-with-prometheus) - Brian Brazil at Devops Ireland Meetup, Dublin.
¢ OMG! Prometheus (https://www.dropbox.com/s/017kxhjqjbabtb0/prometheus%20site-
ops%20preso.pdf?di=0) - Benjamin Staffin, Fitbit Site Operations, explains the case for Prometheus

to his team.

Docker

e Prometheus and Docker (http://www.slideshare.net/brianbrazil/prometheus-and-docker-docker-
galway-november-2015) - Brian Brazil at Docker Galway.

Python

e Better Monitoring for Python (http://www.slideshare.net/brianbrazil/better-monitoring-for-python-
inclusive-monitoring-with-prometheus-pycon-ireland-lightning-talk) - Brian Brazil at Pycon Ireland.

e Monitoring your Python with Prometheus (http://www.slideshare.net/brianbrazil/python-ireland-
monitoring-your-python-with-prometheus) - Brian Brazil at Python Ireland Meetup, Dublin.

I This documentation is open-source (https://github.com/prometheus/docs#contributing-changes).
Please help improve it by filing issues or pull requests.

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list of
trademarks of The Linux Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-usage) page.

https://prometheus.io/docs/introduction/media/

3/3

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://media.ccc.de/v/MRMCD16-7754-prometheus_in_der_praxis
https://media.ccc.de/v/MRMCD16-7754-prometheus_in_der_praxis
https://media.ccc.de/v/MRMCD16-7754-prometheus_in_der_praxis
https://2016.mrmcd.net/
https://2016.mrmcd.net/
http://www.slideshare.net/brianbrazil/prometheus-overview
http://www.slideshare.net/brianbrazil/prometheus-overview
http://www.slideshare.net/brianbrazil/devops-ireland-systems-monitoring-with-prometheus
http://www.slideshare.net/brianbrazil/devops-ireland-systems-monitoring-with-prometheus
http://www.slideshare.net/brianbrazil/devops-ireland-systems-monitoring-with-prometheus
https://www.dropbox.com/s/0l7kxhjqjbabtb0/prometheus%20site-ops%20preso.pdf?dl=0
https://www.dropbox.com/s/0l7kxhjqjbabtb0/prometheus%20site-ops%20preso.pdf?dl=0
https://www.dropbox.com/s/0l7kxhjqjbabtb0/prometheus%20site-ops%20preso.pdf?dl=0
http://www.slideshare.net/brianbrazil/prometheus-and-docker-docker-galway-november-2015
http://www.slideshare.net/brianbrazil/prometheus-and-docker-docker-galway-november-2015
http://www.slideshare.net/brianbrazil/prometheus-and-docker-docker-galway-november-2015
http://www.slideshare.net/brianbrazil/better-monitoring-for-python-inclusive-monitoring-with-prometheus-pycon-ireland-lightning-talk
http://www.slideshare.net/brianbrazil/better-monitoring-for-python-inclusive-monitoring-with-prometheus-pycon-ireland-lightning-talk
http://www.slideshare.net/brianbrazil/better-monitoring-for-python-inclusive-monitoring-with-prometheus-pycon-ireland-lightning-talk
http://www.slideshare.net/brianbrazil/python-ireland-monitoring-your-python-with-prometheus
http://www.slideshare.net/brianbrazil/python-ireland-monitoring-your-python-with-prometheus
http://www.slideshare.net/brianbrazil/python-ireland-monitoring-your-python-with-prometheus
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

10/09/24, 19:14 Glossary | Prometheus

> INTRODUCTION

Overview (/docs/introduction/overview/)

First steps (/docs/introduction/first_steps/)

Comparison to alternatives (/docs/introduction/comparison/)
FAQ (/docs/introduction/faqg/)

Roadmap (/docs/introduction/roadmap/)

Design Documents (/docs/introduction/design-doc/)

Media (/docs/introduction/media/)

Glossary (/docs/introduction/glossary/)

Long-Term Support (/docs/introduction/release-cycle/)

A CONCEPTS

PROMETHEUS SERVER
|~ VISUALIZATION

</> INSTRUMENTING

£# OPERATING

L\ ALERT MANAGER

) BEST PRACTICES

[IJ GUIDES

& TUTORIALS

https://prometheus.io/docs/introduction/glossary/ 1/6

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/introduction/faq/
https://prometheus.io/docs/introduction/roadmap/
https://prometheus.io/docs/introduction/design-doc/
https://prometheus.io/docs/introduction/media/
https://prometheus.io/docs/introduction/glossary/
https://prometheus.io/docs/introduction/release-cycle/

10/09/24, 19:14

[8 SPECIFICATIONS

GLOSSARY

Alert

An alert is the outcome of an alerting rule in
Prometheus that is actively firing. Alerts are
sent from Prometheus to the Alertmanager.

Alertmanager

The Alertmanager (../../alerting/overview/)
takes in alerts, aggregates them into groups,
de-duplicates, applies silences, throttles, and
then sends out notifications to email,
Pagerduty, Slack etc.

Bridge

A bridge is a component that takes samples
from a client library and exposes them to a
non-Prometheus monitoring system. For
example, the Python, Go, and Java clients can
export metrics to Graphite.

Client library

A client library is a library in some language

(e.g. Go, Java, Python, Ruby) that makes it easy

to directly instrument your code, write custom
collectors to pull metrics from other systems
and expose the metrics to Prometheus.

https://prometheus.io/docs/introduction/glossary/

Glossary | Prometheus

Alert

Alertmanager

Bridge

Client library

Collector

Direct instrumentation
Endpoint

Exporter

Instance

Job

Notification

Promdash
Prometheus

PromQL

Pushgateway
Recording Rules
Remote Read

Remote Read Adapter
Remote Read Endpoint
Remote Write

Remote Write Adapter
Remote Write Endpoint
Sample

Silence

Target

Time Series

2/6

https://prometheus.io/docs/alerting/overview/
https://prometheus.io/docs/alerting/overview/

10/09/24, 19:14 Glossary | Prometheus

Collector

A collector is a part of an exporter that represents a set of metrics. It may be a
single metric if it is part of direct instrumentation, or many metrics if it is pulling
metrics from another system.

Direct instrumentation

Direct instrumentation is instrumentation added inline as part of the source
code of a program, using a client library.

Endpoint

A source of metrics that can be scraped, usually corresponding to a single
process.

Exporter

An exporter is a binary running alongside the application you want to obtain
metrics from. The exporter exposes Prometheus metrics, commonly by
converting metrics that are exposed in a non-Prometheus format into a format
that Prometheus supports.

Instance
An instance is a label that uniquely identifies a target in a job.

Job

A collection of targets with the same purpose, for example monitoring a group
of like processes replicated for scalability or reliability, is called a job.

Notification

A notification represents a group of one or more alerts, and is sent by the
Alertmanager to email, Pagerduty, Slack etc.

https://prometheus.io/docs/introduction/glossary/ 3/6

10/09/24, 19:14

Glossary | Prometheus

Promdash

Promdash was a native dashboard builder for Prometheus. It has been
deprecated and replaced by Grafana (../../visualization/grafana/).

Prometheus

Prometheus usually refers to the core binary of the Prometheus system. It may
also refer to the Prometheus monitoring system as a whole.

PromQL

PromQL (/docs/prometheus/latest/querying/basics/) is the Prometheus Query
Language. It allows for a wide range of operations including aggregation, slicing
and dicing, prediction and joins.

Pushgateway

The Pushgateway (../../instrumenting/pushing/) persists the most recent push of
metrics from batch jobs. This allows Prometheus to scrape their metrics after
they have terminated.

Recording Rules

Recording rules precompute frequently needed or computationally expensive
expressions and save their results as a new set of time series.

Remote Read

Remote read is a Prometheus feature that allows transparent reading of time
series from other systems (such as long term storage) as part of queries.

Remote Read Adapter

Not all systems directly support remote read. A remote read adapter sits
between Prometheus and another system, converting time series requests and
responses between them.

https://prometheus.io/docs/introduction/glossary/

4/6

https://prometheus.io/docs/visualization/grafana/
https://prometheus.io/docs/visualization/grafana/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/

10/09/24, 19:14

Glossary | Prometheus

Remote Read Endpoint

A remote read endpoint is what Prometheus talks to when doing a remote
read.

Remote Write

Remote write is a Prometheus feature that allows sending ingested samples on
the fly to other systems, such as long term storage.

Remote Write Adapter

Not all systems directly support remote write. A remote write adapter sits
between Prometheus and another system, converting the samples in the
remote write into a format the other system can understand.

Remote Write Endpoint

A remote write endpoint is what Prometheus talks to when doing a remote
write.

Sample

A sample is a single value at a point in time in a time series.

In Prometheus, each sample consists of a float64 value and a millisecond-
precision timestamp.

Silence

A silence in the Alertmanager prevents alerts, with labels matching the silence,
from being included in notifications.

Target

A target is the definition of an object to scrape. For example, what labels to
apply, any authentication required to connect, or other information that
defines how the scrape will occur.

https://prometheus.io/docs/introduction/glossary/

5/6

10/09/24, 19:14 Glossary | Prometheus

Time Series

The Prometheus time series are streams of timestamped values belonging to
the same metric and the same set of labeled dimensions. Prometheus stores all
data as time series.

I This documentation is open-source
(https://github.com/prometheus/docs#contributing-changes). Please help
improve it by filing issues or pull requests.

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and
uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage
(https://www.linuxfoundation.org/trademark-usage) page.

https://prometheus.io/docs/introduction/glossary/ 6/6

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

10/09/24, 19:14 Long-Term Support | Prometheus

> INTRODUCTION

Overview (/docs/introduction/overview/)

First steps (/docs/introduction/first_steps/)

Comparison to alternatives (/docs/introduction/comparison/)
FAQ (/docs/introduction/faqg/)

Roadmap (/docs/introduction/roadmap/)

Design Documents (/docs/introduction/design-doc/)

Media (/docs/introduction/media/)

Glossary (/docs/introduction/glossary/)

Long-Term Support (/docs/introduction/release-cycle/)

A CONCEPTS

= PROMETHEUS SERVER
|~ VISUALIZATION

</> INSTRUMENTING

£# OPERATING

L\ ALERT MANAGER

) BEST PRACTICES

[IJ GUIDES

& TUTORIALS

https://prometheus.io/docs/introduction/release-cycle/ 1/3

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/introduction/faq/
https://prometheus.io/docs/introduction/roadmap/
https://prometheus.io/docs/introduction/design-doc/
https://prometheus.io/docs/introduction/media/
https://prometheus.io/docs/introduction/glossary/
https://prometheus.io/docs/introduction/release-cycle/

10/09/24, 19:14 Long-Term Support | Prometheus

[8 SPECIFICATIONS

LONG TERM SUPPORT

Prometheus LTS are selected releases of
Prometheus that receive bugfixes for an
extended period of time.

e List of LTS releases
e Limitations of LTS
support

Every 6 weeks, a new Prometheus minor

release cycle begins. After those 6 weeks, minor releases generally no longer
receive bugfixes. If a user is impacted by a bug in a minor release, they often
need to upgrade to the latest Prometheus release.

Upgrading Prometheus should be straightforward thanks to our API stability
guarantees (https://prometheus.io/docs/prometheus/latest/stability/).
However, there is a risk that new features and enhancements could also bring
regressions, requiring another upgrade.

Prometheus LTS only receive bug, security, and documentation fixes, but over a
time window of one year. The build toolchain will also be kept up-to-date. This
allows companies that rely on Prometheus to limit the upgrade risks while still
having a Prometheus server maintained by the community.

List of LTS releases

Release Date End of support
Prometheus 2.37 2022-07-14 2023-07-31
Prometheus 2.45 2023-06-23 2024-07-31
Prometheus 2.53 2024-06-16 2025-07-31

Limitations of LTS support

Some features are excluded from LTS support:

https://prometheus.io/docs/introduction/release-cycle/ 2/3

https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/stability/

10/09/24, 19:14 Long-Term Support | Prometheus

e Things listed as unstable in our API stability guarantees
(https://prometheus.io/docs/prometheus/latest/stability/).

e Experimental features
(https://prometheus.io/docs/prometheus/latest/feature_flags/).

e OpenBSD support.

I This documentation is open-source
(https://github.com/prometheus/docs#contributing-changes). Please help
improve it by filing issues or pull requests.

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and
uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage
(https://www.linuxfoundation.org/trademark-usage) page.

https://prometheus.io/docs/introduction/release-cycle/ 3/3

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/feature_flags/
https://prometheus.io/docs/prometheus/latest/feature_flags/
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

10/09/24, 19:14 Data model | Prometheus

> INTRODUCTION

A CONCEPTS

Data model (/docs/concepts/data_model/)

Metric types (/docs/concepts/metric_types/)

Jobs and instances (/docs/concepts/jobs_instances/)

PROMETHEUS SERVER
l#” VISUALIZATION

</> INSTRUMENTING

£# OPERATING

L\ ALERT MANAGER

) BEST PRACTICES

[IJ GUIDES

& TUTORIALS

[8 SPECIFICATIONS

DATA MODEL

Prometheus fundamentally stores all data as
time series
(https://en.wikipedia.org/wiki/Time_series):
streams of timestamped values belonging to

e Metric names and
labels
e Samples

https://prometheus.io/docs/concepts/data_model/ 1/4

https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Time_series
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/metric_types/
https://prometheus.io/docs/concepts/jobs_instances/

10/09/24, 19:14

Data model | Prometheus

the same metric and the same set of labeled ¢ Notation
dimensions. Besides stored time series,

Prometheus may generate temporary derived time series as the result of
queries.

Metric names and labels

Every time series is uniquely identified by its metric name and optional key-
value pairs called labels.

Metric names:

e Specify the general feature of a system that is measured (e.g.
http_requests_total -the total number of HTTP requests received).

e Metric names may contain ASCII letters, digits, underscores, and colons. It
must match the regex [a-zA-Z_:][a-zA-Z@-9_:]*.

Note: The colons are reserved for user defined recording rules. They should not
be used by exporters or direct instrumentation.

Metric labels:

e Enable Prometheus's dimensional data model to identify any given
combination of labels for the same metric name. It identifies a particular
dimensional instantiation of that metric (for example: all HTTP requests
that used the method PosST to the /api/tracks handler). The query
language allows filtering and aggregation based on these dimensions.

e The change of any label's value, including adding or removing labels, will
create a new time series.

e Labels may contain ASCII letters, numbers, as well as underscores. They
must match the regex [a-zA-Z_][a-zA-Z0-9_]*.

e Label names beginning with __ (two "_") are reserved for internal use.

e Label values may contain any Unicode characters.

e Labels with an empty label value are considered equivalent to labels that
do not exist.

See also the best practices for naming metrics and labels
(/docs/practices/naming/).

https://prometheus.io/docs/concepts/data_model/

2/4

https://prometheus.io/docs/practices/naming/
https://prometheus.io/docs/practices/naming/

10/09/24, 19:14

Data model | Prometheus

Samples

Samples form the actual time series data. Each sample consists of:

e afloat64 value
e a millisecond-precision timestamp

NOTE: Beginning with Prometheus v2.40, there is experimental support for
native histograms. Instead of a simple float64, the sample value may now
take the form of a full histogram.

Notation
Given a metric name and a set of labels, time series are frequently identified

using this notation:

<metric name>{<label name>=<label value>, ...}

For example, a time series with the metric name api_http_requests_total and
the labels method="P0ST" and handler="/messages" could be written like this:

api_http_requests_total{method="POST", handler="/messages"}

This is the same notation that OpenTSDB (http://opentsdb.net/) uses.

I This documentation is open-source
(https://github.com/prometheus/docs#contributing-changes). Please help
improve it by filing issues or pull requests.

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and
uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage
(https://www.linuxfoundation.org/trademark-usage) page.

https://prometheus.io/docs/concepts/data_model/

3/4

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
http://opentsdb.net/
http://opentsdb.net/
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

10/09/24, 19:14 Data model | Prometheus

https://prometheus.io/docs/concepts/data_model/ 4/4

10/09/24, 19:14 Metric types | Prometheus

> INTRODUCTION
& CONCEPTS
Data model (/docs/concepts/data_model/)

Metric types (/docs/concepts/metric_types/)

Jobs and instances (/docs/concepts/jobs_instances/)

= PROMETHEUS SERVER
l#” VISUALIZATION

</> INSTRUMENTING

f# OPERATING

L\ ALERT MANAGER

) BEST PRACTICES

U GUIDES

& TUTORIALS

[@ SPECIFICATIONS

METRIC TYPES

The Prometheus client libraries offer four core

. e Counter
metric types. These are currently only e Gauge
differentiated in the client libraries (to enable e Histogram
APIs tailored to the usage of the specific types) e Summary

https://prometheus.io/docs/concepts/metric_types/ 1/4

https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/metric_types/
https://prometheus.io/docs/concepts/jobs_instances/

10/09/24, 19:14 Metric types | Prometheus

and in the wire protocol. The Prometheus server does not yet make use of the type
information and flattens all data into untyped time series. This may change in the
future.

Counter

A counter is a cumulative metric that represents a single monotonically increasing
counter (https://en.wikipedia.org/wiki/Monotonic_function) whose value can only
increase or be reset to zero on restart. For example, you can use a counter to
represent the number of requests served, tasks completed, or errors.

Do not use a counter to expose a value that can decrease. For example, do not use a
counter for the number of currently running processes; instead use a gauge.

Client library usage documentation for counters:

e GO
(http://godoc.org/github.com/prometheus/client_golang/prometheus#Counter)
Java (https://github.com/prometheus/client_java#counter)

Python (https://prometheus.github.io/client_python/instrumenting/counter/)
Ruby (https://github.com/prometheus/client_ruby#counter)

.Net (https://github.com/prometheus-net/prometheus-net#counters)

Gauge

A gauge is a metric that represents a single numerical value that can arbitrarily go up
and down.

Gauges are typically used for measured values like temperatures or current memory
usage, but also "counts" that can go up and down, like the number of concurrent
requests.

Client library usage documentation for gauges:

e GO
(http://godoc.org/github.com/prometheus/client_golang/prometheus#Gauge)
Java (https://github.com/prometheus/client_java#gauge)

Python (https://prometheus.github.io/client_python/instrumenting/gauge/)
Ruby (https://github.com/prometheus/client_ruby#gauge)

.Net (https://github.com/prometheus-net/prometheus-net#gauges)

https://prometheus.io/docs/concepts/metric_types/ 2/4

https://en.wikipedia.org/wiki/Monotonic_function
https://en.wikipedia.org/wiki/Monotonic_function
https://en.wikipedia.org/wiki/Monotonic_function
http://godoc.org/github.com/prometheus/client_golang/prometheus#Counter
http://godoc.org/github.com/prometheus/client_golang/prometheus#Counter
https://github.com/prometheus/client_java#counter
https://github.com/prometheus/client_java#counter
https://prometheus.github.io/client_python/instrumenting/counter/
https://prometheus.github.io/client_python/instrumenting/counter/
https://github.com/prometheus/client_ruby#counter
https://github.com/prometheus/client_ruby#counter
https://github.com/prometheus-net/prometheus-net#counters
https://github.com/prometheus-net/prometheus-net#counters
http://godoc.org/github.com/prometheus/client_golang/prometheus#Gauge
http://godoc.org/github.com/prometheus/client_golang/prometheus#Gauge
https://github.com/prometheus/client_java#gauge
https://github.com/prometheus/client_java#gauge
https://prometheus.github.io/client_python/instrumenting/gauge/
https://prometheus.github.io/client_python/instrumenting/gauge/
https://github.com/prometheus/client_ruby#gauge
https://github.com/prometheus/client_ruby#gauge
https://github.com/prometheus-net/prometheus-net#gauges
https://github.com/prometheus-net/prometheus-net#gauges

10/09/24, 19:14

Metric types | Prometheus

Histogram

A histogram samples observations (usually things like request durations or response
sizes) and counts them in configurable buckets. It also provides a sum of all

observed values.

A histogram with a base metric name of <basename> exposes multiple time series

during a scrape:

e cumulative counters for the observation buckets, exposed as
<basename>_bucket{le="<upper inclusive bound>"}

e the total sum of all observed values, exposed as <basename>_sum

¢ the count of events that have been observed, exposed as <basename>_count
(identical to <basename> bucket{le="+Inf"} above)

Use the histogram_quantile() function
(/docs/prometheus/latest/querying/functions/#histogram_quantile) to calculate
quantiles from histograms or even aggregations of histograms. A histogram is also
suitable to calculate an Apdex score (https://en.wikipedia.org/wiki/Apdex). When
operating on buckets, remember that the histogram is cumulative
(https://en.wikipedia.org/wiki/Histogram#Cumulative_histogram). See histograms
and summaries (/docs/practices/histograms) for details of histogram usage and
differences to summaries.

NOTE: Beginning with Prometheus v2.40, there is experimental support for
native histograms. A native histogram requires only one time series, which
includes a dynamic number of buckets in addition to the sum and count of
observations. Native histograms allow much higher resolution at a fraction of
the cost. Detailed documentation will follow once native histograms are closer
to becoming a stable feature.

Client library usage documentation for histograms:

e GO

(http://godoc.org/github.com/prometheus/client_golang/prometheus#Histogram)

e Java (https://github.com/prometheus/client_java#histogram)

e Python (https://prometheus.github.io/client_python/instrumenting/histogram/)

e Ruby (https://github.com/prometheus/client_ruby#histogram)

https://prometheus.io/docs/concepts/metric_types/

3/4

https://prometheus.io/docs/prometheus/latest/querying/functions/#histogram_quantile
https://prometheus.io/docs/prometheus/latest/querying/functions/#histogram_quantile
https://en.wikipedia.org/wiki/Apdex
https://en.wikipedia.org/wiki/Apdex
https://en.wikipedia.org/wiki/Histogram#Cumulative_histogram
https://en.wikipedia.org/wiki/Histogram#Cumulative_histogram
https://prometheus.io/docs/practices/histograms
https://prometheus.io/docs/practices/histograms
https://prometheus.io/docs/practices/histograms
http://godoc.org/github.com/prometheus/client_golang/prometheus#Histogram
http://godoc.org/github.com/prometheus/client_golang/prometheus#Histogram
https://github.com/prometheus/client_java#histogram
https://github.com/prometheus/client_java#histogram
https://prometheus.github.io/client_python/instrumenting/histogram/
https://prometheus.github.io/client_python/instrumenting/histogram/
https://github.com/prometheus/client_ruby#histogram
https://github.com/prometheus/client_ruby#histogram

10/09/24, 19:14

Metric types | Prometheus

e .Net (https://github.com/prometheus-net/prometheus-net#histogram)

Summary

Similar to a histogram, a summary samples observations (usually things like request
durations and response sizes). While it also provides a total count of observations
and a sum of all observed values, it calculates configurable quantiles over a sliding
time window.

A summary with a base metric name of <basename> exposes multiple time series
during a scrape:

e streaming ¢p-quantiles (0 < ¢ < 1) of observed events, exposed as <basename>
{quantile="<¢>"}

e the total sum of all observed values, exposed as <basename>_sum

¢ the count of events that have been observed, exposed as <basename>_count

See histograms and summaries (/docs/practices/histograms) for detailed
explanations of @-quantiles, summary usage, and differences to histograms.

Client library usage documentation for summaries:

e GO

(http://godoc.org/github.com/prometheus/client_golang/prometheus#Summary)

Java (https://github.com/prometheus/client_java#summary)

Python (https://prometheus.github.io/client_python/instrumenting/summaryy/)
Ruby (https://github.com/prometheus/client_ruby#summary)

.Net (https://github.com/prometheus-net/prometheus-net#summary)

I This documentation is open-source
(https://github.com/prometheus/docs#contributing-changes). Please help
improve it by filing issues or pull requests.

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses
trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage
(https://www.linuxfoundation.org/trademark-usage) page.

https://prometheus.io/docs/concepts/metric_types/

4/4

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus-net/prometheus-net#histogram
https://github.com/prometheus-net/prometheus-net#histogram
https://prometheus.io/docs/practices/histograms
https://prometheus.io/docs/practices/histograms
http://godoc.org/github.com/prometheus/client_golang/prometheus#Summary
http://godoc.org/github.com/prometheus/client_golang/prometheus#Summary
https://github.com/prometheus/client_java#summary
https://github.com/prometheus/client_java#summary
https://prometheus.github.io/client_python/instrumenting/summary/
https://prometheus.github.io/client_python/instrumenting/summary/
https://github.com/prometheus/client_ruby#summary
https://github.com/prometheus/client_ruby#summary
https://github.com/prometheus-net/prometheus-net#summary
https://github.com/prometheus-net/prometheus-net#summary
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

10/09/24, 19:14 Jobs and instances | Prometheus

> INTRODUCTION

A CONCEPTS

Data model (/docs/concepts/data_model/)

Metric types (/docs/concepts/metric_types/)

Jobs and instances (/docs/concepts/jobs_instances/)

PROMETHEUS SERVER
l#” VISUALIZATION

</> INSTRUMENTING

£# OPERATING

L\ ALERT MANAGER

) BEST PRACTICES

[IJ GUIDES

& TUTORIALS

[8 SPECIFICATIONS

JOBS AND INSTANCES

In Prometheus terms, an endpoint you can scrape is called an instance, usually
corresponding to a single process. A collection of instances with the same
purpose, a process replicated for scalability or reliability for example, is called a
job.

https://prometheus.io/docs/concepts/jobs_instances/ 1/3

https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/metric_types/
https://prometheus.io/docs/concepts/jobs_instances/

10/09/24, 19:14 Jobs and instances | Prometheus

For example, an APl server job with four replicated instances:

e job: api-server

instance 1. 1.2.3.4:5670
instance 2: 1.2.3.4:5671
instance 3: 5.6.7.8:5670
instance 4. 5.6.7.8:5671

O O O O

Automatically generated labels and time series

When Prometheus scrapes a target, it attaches some labels automatically to the
scraped time series which serve to identify the scraped target:

e job:The configured job name that the target belongs to.
e instance:The <host>:<port> part of the target's URL that was scraped.

If either of these labels are already present in the scraped data, the behavior
depends on the honor_labels configuration option. See the scrape
configuration documentation
(/docs/prometheus/latest/configuration/configuration/#scrape_config) for more
information.

For each instance scrape, Prometheus stores a sample
(/docs/introduction/glossary#sample) in the following time series:

e up{job="<job-name>", instance="<instance-id>"}: 1 if the instance is
healthy, i.e. reachable, or e if the scrape failed.

® scrape_duration_seconds{job="<job-name>", instance="<instance-id>"}:
duration of the scrape.

® scrape_samples_post_metric_relabeling{job="<job-name>", instance="
<instance-id>"} : the number of samples remaining after metric relabeling
was applied.

® scrape_samples_scraped{job="<job-name>", instance="<instance-id>"}:
the number of samples the target exposed.

® scrape_series_added{job="<job-name>", instance="<instance-id>"}:the

approximate number of new series in this scrape. New in v2.10

The up time series is useful for instance availability monitoring.

https://prometheus.io/docs/concepts/jobs_instances/ 2/3

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config
https://prometheus.io/docs/introduction/glossary#sample
https://prometheus.io/docs/introduction/glossary#sample

10/09/24, 19:14 Jobs and instances | Prometheus

With the extra-scrape-metrics feature flag
(/docs/prometheus/latest/feature_flags/#extra-scrape-metrics) several
addditonal metrics are available:

® scrape_timeout_seconds{job="<job-name>", instance="<instance-id>"}:
The configured scrape_timeout for a target.

e scrape_sample limit{job="<job-name>", instance="<instance-id>"}:The
configured sample_limit for a target. Returns zero if there is no limit
configured.

® scrape_body size bytes{job="<job-name>", instance="<instance-id>"}:
The uncompressed size of the most recent scrape response, if successful.
Scrapes failing because body_size_limit is exceeded report -1, other
scrape failures report 0.

I This documentation is open-source
(https://github.com/prometheus/docs#contributing-changes). Please help
improve it by filing issues or pull requests.

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and
uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage
(https://www.linuxfoundation.org/trademark-usage) page.

https://prometheus.io/docs/concepts/jobs_instances/ 3/3

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://prometheus.io/docs/prometheus/latest/feature_flags/#extra-scrape-metrics
https://prometheus.io/docs/prometheus/latest/feature_flags/#extra-scrape-metrics
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

10/09/24, 19:16 Getting started | Prometheus

> INTRODUCTION

& CONCEPTS
= PROMETHEUS SERVER
Version:| 2.54 v |

Getting started (/docs/prometheus/2.54/getting_started/)
Installation (/docs/prometheus/latest/installation/)
Configuration

Querying

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)
Command Line

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

Feature flags (/docs/prometheus/latest/feature_flags/)

l#* VISUALIZATION
</> INSTRUMENTING
£+ OPERATING

L\ ALERT MANAGER

https://prometheus.io/docs/prometheus/2.54/getting _started/ 1/9

https://prometheus.io/docs/prometheus/2.54/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/feature_flags/

10/09/24, 19:16

¢y BEST PRACTICES
[0 GUIDES
& TUTORIALS

[8 SPECIFICATIONS

GETTING STARTED

This guide is a "Hello World"-style tutorial
which shows how to install, configure, and use
a simple Prometheus instance. You will
download and run Prometheus locally,
configure it to scrape itself and an example
application, then work with queries, rules, and
graphs to use collected time series data.

Downloading and running
Prometheus

Download the latest release (/download) of
Prometheus for your platform, then extract
and run it:

tar xvfz prometheus-*.tar.gz
cd prometheus-*

Before starting Prometheus, let's configure it.

https://prometheus.io/docs/prometheus/2.54/getting_started/

Getting started | Prometheus

Downloading and
running Prometheus
Configuring
Prometheus to monitor
itself

Starting Prometheus
Using the expression
browser

Using the graphing
interface

Starting up some
sample targets
Configure Prometheus
to monitor the sample
targets

Configure rules for
aggregating scraped
data into new time
series

Reloading configuration
Shutting down your
instance gracefully.

2/9

https://prometheus.io/download
https://prometheus.io/download

10/09/24, 19:16

Getting started | Prometheus

Configuring Prometheus to monitor itself

Prometheus collects metrics from targets by scraping metrics HTTP endpoints.
Since Prometheus exposes data in the same manner about itself, it can also
scrape and monitor its own health.

While a Prometheus server that collects only data about itself is not very useful,
it is a good starting example. Save the following basic Prometheus
configuration as a file named prometheus.yml :

global:
scrape_interval: 15s # By default, scrape targets every 15 seconds.

Attach these labels to any time series or alerts when communicating with
external systems (federation, remote storage, Alertmanager).
external_labels:

monitor: 'codelab-monitor'

A scrape configuration containing exactly one endpoint to scrape:
Here it's Prometheus itself.
scrape_configs:
The job name is added as a label "~ job=<job_name>" to any timeseries scraped

- job_name: 'prometheus’

Override the global default and scrape targets from this job every 5 secon
scrape_interval: 5s

static_configs:
- targets: ['localhost:9090']

For a complete specification of configuration options, see the configuration
documentation (../configuration/configuration/).

Starting Prometheus

To start Prometheus with your newly created configuration file, change to the
directory containing the Prometheus binary and run:

https://prometheus.io/docs/prometheus/2.54/getting _started/ 3/9

https://prometheus.io/docs/prometheus/2.54/configuration/configuration/
https://prometheus.io/docs/prometheus/2.54/configuration/configuration/
https://prometheus.io/docs/prometheus/2.54/configuration/configuration/

10/09/24, 19:16 Getting started | Prometheus

Start Prometheus.
By default, Prometheus stores its database in ./data (flag --storage.tsdb.path
./prometheus --config.file=prometheus.yml

Prometheus should start up. You should also be able to browse to a status
page about itself at localhost:9090 (http://localhost:9090). Give it a couple of
seconds to collect data about itself from its own HTTP metrics endpoint.

You can also verify that Prometheus is serving metrics about itself by navigating
to its metrics endpoint: localhost:9090/metrics (http://localhost:9090/metrics)

Using the expression browser

Let us explore data that Prometheus has collected about itself. To use
Prometheus's built-in expression browser, navigate to
http://localhost:9090/graph (http://localhost:9090/graph) and choose the
"Table" view within the "Graph" tab.

As you can gather from localhost:9090/metrics (http://localhost:9090/metrics),
one metric that Prometheus exports about itself is named
prometheus_target_interval_length_seconds (the actual amount of time
between target scrapes). Enter the below into the expression console and then
click "Execute™:

prometheus_target_interval_length_seconds

This should return a number of different time series (along with the latest value
recorded for each), each with the metric name

prometheus_target_interval_ length_seconds, but with different labels. These
labels designate different latency percentiles and target group intervals.

If we are interested only in 99th percentile latencies, we could use this query:

prometheus_target_interval_length_seconds{quantile="0.99"}

https://prometheus.io/docs/prometheus/2.54/getting _started/ 4/9

http://localhost:9090/
http://localhost:9090/
http://localhost:9090/metrics
http://localhost:9090/metrics
http://localhost:9090/graph
http://localhost:9090/graph
http://localhost:9090/metrics
http://localhost:9090/metrics

10/09/24, 19:16 Getting started | Prometheus

To count the number of returned time series, you could write:

count(prometheus_target_interval_length_seconds)

For more about the expression language, see the expression language
documentation (../querying/basics/).

Using the graphing interface

To graph expressions, navigate to http://localhost:9090/graph
(http://localhost:9090/graph) and use the "Graph" tab.

For example, enter the following expression to graph the per-second rate of
chunks being created in the self-scraped Prometheus:

rate(prometheus_tsdb_head_chunks_created_total[1m])

Experiment with the graph range parameters and other settings.

Starting up some sample targets
Let's add additional targets for Prometheus to scrape.

The Node Exporter is used as an example target, for more information on using
it see these instructions. (/docs/guides/node-exporter/)

tar -xzvf node_exporter-*.*.tar.gz
cd node_exporter-*.*

Start 3 example targets in separate terminals:

./node_exporter --web.listen-address 127.0.0.1:8080
./node_exporter --web.listen-address 127.0.0.1:8081
./node_exporter --web.listen-address 127.0.0.1:8082

You should now have example targets listening on
http://localhost:8080/metrics (http://localhost:8080/metrics),
http://localhost:8081/metrics (http://localhost:8081/metrics), and

https://prometheus.io/docs/prometheus/2.54/getting _started/ 5/9

https://prometheus.io/docs/prometheus/2.54/querying/basics/
https://prometheus.io/docs/prometheus/2.54/querying/basics/
https://prometheus.io/docs/prometheus/2.54/querying/basics/
http://localhost:9090/graph
http://localhost:9090/graph
https://prometheus.io/docs/guides/node-exporter/
https://prometheus.io/docs/guides/node-exporter/
http://localhost:8080/metrics
http://localhost:8080/metrics
http://localhost:8081/metrics
http://localhost:8081/metrics

10/09/24, 19:16

Getting started | Prometheus

http://localhost:8082/metrics (http://localhost:8082/metrics).

Configure Prometheus to monitor the sample targets

Now we will configure Prometheus to scrape these new targets. Let's group all
three endpoints into one job called node . We will imagine that the first two
endpoints are production targets, while the third one represents a canary
instance. To model this in Prometheus, we can add several groups of endpoints
to a single job, adding extra labels to each group of targets. In this example, we
will add the group="production” label to the first group of targets, while adding

group="canary" to the second.

To achieve this, add the following job definition to the scrape_configs section
in your prometheus.yml and restart your Prometheus instance:

scrape_configs:
- job_name: "node’

Override the global default and scrape targets from this job every 5 secon

scrape_interval: 5s

static_configs:
- targets: ['localhost:8080', 'localhost:8081']

labels:
group: 'production’

- targets: ['localhost:8082"']
labels:
group: 'canary'

Go to the expression browser and verify that Prometheus now has information
about time series that these example endpoints expose, such as

node_cpu_seconds_total .

https://prometheus.io/docs/prometheus/2.54/getting_started/

6/9

http://localhost:8082/metrics
http://localhost:8082/metrics

10/09/24, 19:16

Getting started | Prometheus

Configure rules for aggregating scraped data into new
time series

Though not a problem in our example, queries that aggregate over thousands
of time series can get slow when computed ad-hoc. To make this more efficient,
Prometheus can prerecord expressions into new persisted time series via
configured recording rules. Let's say we are interested in recording the per-
second rate of cpu time (node_cpu_seconds_total) averaged over all cpus per
instance (but preserving the job, instance and mode dimensions) as
measured over a window of 5 minutes. We could write this as:

avg by (job, instance, mode) (rate(node_cpu_seconds_total[5m]))

Try graphing this expression.

To record the time series resulting from this expression into a new metric
called job_instance_mode:node cpu_seconds:avg rate5m, create a file with the
following recording rule and save it as prometheus.rules.yml:

groups:
- name: cpu-node
rules:
- record: job_instance_mode:node_cpu_seconds:avg_rate5m
expr: avg by (job, instance, mode) (rate(node_cpu_seconds_total[5m]))

To make Prometheus pick up this new rule, add a rule_files statementin
your prometheus.yml . The config should now look like this:

https://prometheus.io/docs/prometheus/2.54/getting_started/

7/9

10/09/24, 19:16 Getting started | Prometheus

global:
scrape_interval: 15s # By default, scrape targets every 15 seconds.
evaluation_interval: 15s # Evaluate rules every 15 seconds.

Attach these extra labels to all timeseries collected by this Prometheus ins-
external_labels:
monitor: 'codelab-monitor'

rule files:
- 'prometheus.rules.yml’

scrape_configs:
- job_name: 'prometheus'’

Override the global default and scrape targets from this job every 5 secont
scrape_interval: 5s

static_configs:
- targets: ['localhost:9090']

- job_name: "node’

Override the global default and scrape targets from this job every 5 secon

scrape_interval: 5s

static_configs:
- targets: ['localhost:8080', 'localhost:8081"']
labels:
group: 'production’

- targets: ['localhost:8082"]
labels:

group: 'canary'’

Restart Prometheus with the new configuration and verify that a new time
series with the metric name job_instance_mode:node_cpu_seconds:avg_rate5m iS
now available by querying it through the expression browser or graphing it.

https://prometheus.io/docs/prometheus/2.54/getting _started/ 8/9

10/09/24, 19:16 Getting started | Prometheus

Reloading configuration

As mentioned in the configuration documentation
(../configuration/configuration/) a Prometheus instance can have its
configuration reloaded without restarting the process by using the SIGHUP
signal. If you're running on Linux this can be performed by using kill -s
SIGHUP <PID>, replacing <PID> with your Prometheus process ID.

Shutting down your instance gracefully.

While Prometheus does have recovery mechanisms in the case that there is an
abrupt process failure it is recommend to use the SIGTERM signal to cleanly
shutdown a Prometheus instance. If you're running on Linux this can be
performed by using kill -s SIGTERM <PID>, replacing <PID> with your
Prometheus process ID.

I This documentation is open-source
(https://github.com/prometheus/docs#contributing-changes). Please help
improve it by filing issues or pull requests.

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage
(https://www.linuxfoundation.org/trademark-usage) page.

https://prometheus.io/docs/prometheus/2.54/getting _started/ 9/9

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://prometheus.io/docs/prometheus/2.54/configuration/configuration/
https://prometheus.io/docs/prometheus/2.54/configuration/configuration/
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

10/09/24, 19:16 Installation | Prometheus

> INTRODUCTION

A CONCEPTS

PROMETHEUS SERVER

Version:| latest (2.54) v |

Getting started (/docs/prometheus/latest/getting_started/)
Installation (/docs/prometheus/latest/installation/)
Configuration

Querying

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)
Command Line

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

Feature flags (/docs/prometheus/latest/feature_flags/)

l#* VISUALIZATION
</> INSTRUMENTING
£+ OPERATING

L\ ALERT MANAGER

https://prometheus.io/docs/prometheus/latest/installation/ 1/5

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/feature_flags/

10/09/24, 19:16

Installation | Prometheus

¢y BEST PRACTICES

[0 GUIDES

& TUTORIALS

[8 SPECIFICATIONS

INSTALLATION

Using pre-compiled binaries

We provide precompiled binaries for most
official Prometheus components. Check out
the download section (/download) for a list of
all available versions.

From source

For building Prometheus components from
source, see the Makefile targetsin the
respective repository.

Using Docker

All Prometheus services are available as
Docker images on Quay.io

e Using pre-compiled
binaries

e From source

e Using Docker

o

o

Setting command
line parameters
Volumes & bind-
mount

Save your
Prometheus data
Custom image

e Using configuration
management systems

(0]

O O O

Ansible
Chef
Puppet
SaltStack

(https://quay.io/repository/prometheus/prometheus) or Docker Hub

(https://hub.docker.com/r/prom/prometheus/).

Running Prometheus on Docker is as simple as docker run -p 9090:9090
prom/prometheus . This starts Prometheus with a sample configuration and

exposes it on port 9090.

https://prometheus.io/docs/prometheus/latest/installation/

2/5

https://prometheus.io/download
https://prometheus.io/download
https://quay.io/repository/prometheus/prometheus
https://quay.io/repository/prometheus/prometheus
https://hub.docker.com/r/prom/prometheus/
https://hub.docker.com/r/prom/prometheus/

10/09/24, 19:16 Installation | Prometheus

The Prometheus image uses a volume to store the actual metrics. For
production deployments it is highly recommended to use a named volume
(https://docs.docker.com/storage/volumes/) to ease managing the data on
Prometheus upgrades.

Setting command line parameters

The Docker image is started with a number of default command line
parameters, which can be found in the Dockerfile
(https://github.com/prometheus/prometheus/blob/main/Dockerfile) (adjust the
link to correspond with the version in use).

If you want to add extra command line parameters to the docker run
command, you will need to re-add these yourself as they will be overwritten.

Volumes & bind-mount

To provide your own configuration, there are several options. Here are two
examples.

Bind-mount your prometheus.yml from the host by running:

docker run \
-p 9090:9090 \
-v /path/to/prometheus.yml:/etc/prometheus/prometheus.yml \
prom/prometheus

Or bind-mount the directory containing prometheus.yml onto /etc/prometheus
by running:

docker run \
-p 9090:9090 \
-v /path/to/config:/etc/prometheus \
prom/prometheus

https://prometheus.io/docs/prometheus/latest/installation/ 3/5

https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://github.com/prometheus/prometheus/blob/main/Dockerfile
https://github.com/prometheus/prometheus/blob/main/Dockerfile

10/09/24, 19:16

Installation | Prometheus

Save your Prometheus data

Prometheus data is stored in /prometheus dir inside the container, so the data
is cleared every time the container gets restarted. To save your data, you need
to set up persistent storage (or bind mounts) for your container.

Run Prometheus container with persistent storage:

Create persistent volume for your data
docker volume create prometheus-data
Start Prometheus container
docker run \
-p 9090:9090 \
-v /path/to/prometheus.yml:/etc/prometheus/prometheus.yml \
-v prometheus-data:/prometheus \
prom/prometheus

Custom image

To avoid managing a file on the host and bind-mount it, the configuration can
be baked into the image. This works well if the configuration itself is rather
static and the same across all environments.

For this, create a new directory with a Prometheus configuration and a
Dockerfile like this:

FROM prom/prometheus
ADD prometheus.yml /etc/prometheus/

Now build and run it;

docker build -t my-prometheus .
docker run -p 9090:9090 my-prometheus

A more advanced option is to render the configuration dynamically on start
with some tooling or even have a daemon update it periodically.

https://prometheus.io/docs/prometheus/latest/installation/ 4/5

10/09/24, 19:16

Installation | Prometheus

Using configuration management systems

If you prefer using configuration management systems you might be interested
in the following third-party contributions:

Ansible

e prometheus-community/ansible (https://github.com/prometheus-
community/ansible)

Chef

e rayrod2030/chef-prometheus (https://github.com/rayrod2030/chef-
prometheus)

Puppet
e puppet/prometheus (https://forge.puppet.com/puppet/prometheus)

SaltStack

e saltstack-formulas/prometheus-formula (https://github.com/saltstack-
formulas/prometheus-formula)

I This documentation is open-source
(https://github.com/prometheus/docs#contributing-changes). Please help
improve it by filing issues or pull requests.

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and
uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage
(https://www.linuxfoundation.org/trademark-usage) page.

https://prometheus.io/docs/prometheus/latest/installation/

5/5

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus-community/ansible
https://github.com/prometheus-community/ansible
https://github.com/prometheus-community/ansible
https://github.com/rayrod2030/chef-prometheus
https://github.com/rayrod2030/chef-prometheus
https://github.com/rayrod2030/chef-prometheus
https://forge.puppet.com/puppet/prometheus
https://forge.puppet.com/puppet/prometheus
https://github.com/saltstack-formulas/prometheus-formula
https://github.com/saltstack-formulas/prometheus-formula
https://github.com/saltstack-formulas/prometheus-formula
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

10/09/24, 19:16 Configuration | Prometheus

«? INTRODUCTION
A CONCEPTS

& PROMETHEUS SERVER

Version: | latest (2.54) v
Getting started (/docs/prometheus/latest/getting_started/)
Installation (/docs/prometheus/Iatest/installation/)

Configuration

Configuration (/docs/prometheus/latest/configuration/configuration/)
Recording rules (/docs/prometheus/latest/configuration/recording_rules/)
Alerting rules (/docs/prometheus/latest/configuration/alerting_rules/)

Template examples (/docs/prometheus/latest/configuration/template_examples/)
Template reference (/docs/prometheus/latest/configuration/template_reference/)
Unit Testing for Rules (/docs/prometheus/latest/configuration/unit_testing_rules/)

HTTPS and authentication (/docs/prometheus/latest/configuration/https/)
Querying
Storage (/docs/prometheus/latest/storage/)
Federation (/docs/prometheus/latest/federation/)
HTTP SD (/docs/prometheus/latest/http_sd/)
Management API (/docs/prometheus/latest/management_api/)
Command Line
Migration (/docs/prometheus/latest/migration/)
API Stability (/docs/prometheus/latest/stability/)

Feature flags (/docs/prometheus/latest/feature_flags/)

[+* VISUALIZATION
</> INSTRUMENTING
3+ OPERATING

L\ ALERT MANAGER

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 1/91

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/template_examples/
https://prometheus.io/docs/prometheus/latest/configuration/template_reference/
https://prometheus.io/docs/prometheus/latest/configuration/unit_testing_rules/
https://prometheus.io/docs/prometheus/latest/configuration/https/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/feature_flags/

10/09/24, 19:16

) BEST PRACTICES
[0 GUIDES
& TUTORIALS

[2 SPECIFICATIONS

CONFIGURATION

Prometheus is configured via command-line flags and a
configuration file. While the command-line flags configure
immutable system parameters (such as storage locations,
amount of data to keep on disk and in memory, etc.), the
configuration file defines everything related to scraping
jobs and their instances (/docs/concepts/jobs_instances/),
as well as which rule files to load
(../recording_rules/#configuring-rules).

To view all available command-line flags, run ./prometheus
-h.

Prometheus can reload its configuration at runtime. If the
new configuration is not well-formed, the changes will not
be applied. A configuration reload is triggered by sending a
SIGHUP to the Prometheus process or sending a HTTP
POST request to the /-/reload endpoint (when the --
web.enable-lifecycle flagis enabled). This will also reload
any configured rule files.

Configuration file

To specify which configuration file to load, use the --
config.file flag.

The file is written in YAML format
(https://en.wikipedia.org/wiki/YAML), defined by the
scheme described below. Brackets indicate that a
parameter is optional. For non-list parameters the value is
set to the specified default.

Generic placeholders are defined as follows:

e <boolean>:a boolean that can take the values true
or false

https://prometheus.io/docs/prometheus/latest/configuration/configuration/

Configuration | Prometheus

¢ Configuration file

o

o

0O 0 0O 0O 0O 0O 06 0O 06 0O 0 0O OO0 0O 0 0 0 o0 0 0O 0 0 o o o o o o o

<scrape_config>
<tls_config>
<oauth2>
<azure_sd_config>

<consul_sd_config>

<digitalocean_sd_config>

<docker_sd_config>
<dockerswarm_sd_config>
<dns_sd_config>
<ec2_sd_config>
<openstack_sd_config>
<ovhcloud_sd_config>
<puppetdb_sd_config>
<file_sd_config>
<gce_sd_config>
<hetzner_sd_config>
<http_sd_config>
<ionos_sd_config>
<kubernetes_sd_config>
<kuma_sd_config>
<lightsail_sd_config>
<linode_sd_config>
<marathon_sd_config>
<nerve_sd_config>
<nomad_sd_config>
<serverset_sd_config>
<triton_sd_config>
<eureka_sd_config>
<scaleway_sd_config>
<uyuni_sd_config>
<vultr_sd_config>

<static_config>

2/91

https://prometheus.io/docs/concepts/jobs_instances/
https://prometheus.io/docs/concepts/jobs_instances/
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/#configuring-rules
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/#configuring-rules
https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/YAML

10/09/24, 19:16 Configuration | Prometheus

e <duration>:a duration matching the regular
expression ((([0-91+)y)?(([8-9]1+)w)?(([8-9]+)d)?
(([8-9]+)h)?(([@-9]+)m)?(([@-9]+)s)?(([B-9]+)ms)?
|e),e.g. 1d, 1h3em, 5m, 10s

e <filename>:a valid path in the current working
directory

e <float>: a floating-point number

e <host> : avalid string consisting of a hostname or IP
followed by an optional port number

e <int>:anintegervalue

e <labelname>: a string matching the regular
expression [a-zA-Z_][a-zA-Z@-9_]*. Any other unsupported character in the source label
should be converted to an underscore. For example, the label app.kubernetes.io/name should
be written as app_kubernetes_io_name .

e <labelvalue>: a string of unicode characters

e <path>:avalid URL path

e <scheme> : a string that can take the values http or https

e <secret>:aregular string that is a secret, such as a password

e <string>:aregular string

e <size>:asizein bytes, e.g. 512MB. A unit is required. Supported units: B, KB, MB, GB, TB, PB,
EB.

e <tmpl_string>: a string which is template-expanded before usage

<relabel_config>
<metric_relabel configs>
<alert_relabel_configs>
<alertmanager_config>
<remote_write>
<remote_read>

<tsdb>

<exemplars>

0O 0O 0 0 0 0O O O ©o

<tracing_config>

The other placeholders are specified separately.

A valid example file can be found here (https://github.com/prometheus/prometheus/blob/release-
2.54/config/testdata/conf.good.yml).

The global configuration specifies parameters that are valid in all other configuration contexts. They
also serve as defaults for other configuration sections.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/

3/91

https://github.com/prometheus/prometheus/blob/release-2.54/config/testdata/conf.good.yml
https://github.com/prometheus/prometheus/blob/release-2.54/config/testdata/conf.good.yml
https://github.com/prometheus/prometheus/blob/release-2.54/config/testdata/conf.good.yml

10/09/24, 19:16

#
[

—

— ¥ H H H #

—/

#
#

—

—/ H# H H — H H #® — H H H #

— H H #®

Configuration | Prometheus

global:

How frequently to scrape targets by default.
scrape_interval: <duration> | default = 1m]

How long until a scrape request times out.

scrape_timeout: <duration> | default = 10s]

The protocols to negotiate during a scrape with the client.

Supported values (case sensitive): PrometheusProto, OpenMetricsText0.0.1,

OpenMetricsText1.0.0, PrometheusText0.0.4.

The default value changes to [PrometheusProto, OpenMetricsTextl1.0.0, OpenMetricsText@.0.1, Promet
when native_histogram feature flag is set.

scrape_protocols: [<string>, ...] | default = [OpenMetricsTextl1.0.0, OpenMetricsText0.0.1, Promet

How frequently to evaluate rules.
evaluation_interval: <duration> | default = 1m]

Offset the rule evaluation timestamp of this particular group by the specified duration into the p
Metric availability delays are more likely to occur when Prometheus is running as a remote write t
rule_query_offset: <duration> | default = @s]

The labels to add to any time series or alerts when communicating with
external systems (federation, remote storage, Alertmanager).

external_labels:

[<labelname>: <labelvalue> ...]

File to which PromQL queries are logged.
Reloading the configuration will reopen the file.
query_log file: <string>]

An uncompressed response body larger than this many bytes will cause the
scrape to fail. © means no limit. Example: 100MB.

This is an experimental feature, this behaviour could

change or be removed in the future.

body size limit: <size> | default = @]

Per-scrape limit on number of scraped samples that will be accepted.

If more than this number of samples are present after metric relabeling
the entire scrape will be treated as failed. © means no limit.
sample_limit: <int> | default = @]

Per-scrape limit on number of labels that will be accepted for a sample. If
more than this number of labels are present post metric-relabeling, the
entire scrape will be treated as failed. © means no limit.

label_limit: <int> | default = @]

Per-scrape limit on length of labels name that will be accepted for a sample.
If a label name is longer than this number post metric-relabeling, the entire
scrape will be treated as failed. © means no limit.

label name_length_limit: <int> | default = @]

Per-scrape limit on length of labels value that will be accepted for a sample.
If a label value is longer than this number post metric-relabeling, the
entire scrape will be treated as failed. @ means no limit.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/

4/91

10/09/24, 19:16 Configuration | Prometheus

label value_length_limit: <int> | default = @]

—

Per-scrape config limit on number of unique targets that will be

accepted. If more than this number of targets are present after target
relabeling, Prometheus will mark the targets as failed without scraping them.
© means no limit. This is an experimental feature, this behaviour could
change in the future.

target_limit: <int> | default = @]

— H H H O #®

Limit per scrape config on the number of targets dropped by relabeling
that will be kept in memory. @ means no limit.
keep_dropped_targets: <int> | default = @]

—

runtime:
Configure the Go garbage collector GOGC parameter
See: https://tip.golang.org/doc/gc-guide#GOGC
Lowering this number increases CPU usage.
[gogc: <int> | default = 75]

Rule files specifies a list of globs. Rules and alerts are read from
all matching files.
rule_files:

[- <filepath_glob> ...]

Scrape config files specifies a list of globs. Scrape configs are read from
all matching files and appended to the list of scrape configs.
scrape_config files:

[- <filepath_glob> ...]

A list of scrape configurations.
scrape_configs:
[- <scrape_config> ...]

Alerting specifies settings related to the Alertmanager.
alerting:
alert_relabel_configs:
[- <relabel_config> ...]
alertmanagers:
[- <alertmanager_config> ...]

Settings related to the remote write feature.
remote_write:
[- <remote_write> ...]

Settings related to the remote read feature.
remote_read:
[- <remote_read> ...]

Storage related settings that are runtime reloadable.
storage:

[tsdb: <tsdb>]

[exemplars: <exemplars>]

Configures exporting traces.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 5/91

10/09/24, 19:16 Configuration | Prometheus

tracing:
[<tracing_config>]

<scrape_config>

A scrape_config section specifies a set of targets and parameters describing how to scrape them. In
the general case, one scrape configuration specifies a single job. In advanced configurations, this
may change.

Targets may be statically configured via the static_configs parameter or dynamically discovered
using one of the supported service-discovery mechanisms.

Additionally, relabel_configs allow advanced modifications to any target and its labels before
scraping.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 6/91

10/09/24, 19:16 Configuration | Prometheus

The job name assigned to scraped metrics by default.
job_name: <job_name>

How frequently to scrape targets from this job.

—

scrape_interval: <duration> | default = <global_config.scrape_interval>]

Per-scrape timeout when scraping this job.
scrape_timeout: <duration> | default = <global config.scrape timeout>]

—

The protocols to negotiate during a scrape with the client.

Supported values (case sensitive): PrometheusProto, OpenMetricsText0.0.1,
OpenMetricsText1.0.0, PrometheusText0.0.4.

scrape_protocols: [<string>, ...] | default = <global_config.scrape_protocols>]

—/ ¥ H# H

Whether to scrape a classic histogram that is also exposed as a native
histogram (has no effect without --enable-feature=native-histograms).

—

scrape_classic_histograms: <boolean> | default = false]

The HTTP resource path on which to fetch metrics from targets.

—

metrics_path: <path> | default = /metrics]

honor_labels controls how Prometheus handles conflicts between labels that are
already present in scraped data and labels that Prometheus would attach
server-side ("job" and "instance" labels, manually configured target

labels, and labels generated by service discovery implementations).

If honor_labels is set to "true", label conflicts are resolved by keeping label
values from the scraped data and ignoring the conflicting server-side labels.

If honor_labels is set to "false", label conflicts are resolved by renaming
conflicting labels in the scraped data to "exported_c<original-label>" (for
example "exported_instance"”, "exported_job") and then attaching server-side
labels.

Setting honor_labels to "true" is useful for use cases such as federation and
scraping the Pushgateway, where all labels specified in the target should be
preserved.

Note that any globally configured "external_labels" are unaffected by this
setting. In communication with external systems, they are always applied only
when a time series does not have a given label yet and are ignored otherwise.
honor_labels: <boolean> | default = false]

— o3 oH O H OH OH OH OH OH O HH HEHHEHHEH HE HEH

honor_timestamps controls whether Prometheus respects the timestamps present
in scraped data.

If honor_timestamps is set to "true", the timestamps of the metrics exposed
by the target will be used.

If honor_timestamps is set to "false", the timestamps of the metrics exposed
by the target will be ignored.

— H H H H ¥ ¥ H %

honor_timestamps: <boolean> | default = true]

track_timestamps_staleness controls whether Prometheus tracks staleness of

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 7/91

10/09/24, 19:16 Configuration | Prometheus

the metrics that have an explicit timestamps present in scraped data.

If track_timestamps_staleness is set to "true", a staleness marker will be
inserted in the TSDB when a metric is no longer present or the target
is down.

— H H H O H #

track_timestamps_staleness: <boolean> | default = false]

Configures the protocol scheme used for requests.
[scheme: <scheme> | default = http]

Optional HTTP URL parameters.
params:
[<string>: [<string>, ...]]

If enable_compression is set to "false", Prometheus will request uncompressed
response from the scraped target.
[enable_compression: <boolean> | default = true]

Sets the “Authorization™ header on every scrape request with the
configured username and password.
password and password_file are mutually exclusive.
basic_auth:
[username: <string>]
[password: <secret>]
[password_file: <string>]

Sets the “Authorization™ header on every scrape request with
the configured credentials.
authorization:
Sets the authentication type of the request.
type: <string> | default: Bearer]
Sets the credentials of the request. It is mutually exclusive with
“credentials_file .

[
#
#
[credentials: <secret>]
Sets the credentials of the request with the credentials read from the
configured file. It is mutually exclusive with "~credentials’.
[credentials_file: <filename>]
Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:
[<oauth2>]

Configure whether scrape requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

Configures the scrape request's TLS settings.
tls_config:
[<tls_config>]

Optional proxy URL.
[proxy_url: <string>]

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 8/91

10/09/24, 19:16 Configuration | Prometheus

Comma-separated string that can contain IPs, CIDR notation, domain names

that should be excluded from proxying. IP and domain names can

contain port numbers.

no_proxy: <string>]

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]

Specifies headers to send to proxies during CONNECT requests.

— H o H e H O H

proxy_connect_header:
[<string>: [<secret>, ...]]]

List of Azure service discovery configurations.
azure_sd_configs:
[- <azure_sd_config> ...]

List of Consul service discovery configurations.
consul_sd_configs:
[- <consul_sd_config> ...]

List of DigitalOcean service discovery configurations.
digitalocean_sd_configs:
[- <digitalocean_sd_config> ...]

List of Docker service discovery configurations.
docker_sd_configs:
[- <docker_sd_config> ...]

List of Docker Swarm service discovery configurations.
dockerswarm_sd_configs:
[- <dockerswarm_sd_config> ...]

List of DNS service discovery configurations.
dns_sd_configs:
[- <dns_sd_config> ...]

List of EC2 service discovery configurations.
ec2_sd_configs:
[- <ec2_sd_config> ...]

List of Eureka service discovery configurations.
eureka_sd_configs:
[- <eureka_sd_config> ...]

List of file service discovery configurations.
file_sd_configs:
[- <file_sd_config> ...]

List of GCE service discovery configurations.
gce_sd_configs:
[- <gce_sd_config> ...]

List of Hetzner service discovery configurations.
hetzner_sd_configs:
[- <hetzner_sd_config> ...]

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 9/91

10/09/24, 19:16 Configuration | Prometheus

List of HTTP service discovery configurations.
http_sd_configs:
[- <http_sd_config> ...]

List of IONOS service discovery configurations.
ionos_sd_configs:
[- <ionos_sd_config> ...]

List of Kubernetes service discovery configurations.
kubernetes_sd_configs:
[- <kubernetes_sd_config> ...]

List of Kuma service discovery configurations.
kuma_sd_configs:
[- <kuma_sd_config> ...]

List of Lightsail service discovery configurations.
lightsail_sd_configs:
[- <lightsail_sd_config> ...]

List of Linode service discovery configurations.
linode_sd_configs:
[- <linode_sd_config> ...]

List of Marathon service discovery configurations.
marathon_sd_configs:
[- <marathon_sd_config> ...]

List of AirBnB's Nerve service discovery configurations.
nerve_sd_configs:
[- <nerve_sd_config> ...]

List of Nomad service discovery configurations.
nomad_sd_configs:
[- <nomad_sd_config> ...]

List of OpenStack service discovery configurations.
openstack_sd_configs:
[- <openstack_sd_config> ...]

List of OVHcloud service discovery configurations.
ovhcloud_sd_configs:
[- <ovhcloud_sd_config> ...]

List of PuppetDB service discovery configurations.
puppetdb_sd_configs:
[- <puppetdb_sd_config> ...]

List of Scaleway service discovery configurations.
scaleway_sd_configs:

[- <scaleway_sd_config> ...]

List of Zookeeper Serverset service discovery configurations.

serverset_sd_configs:

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 10/91

10/09/24, 19:16 Configuration | Prometheus

[- <serverset_sd_config> ...]

List of Triton service discovery configurations.
triton_sd_configs:
[- <triton_sd_config> ...]

List of Uyuni service discovery configurations.
uyuni_sd_configs:
[- <uyuni_sd_config> ...]

List of labeled statically configured targets for this job.
static_configs:
[- <static_config> ...]

List of target relabel configurations.
relabel_configs:
[- <relabel_config> ...]

List of metric relabel configurations.
metric_relabel_configs:
[- <relabel_config> ...]

An uncompressed response body larger than this many bytes will cause the
scrape to fail. @ means no limit. Example: 100MB.

This is an experimental feature, this behaviour could

change or be removed in the future.

— H H H #

body_size_limit: <size> | default = @]

Per-scrape limit on number of scraped samples that will be accepted.

If more than this number of samples are present after metric relabeling
the entire scrape will be treated as failed. © means no limit.
sample_limit: <int> | default = @]

— H# H H

Per-scrape limit on number of labels that will be accepted for a sample. If
more than this number of labels are present post metric-relabeling, the
entire scrape will be treated as failed. @ means no limit.

label_limit: <int> | default = @]

—/ H# H# #

Per-scrape limit on length of labels name that will be accepted for a sample.
If a label name is longer than this number post metric-relabeling, the entire
scrape will be treated as failed. © means no limit.

label_name_length_limit: <int> | default = @]

—/ H# # #®

Per-scrape limit on length of labels value that will be accepted for a sample.
If a label value is longer than this number post metric-relabeling, the
entire scrape will be treated as failed. @ means no limit.

label value_length_limit: <int> | default = @]

— H # #

Per-scrape config limit on number of unique targets that will be

accepted. If more than this number of targets are present after target
relabeling, Prometheus will mark the targets as failed without scraping them.
@ means no limit. This is an experimental feature, this behaviour could
change in the future.

target_limit: <int> | default = 0]

— H H H O H #

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 11/91

10/09/24, 19:16 Configuration | Prometheus

Per-job limit on the number of targets dropped by relabeling

that will be kept in memory. © means no limit.

[keep_dropped_targets: <int> | default = @]

Limit on total number of positive and negative buckets allowed in a single
native histogram. The resolution of a histogram with more buckets will be
reduced until the number of buckets is within the limit. If the limit cannot
be reached, the scrape will fail.

0 means no limit.

[native_histogram_bucket_limit: <int> | default = @]

Lower limit for the growth factor of one bucket to the next in each native
histogram. The resolution of a histogram with a lower growth factor will be
reduced as much as possible until it is within the limit.

To set an upper limit for the schema (equivalent to "scale" in OTel's

exponential histograms), use the following factor limits:

#

e L e e +

| growth factor | resulting schema AKA scale

A R L L] LR et +

| 65536 | -4 |

oo mmmmmmmmm oo B e T T +

| 256 | -3 |

Y e] L e +

| 16 | -2 |
e B e R TP +

| 4 I -1 I

oo mmmmmmm e m oo B e T T +

| 2 I 0 I

#o4--mmmm - B +

| 1.4 | 1 |

oo mmmm e B e T e T +

| 1.1 | 2 |

H oo mmm e oo +

| 1.09 | 3 |

oo mmmmmmm e B e T +

| 1.04 | 4 |

R el L L +

| 1.02 | 5 |

Hodmmmmm e B e R e TP +

| 1.01 | 6 |

A L L LT B e +

| 1.005 | 7 |

R e L] L e +

| 1.002 | 8 |

Hodmmmmmm e B e e LT +

#

0 results in the smallest supported factor (which is currently ~1.0027 or
schema 8, but might change in the future).

[native_histogram min_bucket_factor: <float> | default = @]

Where <job_name> must be unique across all scrape configurations.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 12/91

10/09/24, 19:16 Configuration | Prometheus

<tls_config>

A tls_config allows configuring TLS connections.

CA certificate to validate API server certificate with. At most one of ca and ca_file is allowed.
[ca: <string>]

—

ca_file: <filename>]

Certificate and key for client cert authentication to the server.
At most one of cert and cert_file is allowed.

At most one of key and key_file is allowed.

cert: <string>]

cert_file: <filename>]

key: <secret>]

— = — ¥ H¥ H

key_file: <filename>]

ServerName extension to indicate the name of the server.
https://tools.ietf.org/html/rfc4366#section-3.1
server_name: <string>]

—

Disable validation of the server certificate.

—

insecure_skip_verify: <boolean>]

Minimum acceptable TLS version. Accepted values: TLS10 (TLS 1.0), TLS11 (TLS
1.1), TLS12 (TLS 1.2), TLS13 (TLS 1.3).

If unset, Prometheus will use Go default minimum version, which is TLS 1.2.
See MinVersion in https://pkg.go.dev/crypto/tls#Config.

min_version: <string>]

Maximum acceptable TLS version. Accepted values: TLS10 (TLS 1.0), TLS11 (TLS
1.1), TLS12 (TLS 1.2), TLS13 (TLS 1.3).

If unset, Prometheus will use Go default maximum version, which is TLS 1.3.
See MaxVersion in https://pkg.go.dev/crypto/tls#Config.

max_version: <string>]

— H H H H — #H H H #®

<oauth2>

OAuth 2.0 authentication using the client credentials grant type. Prometheus fetches an access
token from the specified endpoint with the given client access and secret keys.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 13/91

10/09/24, 19:16

Configuration | Prometheus

client_id: <string>
[client_secret: <secret>]

Read the client secret from a file.
It is mutually exclusive with “client_secret’.
[client_secret_file: <filename>]

Scopes for the token request.
scopes:
[- <string> ...]

The URL to fetch the token from.

token_url: <string>

Optional parameters to append to the token URL.
endpoint_params:
[<string>: <string> ...]

Configures the token request's TLS settings.
tls_config:
[<tls_config>]

Optional proxy URL.

proxy_url: <string>]

contain port numbers.
no_proxy: <string>]

— H o/ H e H H H — #®

proxy_connect_header:
[<string>: [<secret>, ...]1 1]

<azure_sd_config>
Azure SD configurations allow retrieving scrape targets from Azure VMs.

The following meta labels are available on targets during relabeling:

e _ meta_azure_machine_id: the machine ID

e _ meta_azure_machine_location : the location the machine runsin

e _ meta_azure_machine_name : the machine name

e _ meta_azure_machine_computer_name : the machine computer name

e _ meta_azure_machine_os_type : the machine operating system

e _ meta_azure_machine_private_ip : the machine's private IP

e _ meta_azure_machine_public_ip : the machine's public IP if it exists

e _ meta_azure_machine_resource_group : the machine's resource group
e _ meta_azure_machine_tag_<tagname> : each tag value of the machine

https://prometheus.io/docs/prometheus/latest/configuration/configuration/

Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.

14/91

10/09/24, 19:16 Configuration | Prometheus

e _ meta_azure_machine_scale_set : the name of the scale set which the vm is part of (this value
is only set if you are using a scale set (https://docs.microsoft.com/en-us/azure/virtual-machine-
scale-sets/))

e _ meta_azure_machine_size : the machine size

e _ meta_azure_subscription_id: the subscription ID

e meta_azure_tenant_id:the tenantID

See below for the configuration options for Azure discovery:

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 15/91

https://docs.microsoft.com/en-us/azure/virtual-machine-scale-sets/
https://docs.microsoft.com/en-us/azure/virtual-machine-scale-sets/
https://docs.microsoft.com/en-us/azure/virtual-machine-scale-sets/

10/09/24, 19:16 Configuration | Prometheus

The information to access the Azure API.
The Azure environment.

—

environment: <string> | default = AzurePublicCloud]

The authentication method, either OAuth, ManagedIdentity or SDK.

See https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overv
SDK authentication method uses environment variables by default.

See https://learn.microsoft.com/en-us/azure/developer/go/azure-sdk-authentication
authentication_method: <string> | default = OAuth]

The subscription ID. Always required.

H — H H H

subscription_id: <string>

Optional tenant ID. Only required with authentication_method OAuth.

[tenant_id: <string>]

Optional client ID. Only required with authentication_method OAuth.

[client_id: <string>]

Optional client secret. Only required with authentication_method OAuth.
[client_secret: <secret>]

Optional resource group name. Limits discovery to this resource group.
[resource_group: <string>]

Refresh interval to re-read the instance list.
refresh_interval: <duration> | default = 300s]

—

The port to scrape metrics from. If using the public IP address, this must
instead be specified in the relabeling rule.
port: <int> | default = 80]

—

Authentication information used to authenticate to the Azure API.
Note that “basic_auth™, “authorization® and “oauth2® options are
mutually exclusive.

H H H H

“password™ and “password_file® are mutually exclusive.

Optional HTTP basic authentication information, currently not support by Azure.
basic_auth:

[username: <string>]

[password: <secret>]

[password_file: <string>]

Optional "Authorization™ header configuration, currently not supported by Azure.
authorization:

Sets the authentication type.

[type: <string> | default: Bearer]

Sets the credentials. It is mutually exclusive with

“credentials_file’.

[credentials: <secret>]

Sets the credentials to the credentials read from the configured file.

It is mutually exclusive with “credentials”.

[credentials_file: <filename>]

Optional OAuth 2.0 configuration, currently not supported by Azure.
oauth2:
[<oauth2>]

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 16/91

10/09/24, 19:16 Configuration | Prometheus

Optional proxy URL.

proxy_url: <string>]

Comma-separated string that can contain IPs, CIDR notation, domain names

that should be excluded from proxying. IP and domain names can

contain port numbers.

no_proxy: <string>]

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]

Specifies headers to send to proxies during CONNECT requests.

proxy_connect_header:

— H — H — H H H — H

[<string>: [<secret>, ...]1 1]

Configure whether HTTP requests follow HTTP 3xx redirects.

—

follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
enable_http2: <boolean> | default: true]

—

TLS configuration.
tls_config:
[<tls_config>]

<consul_sd_config>

Consul SD configurations allow retrieving scrape targets from Consul's (https://www.consul.io)
Catalog API.

The following meta labels are available on targets during relabeling:

e _ meta_consul_address : the address of the target

e _ meta_consul_dc : the datacenter name for the target

e _ meta_consul_health : the health status of the service

e _ meta_consul_partition :the admin partition name where the service is registered

e _ meta_consul_metadata_c<key>: each node metadata key value of the target

e _ meta_consul_node : the node name defined for the target

e _ meta_consul_service_address : the service address of the target

e _ meta_consul_service_id : the service ID of the target

e _ meta_consul_service_metadata_<key> : each service metadata key value of the target
e _ meta_consul_service_port : the service port of the target

e _ meta_consul_service:the name of the service the target belongs to

e _ meta_consul_tagged_address_<key> : each node tagged address key value of the target
e _ meta_consul_tags : the list of tags of the target joined by the tag separator

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 17/91

https://www.consul.io/
https://www.consul.io/

10/09/24, 19:16 Configuration | Prometheus

The information to access the Consul API. It is to be defined

as the Consul documentation requires.

server: <host> | default = "localhost:8500"]

Prefix for URIs for when consul is behind an API gateway (reverse proxy).
path_prefix: <string>]

token: <secret>]

datacenter: <string>]

Namespaces are only supported in Consul Enterprise.

namespace: <string>]

Admin Partitions are only supported in Consul Enterprise.

partition: <string>]

scheme: <string> | default = "http"]

The username and password fields are deprecated in favor of the basic_auth configuration.
username: <string>]

i e T - e B e I e B B T - T S -

password: <secret>]

A list of services for which targets are retrieved. If omitted, all services
are scraped.
services:

[- <string>]

See https://www.consul.io/api/catalog.html#list-nodes-for-service to know more
about the possible filters that can be used.

An optional list of tags used to filter nodes for a given service. Services must contain all tags in
tags:
[- <string>]

Node metadata key/value pairs to filter nodes for a given service.
node_meta:

—

[<string>: <string> ...]]

The string by which Consul tags are joined into the tag label.

—

tag_separator: <string> | default = ,]

Allow stale Consul results (see https://www.consul.io/api/features/consistency.html). Will reduce lo
allow_stale: <boolean> | default = true]

—

The time after which the provided names are refreshed.
On large setup it might be a good idea to increase this value because the catalog will change all th
refresh_interval: <duration> | default = 3@s]

—

Authentication information used to authenticate to the consul server.
Note that “basic_auth, “authorization® and “oauth2® options are
mutually exclusive.

“password™ and “password_file® are mutually exclusive.

H H H H

Optional HTTP basic authentication information.
basic_auth:

[username: <string>]

[password: <secret>]

[password_file: <string>]

Optional "Authorization™ header configuration.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 18/91

10/09/24, 19:16

Configuration | Prometheus

authorization:
Sets the authentication type.
type: <string> | default: Bearer]
Sets the credentials. It is mutually exclusive with
“credentials_file .

[

#

#

[credentials: <secret>]

Sets the credentials to the credentials read from the configured file.
It is mutually exclusive with "“credentials’.

[

credentials_file: <filename>]

Optional OAuth 2.0 configuration.
oauth2:
[<oauth2>]

Optional proxy URL.

proxy_url: <string>]

Comma-separated string that can contain IPs, CIDR notation, domain names

that should be excluded from proxying. IP and domain names can

contain port numbers.

no_proxy: <string>]

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]

Specifies headers to send to proxies during CONNECT requests.

— H o/ H o/ H HF OH — H

proxy_connect_header:
[<string>: [<secret>, ...]] 1]

Configure whether HTTP requests follow HTTP 3xx redirects.
follow_redirects: <boolean> | default = true]

—

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

TLS configuration.
tls_config:
[<tls_config>]

Note that the IP number and port used to scrape the targets is assembled as
<__meta_consul_address>:<__meta_consul_service_port>. However, in some Consul setups, the
relevant address is in __meta_consul_service_address . In those cases, you can use the relabel
feature to replace the special __address__ label.

The relabeling phase is the preferred and more powerful way to filter services or nodes for a service
based on arbitrary labels. For users with thousands of services it can be more efficient to use the
Consul API directly which has basic support for filtering nodes (currently by node metadata and a
single tag).

<digitalocean_sd_config>

DigitalOcean SD configurations allow retrieving scrape targets from DigitalOcean's
(https://www.digitalocean.com/) Droplets API. This service discovery uses the public IPv4 address by
default, by that can be changed with relabeling, as demonstrated in the Prometheus digitalocean-sd

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 19/91

https://www.digitalocean.com/
https://www.digitalocean.com/
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-digitalocean.yml

10/09/24, 19:16 Configuration | Prometheus

configuration file (https://github.com/prometheus/prometheus/blob/release-
2.54/documentation/examples/prometheus-digitalocean.yml).

The following meta labels are available on targets during relabeling:

e _ meta_digitalocean_droplet_id:the id of the droplet

e _ meta_digitalocean_droplet_name : the name of the droplet

e _ meta_digitalocean_image : the slug of the droplet's image

e _ meta_digitalocean_image_name : the display name of the droplet's image
e _ meta_digitalocean_private_ipv4 : the private IPv4 of the droplet

e _ meta_digitalocean_public_ipv4: the public IPv4 of the droplet

e _ meta_digitalocean_public_ipvé : the public IPv6 of the droplet

e _ meta_digitalocean_region: the region of the droplet

e _ meta_digitalocean_size:the size of the droplet

e _ meta_digitalocean_status : the status of the droplet

e _ meta_digitalocean_features :the comma-separated list of features of the droplet
e _ meta_digitalocean_tags:the comma-separated list of tags of the droplet
e _ meta_digitalocean_vpc:the id of the droplet's VPC

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 20/91

https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-digitalocean.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-digitalocean.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-digitalocean.yml

10/09/24, 19:16 Configuration | Prometheus

Authentication information used to authenticate to the API server.
Note that “basic_auth™ and “authorization™ options are

mutually exclusive.

password and password_file are mutually exclusive.

Optional HTTP basic authentication information, not currently supported by DigitalOcean.
basic_auth:

[username: <string>]

[password: <secret>]

[password_file: <string>]

Optional "Authorization™ header configuration.
authorization:
Sets the authentication type.
type: <string> | default: Bearer]
Sets the credentials. It is mutually exclusive with
“credentials_file .

[

#

#

[credentials: <secret>]

Sets the credentials to the credentials read from the configured file.
It is mutually exclusive with “credentials”.

[

credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:

[<oauth2>]

Optional proxy URL.

proxy_url: <string>]

Comma-separated string that can contain IPs, CIDR notation, domain names

that should be excluded from proxying. IP and domain names can

contain port numbers.

no_proxy: <string>]

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]

Specifies headers to send to proxies during CONNECT requests.

proxy_connect_header:

— H — HF o/ H HF HF — H

[<string>: [<secret>, ...]]]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
enable_http2: <boolean> | default: true]

—

TLS configuration.
tls_config:
[<tls_config>]

The port to scrape metrics from.
[port: <int> | default = 80]

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 21/91

10/09/24, 19:16 Configuration | Prometheus

The time after which the droplets are refreshed.
[refresh_interval: <duration> | default = 60s]

<docker_sd_config>

Docker SD configurations allow retrieving scrape targets from Docker Engine
(https://docs.docker.com/engine/) hosts.

This SD discovers "containers" and will create a target for each network IP and port the container is
configured to expose.

Available meta labels:

e _ meta_docker_container_id: the id of the container

e _ meta_docker_container_name : the name of the container

e _ meta_docker_container_network_mode : the network mode of the container

e _ meta_docker_container_label_<labelname> : each label of the container, with any
unsupported characters converted to an underscore

e _ meta_docker_network_id: the ID of the network

e _ meta_docker_network_name : the name of the network

e _ meta_docker_network_ingress : whether the network is ingress

e _ meta_docker network_internal : whether the network is internal

e _ meta_docker_network_label_<labelname> : each label of the network, with any unsupported
characters converted to an underscore

e _ meta_docker_network_scope : the scope of the network

e _ meta_docker_network_ip : the IP of the container in this network

e _ meta_docker_port_private : the port on the container

e _ meta_docker_port_public : the external port if a port-mapping exists

e _ meta_docker_port_public_ip: the public IP if a port-mapping exists

See below for the configuration options for Docker discovery:

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 22/91

https://docs.docker.com/engine/
https://docs.docker.com/engine/

10/09/24, 19:16 Configuration | Prometheus

Address of the Docker daemon.
host: <string>

Optional proxy URL.

proxy_url: <string>]

Comma-separated string that can contain IPs, CIDR notation, domain names

that should be excluded from proxying. IP and domain names can

contain port numbers.

no_proxy: <string>]

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]

Specifies headers to send to proxies during CONNECT requests.

—/ H o/ HF e H H HF

proxy_connect_header:
[<string>: [<secret>, ...]1 1]

TLS configuration.
tls_config:
[<tls_config>]

The port to scrape metrics from, when “role’ is nodes, and for discovered
tasks and services that don't have published ports.

[port: <int> | default = 80]

The host to use if the container is in host networking mode.

[host_networking_host: <string> | default = "localhost"]

Sort all non-nil networks in ascending order based on network name and
get the first network if the container has multiple networks defined,
thus avoiding collecting duplicate targets.

[match_first_network: <boolean> | default = true]

Optional filters to limit the discovery process to a subset of available
resources.

The available filters are listed in the upstream documentation:
https://docs.docker.com/engine/api/vl.40/#operation/ContainerList
filters:

[- name: <string>

— H O # #®

values: <string>, [...]]

The time after which the containers are refreshed.

refresh_interval: <duration> | default = 60s]

—

Authentication information used to authenticate to the Docker daemon.
Note that “basic_auth™ and “authorization™ options are

mutually exclusive.

password and password_file are mutually exclusive.

H H H H

Optional HTTP basic authentication information.
basic_auth:

[username: <string>]

[password: <secret>]

[password_file: <string>]

Optional "Authorization™ header configuration.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 23/91

10/09/24, 19:16 Configuration | Prometheus

authorization:
Sets the authentication type.
type: <string> | default: Bearer]
Sets the credentials. It is mutually exclusive with
“credentials_file .

[

#

#

[credentials: <secret>]

Sets the credentials to the credentials read from the configured file.
It is mutually exclusive with "“credentials’.

[

credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:

[<oauth2>]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

The relabeling phase is the preferred and more powerful way to filter containers. For users with
thousands of containers it can be more efficient to use the Docker API directly which has basic
support for filtering containers (using filters).

See this example Prometheus configuration file
(https://github.com/prometheus/prometheus/blob/release-
2.54/documentation/examples/prometheus-docker.yml) for a detailed example of configuring
Prometheus for Docker Engine.

<dockerswarm_sd_config>

Docker Swarm SD configurations allow retrieving scrape targets from Docker Swarm
(https://docs.docker.com/engine/swarm/) engine.

One of the following roles can be configured to discover targets:

services

The services role discovers all Swarm services (https://docs.docker.com/engine/swarm/key-
concepts/#services-and-tasks) and exposes their ports as targets. For each published port of a
service, a single target is generated. If a service has no published ports, a target per service is
created using the port parameter defined in the SD configuration.

Available meta labels:

e _ meta_dockerswarm_service _id: the id of the service
e meta_dockerswarm_service name : the name of the service
e _ meta_dockerswarm_service_mode : the mode of the service

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 24/91

https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-docker.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-docker.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-docker.yml
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/key-concepts/#services-and-tasks
https://docs.docker.com/engine/swarm/key-concepts/#services-and-tasks
https://docs.docker.com/engine/swarm/key-concepts/#services-and-tasks

10/09/24, 19:16 Configuration | Prometheus

e _ meta_dockerswarm_service_endpoint_port_name : the name of the endpoint port, if available

e _ meta_dockerswarm_service_endpoint_port_publish_mode : the publish mode of the endpoint
port

e _ meta_dockerswarm_service_label_<labelname> : each label of the service, with any
unsupported characters converted to an underscore

e _ meta_dockerswarm_service_task_container_hostname : the container hostname of the target, if
available

e _ meta_dockerswarm_service_task_container_image : the container image of the target

e _ meta_dockerswarm_service updating_status : the status of the service, if available

e _ meta_dockerswarm_network_id : the ID of the network

e _ meta_dockerswarm_network_name : the name of the network

e _ meta_dockerswarm_network_ingress : whether the network is ingress

e _ meta_dockerswarm_network_internal : whether the network is internal

e _ meta_dockerswarm_network_label_<labelname> : each label of the network, with any
unsupported characters converted to an underscore

e _ meta_dockerswarm_network_scope : the scope of the network

tasks

The tasks role discovers all Swarm tasks (https://docs.docker.com/engine/swarm/key-
concepts/#services-and-tasks) and exposes their ports as targets. For each published port of a task,
a single target is generated. If a task has no published ports, a target per task is created using the
port parameter defined in the SD configuration.

Available meta labels:

e _ meta_dockerswarm_container_label_<labelname> : each label of the container, with any
unsupported characters converted to an underscore

e _ meta_dockerswarm_task_id : the id of the task

e meta_dockerswarm_task_container_id:the container id of the task

e _ meta_dockerswarm_task_desired_state : the desired state of the task

e _ meta_dockerswarm_task_slot : the slot of the task

e _ meta_dockerswarm_task_state : the state of the task

e _ meta_dockerswarm_task_port_publish_mode : the publish mode of the task port

e _ meta_dockerswarm_service_id: the id of the service

e _ meta_dockerswarm_service_name : the name of the service

e _ meta_dockerswarm_service _mode : the mode of the service

e _ meta_dockerswarm_service_label_<labelname> : each label of the service, with any
unsupported characters converted to an underscore

e _ meta_dockerswarm_network_id : the ID of the network

e _ meta_dockerswarm_network_name : the name of the network

e _ meta_dockerswarm_network_ingress : whether the network is ingress

e _ meta_dockerswarm_network_internal : whether the network is internal

e _ meta_dockerswarm_network_label_<labelname> : each label of the network, with any
unsupported characters converted to an underscore

e _ meta_dockerswarm_network_label : each label of the network, with any unsupported
characters converted to an underscore

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 25/91

https://docs.docker.com/engine/swarm/key-concepts/#services-and-tasks
https://docs.docker.com/engine/swarm/key-concepts/#services-and-tasks
https://docs.docker.com/engine/swarm/key-concepts/#services-and-tasks

10/09/24, 19:16 Configuration | Prometheus

e _ meta_dockerswarm_network_scope : the scope of the network

e _ meta_dockerswarm_node_id : the ID of the node

e _ meta_dockerswarm_node_hostname : the hostname of the node

e _ meta_dockerswarm_node_address : the address of the node

e _ meta_dockerswarm_node_availability : the availability of the node

e _ meta_dockerswarm_node_label_<labelname> : each label of the node, with any unsupported
characters converted to an underscore

e _ meta_dockerswarm_node platform_architecture :the architecture of the node

e _ meta_dockerswarm_node_platform_os : the operating system of the node

e meta_dockerswarm_node_role : the role of the node

e meta_dockerswarm_node_status : the status of the node

The _ meta_dockerswarm_network_* meta labels are not populated for ports which are published
with mode=host .

nodes

The nodes role is used to discover Swarm nodes (https://docs.docker.com/engine/swarm/key-
concepts/#nodes).

Available meta labels:

e _ meta_dockerswarm_node_address : the address of the node

e _ meta_dockerswarm_node_availability : the availability of the node

e _ meta_dockerswarm_node_engine_version : the version of the node engine

e _ meta_dockerswarm_node_hostname : the hostname of the node

e _ meta_dockerswarm_node_id : the ID of the node

e _ meta_dockerswarm_node_label_<labelname> : each label of the node, with any unsupported
characters converted to an underscore

e _ meta_dockerswarm_node_manager_address : the address of the manager component of the
node

e _ meta_dockerswarm_node_manager_leader : the leadership status of the manager component of
the node (true or false)

e _ meta_dockerswarm_node_manager_reachability : the reachability of the manager component of
the node

e _ meta_dockerswarm_node_platform_architecture : the architecture of the node

e _ meta_dockerswarm_node_platform_os : the operating system of the node

e _ meta_dockerswarm_node role :the role of the node

e _ meta_dockerswarm_node_status : the status of the node

See below for the configuration options for Docker Swarm discovery:

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 26/91

https://docs.docker.com/engine/swarm/key-concepts/#nodes
https://docs.docker.com/engine/swarm/key-concepts/#nodes
https://docs.docker.com/engine/swarm/key-concepts/#nodes

10/09/24, 19:16 Configuration | Prometheus

Address of the Docker daemon.
host: <string>

Optional proxy URL.

proxy_url: <string>]

Comma-separated string that can contain IPs, CIDR notation, domain names

that should be excluded from proxying. IP and domain names can

contain port numbers.

no_proxy: <string>]

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]

Specifies headers to send to proxies during CONNECT requests.

—/ H o/ HF e H H HF

proxy_connect_header:
[<string>: [<secret>, ...]1 1]

TLS configuration.
tls_config:
[<tls_config>]

Role of the targets to retrieve. Must be “services’, “tasks™, or “nodes”.
role: <string>

The port to scrape metrics from, when “role’ is nodes, and for discovered
tasks and services that don't have published ports.
port: <int> | default = 80]

—/ #

Optional filters to limit the discovery process to a subset of available
resources.
The available filters are listed in the upstream documentation:
Services: https://docs.docker.com/engine/api/v1.40/#operation/Servicelist
Tasks: https://docs.docker.com/engine/api/v1l.40/#operation/TaskList
Nodes: https://docs.docker.com/engine/api/v1.40/#operation/NodelList
filters:
[- name: <string>

values: <string>, [...]]

— H H O H H OH

The time after which the service discovery data is refreshed.

—

refresh_interval: <duration> | default = 60s]

Authentication information used to authenticate to the Docker daemon.
Note that “basic_auth™ and “authorization™ options are
mutually exclusive.

H OH O O

password and password_file are mutually exclusive.

Optional HTTP basic authentication information.
basic_auth:

[username: <string>]

[password: <secret>]

[password_file: <string>]

Optional “Authorization™ header configuration.
authorization:

Sets the authentication type.

[type: <string> | default: Bearer]

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 27/91

10/09/24, 19:16

Configuration | Prometheus

Sets the credentials. It is mutually exclusive with

"~ credentials_file .

[credentials: <secret>]

Sets the credentials to the credentials read from the configured file.
It is mutually exclusive with "“credentials’.

[credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:

[<oauth2>]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

The relabeling phase is the preferred and more powerful way to filter tasks, services or nodes. For
users with thousands of tasks it can be more efficient to use the Swarm API directly which has basic
support for filtering nodes (using filters).

See this example Prometheus configuration file
(https://github.com/prometheus/prometheus/blob/release-
2.54/documentation/examples/prometheus-dockerswarm.yml) for a detailed example of configuring
Prometheus for Docker Swarm.

<dns_sd_config>

A DNS-based service discovery configuration allows specifying a set of DNS domain names which are
periodically queried to discover a list of targets. The DNS servers to be contacted are read from

/etc/resolv.conf.

This service discovery method only supports basic DNS A, AAAA, MX, NS and SRV record queries, but
not the advanced DNS-SD approach specified in RFC6763 (https://tools.ietf.org/html/rfc6763).

The following meta labels are available on targets during relabeling:

e _ meta_dns_name : the record name that produced the discovered target.
e _ meta_dns_srv_record_target : the target field of the SRV record

e _ meta_dns_srv_record_port : the port field of the SRV record

e _ meta_dns_mx_record_target : the target field of the MX record

e _ meta_dns_ns_record_target : the target field of the NS record

https://prometheus.io/docs/prometheus/latest/configuration/configuration/

28/91

https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-dockerswarm.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-dockerswarm.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-dockerswarm.yml
https://tools.ietf.org/html/rfc6763
https://tools.ietf.org/html/rfc6763

10/09/24, 19:16

Configuration | Prometheus

A list of DNS domain names to be queried.

names:

—

—

—

[- <string>]

The type of DNS query to perform. One of SRV, A, AAAA, MX or NS.
type: <string> | default = 'SRV']

The port number used if the query type is not SRV.
port: <int>]

The time after which the provided names are refreshed.
refresh_interval: <duration> | default = 3@s]

<ec2_sd_config>

EC2 SD configurations allow retrieving scrape targets from AWS EC2 instances. The private IP
address is used by default, but may be changed to the public IP address with relabeling.

The IAM credentials used must have the ec2:DescribeInstances permission to discover scrape
targets, and may optionally have the ec2:DescribeAvailabilityZones permission if you want the
availability zone ID available as a label (see below).

The following meta labels are available on targets during relabeling:

__meta_ec2_ami : the EC2 Amazon Machine Image

__meta_ec2_architecture : the architecture of the instance
__meta_ec2_availability_zone : the availability zone in which the instance is running
__meta_ec2_availability_zone_id : the availability zone ID
(https://docs.aws.amazon.com/ram/latest/userguide/working-with-az-ids.html) in which the
instance is running (requires ec2:DescribeAvailabilityZones)
__meta_ec2_instance_id :the EC2 instance ID

__meta_ec2_instance_lifecycle : the lifecycle of the EC2 instance, set only for 'spot' or
'scheduled' instances, absent otherwise

__meta_ec2 instance_state : the state of the EC2 instance
__meta_ec2_instance_type : the type of the EC2 instance

__meta_ec2_ipv6_addresses : comma separated list of IPv6 addresses assigned to the instance's

network interfaces, if present
__meta_ec2_owner_id : the ID of the AWS account that owns the EC2 instance

__meta_ec2_platform: the Operating System platform, set to 'windows' on Windows servers,

absent otherwise

__meta_ec2_primary_ipv6_addresses : comma separated list of the Primary IPv6 addresses of

the instance, if present. The list is ordered based on the position of each corresponding
network interface in the attachment order.

__meta_ec2_primary_subnet_id : the subnet ID of the primary network interface, if available
__meta_ec2_private_dns_name : the private DNS name of the instance, if available
__meta_ec2_private_ip : the private IP address of the instance, if present
__meta_ec2_public_dns_name : the public DNS name of the instance, if available
__meta_ec2_public_ip : the public IP address of the instance, if available

https://prometheus.io/docs/prometheus/latest/configuration/configuration/

29/91

https://docs.aws.amazon.com/ram/latest/userguide/working-with-az-ids.html
https://docs.aws.amazon.com/ram/latest/userguide/working-with-az-ids.html

10/09/24, 19:16 Configuration | Prometheus

e _ meta_ec2_region : the region of the instance

e _ meta_ec2_subnet_id : comma separated list of subnets IDs in which the instance is running, if
available

e _ meta_ec2_tag_<tagkey> : each tag value of the instance

e _ meta_ec2_vpc_id: the ID of the VPC in which the instance is running, if available

See below for the configuration options for EC2 discovery:

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 30/91

10/09/24, 19:16

—

—

— —/ H# — — H# H®

—

#
#
#
#

Configuration | Prometheus

The information to access the EC2 API.

The AWS region. If blank, the region from the instance metadata is used.

region: <string>]

Custom endpoint to be used.
endpoint: <string>]

The AWS API keys. If blank, the environment variables ~AWS_ACCESS_KEY_ID"

and "~ AWS_SECRET_ACCESS_KEY" are used.
access_key: <string>]

secret_key: <secret>]
Named AWS profile used to connect to the API.
profile: <string>]

AWS Role ARN, an alternative to using AWS API keys.
role_arn: <string>]

Refresh interval to re-read the instance list.

refresh_interval: <duration> | default = 60s]

The port to scrape metrics from. If using the public IP address, this must

instead be specified in the relabeling rule.
port: <int> | default = 80]

Filters can be used optionally to filter the instance list by other criteria.

Available filter criteria can be found here:

https://docs.aws.amazon.com/AWSEC2/1latest/APIReference/API_DescribeInstances.html
Filter API documentation: https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_Filter.html
filters:

[

[
#
#
[
#
#
[

- name: <string>
values: <string>, [...]]

Authentication information used to authenticate to the EC2 API.
Note that “basic_auth™, “authorization™ and “oauth2™ options are
mutually exclusive.

“password” and “password_file' are mutually exclusive.

Optional HTTP basic authentication information, currently not supported by AWS.
basic_auth:

[username: <string>]

[password: <secret>]

[password_file: <string>]
Optional "Authorization™ header configuration, currently not supported by AWS.
authorization:

Sets the authentication type.

type: <string> | default: Bearer]

Sets the credentials. It is mutually exclusive with
“credentials_file .

credentials: <secret>]

Sets the credentials to the credentials read from the configured file.
It is mutuall exclusive with “credentials.

credentials_file: <filename>]

https://prometheus.io/docs/prometheus/latest/configuration/configuration/

31/91

10/09/24, 19:16 Configuration | Prometheus

Optional OAuth 2.0 configuration, currently not supported by AWS.
oauth2:
[<oauth2>]

Optional proxy URL.

proxy_url: <string>]

Comma-separated string that can contain IPs, CIDR notation, domain names

that should be excluded from proxying. IP and domain names can

contain port numbers.

no_proxy: <string>]

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]

Specifies headers to send to proxies during CONNECT requests.

— H — H e O H — H®

proxy_connect_header:
[<string>: [<secret>, ...]1 1]

Configure whether HTTP requests follow HTTP 3xx redirects.
follow_redirects: <boolean> | default = true]

—

Whether to enable HTTP2.
enable_http2: <boolean> | default: true]

—

TLS configuration.
tls_config:
[<tls_config>]

The relabeling phase is the preferred and more powerful way to filter targets based on arbitrary
labels. For users with thousands of instances it can be more efficient to use the EC2 API directly
which has support for filtering instances.

<openstack_sd_config>
OpenStack SD configurations allow retrieving scrape targets from OpenStack Nova instances.

One of the following <openstack_role> types can be configured to discover targets:

hypervisor

The hypervisor role discovers one target per Nova hypervisor node. The target address defaults to
the host_ip attribute of the hypervisor.

The following meta labels are available on targets during relabeling:

e _ meta_openstack_hypervisor_host_ip : the hypervisor node's IP address.
e _ meta_openstack_hypervisor_hostname : the hypervisor node's name.

e _ meta_openstack_hypervisor_id : the hypervisor node's ID.

e _ meta_openstack_hypervisor_state : the hypervisor node's state.

e _ meta_openstack_hypervisor_status : the hypervisor node's status.

e _ meta_openstack_hypervisor_type : the hypervisor node's type.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 32/91

10/09/24, 19:16 Configuration | Prometheus

instance

The instance role discovers one target per network interface of Nova instance. The target address
defaults to the private IP address of the network interface.

The following meta labels are available on targets during relabeling:

e _ meta_openstack_address_pool : the pool of the private IP.

e _ meta_openstack_instance_flavor : the flavor name of the OpenStack instance, or the flavor ID
if the flavor name isn't available.

e _ meta_openstack_instance_id : the OpenStack instance ID.

e _ meta_openstack_instance_image : the ID of the image the OpenStack instance is using.

e _ meta_openstack_instance_name : the OpenStack instance name.

e _ meta_openstack_instance_status : the status of the OpenStack instance.

e _ meta_openstack_private_ip : the private IP of the OpenStack instance.

e _ meta_openstack_project_id: the project (tenant) owning this instance.

e _ meta_openstack_public_ip: the public IP of the OpenStack instance.

e _ meta_openstack_tag_<key>: each metadata item of the instance, with any unsupported
characters converted to an underscore.

e _ meta_openstack_user_id: the user account owning the tenant.

See below for the configuration options for OpenStack discovery:

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 33/91

10/09/24, 19:16 Configuration | Prometheus

The information to access the OpenStack API.

The OpenStack role of entities that should be discovered.
role: <openstack_role>

The OpenStack Region.
region: <string>

identity_endpoint specifies the HTTP endpoint that is required to work with

the Identity API of the appropriate version. While it's ultimately needed by
all of the identity services, it will often be populated by a provider-level
function.

—/ H# H# H# #®

identity_endpoint: <string>]

username is required if using Identity V2 API. Consult with your provider's
control panel to discover your account's username. In Identity V3, either
userid or a combination of username and domain_id or domain_name are needed.
username: <string>]

— o/ H H H

userid: <string>]

password for the Identity V2 and V3 APIs. Consult with your provider's
control panel to discover your account's preferred method of authentication.

—

password: <secret>]

At most one of domain_id and domain_name must be provided if using username
with Identity V3. Otherwise, either are optional.

domain_name: <string>]

domain_id: <string>]

Lo B T - < 3

The project_id and project_name fields are optional for the Identity V2 API.
Some providers allow you to specify a project_name instead of the project_id.
Some require both. Your provider's authentication policies will determine
how these fields influence authentication.

project_name: <string>]

project_id: <string>]

— o/ H H H #

The application_credential_id or application_credential_name fields are
required if using an application credential to authenticate. Some providers
allow you to create an application credential to authenticate rather than a
password.

application_credential_name: <string>]

application_credential_id: <string>]

— o/ H H #H #

The application_credential_secret field is required if using an application
credential to authenticate.
application_credential_secret: <secret>]

—

Whether the service discovery should list all instances for all projects.
It is only relevant for the 'instance' role and usually requires admin permissions.
all_tenants: <boolean> | default: false]

— #

Refresh interval to re-read the instance list.
refresh_interval: <duration> | default = 60s]

—

https://prometheus.io/docs/prometheus/latest/configuration/configuration/

34/91

10/09/24, 19:16 Configuration | Prometheus

The port to scrape metrics from. If using the public IP address, this must
instead be specified in the relabeling rule.
port: <int> | default = 80]

—

The availability of the endpoint to connect to. Must be one of public, admin or internal.

—

availability: <string> | default = "public"]

TLS configuration.
tls_config:
[<tls_config>]

<ovhcloud_sd_config>

OVHcloud SD configurations allow retrieving scrape targets from OVHcloud's dedicated servers
(https://www.ovhcloud.com/en/bare-metal/) and VPS (https://www.ovhcloud.com/en/vps/) using
their API (https://api.ovh.com/). Prometheus will periodically check the REST endpoint and create a
target for every discovered server. The role will try to use the public IPv4 address as default address,
if there's none it will try to use the IPv6 one. This may be changed with relabeling. For OVHcloud's
public cloud instances (https://www.ovhcloud.com/en/public-cloud/) you can use the
openstacksdconfig.

VPS

e _ meta_ovhcloud_vps_cluster : the cluster of the server

e _ meta_ovhcloud_vps_datacenter : the datacenter of the server

e _ meta_ovhcloud_vps_disk: the disk of the server

e _ meta_ovhcloud_vps_display_name : the display name of the server

e meta_ovhcloud vps_ipv4: the IPv4 of the server

e meta_ovhcloud_vps_ipv6 : the IPv6 of the server

e _ meta_ovhcloud_vps_keymap : the KVM keyboard layout of the server

e _ meta_ovhcloud_vps_maximum_additional_ip : the maximum additional IPs of the server
e _ meta_ovhcloud_vps_memory_limit : the memory limit of the server

e _ meta_ovhcloud_vps_memory : the memory of the server

e _ meta_ovhcloud_vps_monitoring_ip_blocks : the monitoring IP blocks of the server
e _ meta_ovhcloud_vps_name : the name of the server

e meta_ovhcloud_vps_netboot_mode : the netboot mode of the server

e _ meta_ovhcloud_vps_offer_type : the offer type of the server

e _ meta_ovhcloud_vps_offer : the offer of the server

e _ meta_ovhcloud_vps_state : the state of the server

e _ meta_ovhcloud_vps_vcore : the number of virtual cores of the server

e _ meta_ovhcloud_vps_version:the version of the server

e _ meta_ovhcloud_vps_zone : the zone of the server

Dedicated servers

e _ meta_ovhcloud_dedicated_server_commercial_range : the commercial range of the server
e _ meta_ovhcloud_dedicated_server_datacenter :the datacenter of the server
e _ meta_ovhcloud_dedicated_server_ipva:the IPv4 of the server

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 35/91

https://www.ovhcloud.com/en/bare-metal/
https://www.ovhcloud.com/en/bare-metal/
https://www.ovhcloud.com/en/vps/
https://www.ovhcloud.com/en/vps/
https://api.ovh.com/
https://api.ovh.com/
https://www.ovhcloud.com/en/public-cloud/
https://www.ovhcloud.com/en/public-cloud/

10/09/24, 19:16 Configuration | Prometheus

e _ meta_ovhcloud_dedicated_server_ipvé : the IPv6 of the server

e _ meta_ovhcloud_dedicated_server_link_speed : the link speed of the server

e _ meta_ovhcloud_dedicated_server_name : the name of the server

e _ meta_ovhcloud_dedicated_server_no_intervention : whether datacenter intervention is
disabled for the server

e _ meta_ovhcloud_dedicated_server_os : the operating system of the server

e _ meta_ovhcloud_dedicated_server_rack : the rack of the server

e _ meta_ovhcloud_dedicated_server_reverse:the reverse DNS name of the server

e _ meta_ovhcloud_dedicated_server_server_id:the ID of the server

e _ meta_ovhcloud_dedicated_server_state :the state of the server

e _ meta_ovhcloud_dedicated_server_support_level : the support level of the server

See below for the configuration options for OVHcloud discovery:

Access key to use. https://api.ovh.com

application_key: <string>

application_secret: <secret>

consumer_key: <secret>

Service of the targets to retrieve. Must be “vps or “dedicated_server’.
service: <string>

API endpoint. https://github.com/ovh/go-ovh#supported-apis

[endpoint: <string> | default = "ovh-eu"]

Refresh interval to re-read the resources list.

[refresh_interval: <duration> | default = 60s]

<puppetdb_sd_config>

PuppetDB SD configurations allow retrieving scrape targets from PuppetDB
(https://puppet.com/docs/puppetdb/latest/index.html) resources.

This SD discovers resources and will create a target for each resource returned by the API.
The resource address is the certname of the resource and can be changed during relabeling.

The following meta labels are available on targets during relabeling:

e _ meta_puppetdb_query : the Puppet Query Language (PQL) query

e _ meta_puppetdb_certname : the name of the node associated with the resource

e _ meta_puppetdb_resource : a SHA-1 hash of the resource’s type, title, and parameters, for
identification

e _ meta_puppetdb_type : the resource type

e _ meta_puppetdb_title:the resource title

e _ meta_puppetdb_exported : whether the resource is exported ("true" or "false")

e _ meta_puppetdb_tags : comma separated list of resource tags

e _ meta_puppetdb_file : the manifest file in which the resource was declared

e _ meta_puppetdb_environment : the environment of the node associated with the resource

e _ meta_puppetdb_parameter_<parametername> : the parameters of the resource

See below for the configuration options for PuppetDB discovery:

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 36/91

https://puppet.com/docs/puppetdb/latest/index.html
https://puppet.com/docs/puppetdb/latest/index.html

10/09/24, 19:16 Configuration | Prometheus

The URL of the PuppetDB root query endpoint.
url: <string>

Puppet Query Language (PQL) query. Only resources are supported.
https://puppet.com/docs/puppetdb/latest/api/query/v4/pqgl.html
query: <string>

Whether to include the parameters as meta labels.

Due to the differences between parameter types and Prometheus labels,
some parameters might not be rendered. The format of the parameters might
also change in future releases.

Note: Enabling this exposes parameters in the Prometheus UI and API. Make sure
that you don't have secrets exposed as parameters if you enable this.

— H H O H O O O O#®

include_parameters: <boolean> | default = false]

Refresh interval to re-read the resources list.

—

refresh_interval: <duration> | default = 60s]

The port to scrape metrics from.
port: <int> | default = 80]

—

TLS configuration to connect to the PuppetDB.
tls_config:
[<tls_config>]

basic_auth, authorization, and oauth2, are mutually exclusive.

Optional HTTP basic authentication information.
basic_auth:

[username: <string>]

[password: <secret>]

[password_file: <string>]

~Authorization™ HTTP header configuration.
authorization:
Sets the authentication type.
type: <string> | default: Bearer]
Sets the credentials. It is mutually exclusive with
“credentials_file .

[
#
#
[credentials: <secret>]
Sets the credentials with the credentials read from the configured file.
It is mutually exclusive with "“credentials’.
[credentials_file: <filename>]
Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:
[<oauth2>]

Optional proxy URL.

[proxy_url: <string>]

Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 37/91

10/09/24, 19:16

Configuration | Prometheus

contain port numbers.

no_proxy: <string>]

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]

Specifies headers to send to proxies during CONNECT requests.

—/ H o H R

proxy_connect_header:
[<string>: [<secret>, ...]1 1]

Configure whether HTTP requests follow HTTP 3xx redirects.
follow_redirects: <boolean> | default = true]

—

Whether to enable HTTP2.
enable_http2: <boolean> | default: true]

—

See this example Prometheus configuration file
(https://github.com/prometheus/prometheus/blob/release-
2.54/documentation/examples/prometheus-puppetdb.yml) for a detailed example of configuring
Prometheus with PuppetDB.

<file_sd_config>

File-based service discovery provides a more generic way to configure static targets and serves as an
interface to plug in custom service discovery mechanisms.

It reads a set of files containing a list of zero or more <static_config> s. Changes to all defined files
are detected via disk watches and applied immediately.

While those individual files are watched for changes, the parent directory is also watched implicitly.
This is to handle atomic renaming
(https://github.com/fsnotify/fsnotify/blob/c1467c02fba575afdb5f4201072ab8403bbf00f4/README.md?
plain=1#L128) efficiently and to detect new files that match the configured globs. This may cause
issues if the parent directory contains a large number of other files, as each of these files will be
watched too, even though the events related to them are not relevant.

Files may be provided in YAML or JSON format. Only changes resulting in well-formed target groups
are applied.

Files must contain a list of static configs, using these formats:

JSON

https://prometheus.io/docs/prometheus/latest/configuration/configuration/

38/91

https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-puppetdb.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-puppetdb.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-puppetdb.yml
https://github.com/fsnotify/fsnotify/blob/c1467c02fba575afdb5f4201072ab8403bbf00f4/README.md?plain=1#L128
https://github.com/fsnotify/fsnotify/blob/c1467c02fba575afdb5f4201072ab8403bbf00f4/README.md?plain=1#L128
https://github.com/fsnotify/fsnotify/blob/c1467c02fba575afdb5f4201072ab8403bbf00f4/README.md?plain=1#L128

10/09/24, 19:16 Configuration | Prometheus

[
{
"targets": ["<host>", ... 1,
"labels": {
"<labelname>": "<labelvalue>", ...
}
s
1
YAML
- targets:
[- "<host>"]
labels:
[<labelname>: <labelvalue> ...]

As a fallback, the file contents are also re-read periodically at the specified refresh interval.

Each target has a meta label __meta_filepath during the relabeling phase. Its value is set to the
filepath from which the target was extracted.

There is a list of integrations (/docs/operating/integrations/#file-service-discovery) with this
discovery mechanism.

Patterns for files from which target groups are extracted.
files:
[- <filename_pattern> ...]

Refresh interval to re-read the files.
[refresh_interval: <duration> | default = 5m]

Where <filename_pattern> may be a path endingin .json, .yml or .yaml.The last path segment
may contain a single * that matches any character sequence, e.g. my/path/tg_*.json.

<gce_sd_config>

GCE (https://cloud.google.com/compute/) SD configurations allow retrieving scrape targets from GCP
GCE instances. The private IP address is used by default, but may be changed to the public IP
address with relabeling.

The following meta labels are available on targets during relabeling:

e meta_gce_instance_id:the numeric id of the instance

e _ meta_gce instance_name : the name of the instance

e _ meta_gce_label_<labelname>: each GCE label of the instance, with any unsupported
characters converted to an underscore

e _ meta_gce_machine_type : full or partial URL of the machine type of the instance

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 39/91

https://prometheus.io/docs/operating/integrations/#file-service-discovery
https://prometheus.io/docs/operating/integrations/#file-service-discovery
https://cloud.google.com/compute/
https://cloud.google.com/compute/

10/09/24, 19:16 Configuration | Prometheus

e _ meta_gce_metadata_<name> : each metadata item of the instance

e _ meta_gce_network : the network URL of the instance

e _ meta_gce_private_ip : the private IP address of the instance

e _ meta_gce_interface_ipv4 <name> : IPv4 address of each named interface
e _ meta_gce_project: the GCP project in which the instance is running

e _ meta_gce_public_ip: the public IP address of the instance, if present

e _ meta_gce_subnetwork : the subnetwork URL of the instance

e _ meta_gce_tags: comma separated list of instance tags

e _ meta_gce_zone : the GCE zone URL in which the instance is running

See below for the configuration options for GCE discovery:

The information to access the GCE API.

The GCP Project
project: <string>

The zone of the scrape targets. If you need multiple zones use multiple
gce_sd_configs.
zone: <string>

Filter can be used optionally to filter the instance list by other criteria
Syntax of this filter string is described here in the filter query parameter section:
https://cloud.google.com/compute/docs/reference/latest/instances/list

— H H #

filter: <string>]

Refresh interval to re-read the instance list
refresh_interval: <duration> | default = 60s]

—

The port to scrape metrics from. If using the public IP address, this must
instead be specified in the relabeling rule.
port: <int> | default = 80]

—

The tag separator is used to separate the tags on concatenation
tag_separator: <string> | default = ,]

—

Credentials are discovered by the Google Cloud SDK default client by looking in the following places,
preferring the first location found:

1. a JSON file specified by the GOOGLE_APPLICATION_CREDENTIALS environment variable
2. aJSON file in the well-known path

$HOME/ .config/gcloud/application_default_credentials.json
3. fetched from the GCE metadata server

If Prometheus is running within GCE, the service account associated with the instance it is running
on should have at least read-only permissions to the compute resources. If running outside of GCE
make sure to create an appropriate service account and place the credential file in one of the
expected locations.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 40/91

10/09/24, 19:16 Configuration | Prometheus

<hetzner_sd_config>

Hetzner SD configurations allow retrieving scrape targets from Hetzner (https://www.hetzner.com/)
Cloud (https://www.hetzner.cloud/) APl and Robot (https://docs.hetzner.com/robot/) API. This service
discovery uses the public IPv4 address by default, but that can be changed with relabeling, as
demonstrated in the Prometheus hetzner-sd configuration file
(https://github.com/prometheus/prometheus/blob/release-
2.54/documentation/examples/prometheus-hetzner.yml).

The following meta labels are available on all targets during relabeling:

e _ meta_hetzner_server_id: the ID of the server

e _ meta_hetzner_server_name : the name of the server

e _ meta_hetzner_server_status : the status of the server

e _ meta_hetzner_public_ipv4: the public ipv4 address of the server

e _ meta_hetzner_public_ipvé_network : the public ipv6 network (/64) of the server
e meta_hetzner_datacenter :the datacenter of the server

The labels below are only available for targets with role setto hcloud:

e _ meta_hetzner_hcloud_image_name : the image name of the server

e _ meta_hetzner_hcloud_image_description : the description of the server image

e _ meta_hetzner_hcloud_image_os_flavor : the OS flavor of the server image

e _ meta_hetzner_hcloud_image_os_version: the OS version of the server image

e _ meta_hetzner_hcloud_datacenter_location : the location of the server

e _ meta_hetzner_hcloud_datacenter_location_network_zone : the network zone of the server

e _ meta_hetzner_hcloud_server_type : the type of the server

e _ meta_hetzner_hcloud_cpu_cores : the CPU cores count of the server

e _ meta_hetzner_hcloud_cpu_type : the CPU type of the server (shared or dedicated)

e _ meta_hetzner_hcloud_memory_size_gb : the amount of memory of the server (in GB)

e meta_hetzner hcloud_disk_size gb : the disk size of the server (in GB)

e _ meta_hetzner_hcloud_private_ipv4_<networkname> : the private ipv4 address of the server
within a given network

e _ meta_hetzner_hcloud_label_<labelname> : each label of the server, with any unsupported
characters converted to an underscore

e _ meta_hetzner_hcloud_labelpresent_<labelname>: true for each label of the server, with any
unsupported characters converted to an underscore

The labels below are only available for targets with role setto robot :

e _ meta_hetzner_robot_product : the product of the server
e _ meta_hetzner_robot_cancelled : the server cancellation status

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 41/91

https://www.hetzner.com/
https://www.hetzner.com/
https://www.hetzner.cloud/
https://www.hetzner.cloud/
https://docs.hetzner.com/robot/
https://docs.hetzner.com/robot/
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-hetzner.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-hetzner.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-hetzner.yml

10/09/24, 19:16 Configuration | Prometheus

The Hetzner role of entities that should be discovered.
One of robot or hcloud.
role: <string>

Authentication information used to authenticate to the API server.
Note that “basic_auth™ and “authorization™ options are
mutually exclusive.

H H O

password and password_file are mutually exclusive.

Optional HTTP basic authentication information, required when role is robot
Role hcloud does not support basic auth.
basic_auth:

[username: <string>]

[password: <secret>]

[password_file: <string>]

Optional "Authorization™ header configuration, required when role is
hcloud. Role robot does not support bearer token authentication.
authorization:
Sets the authentication type.
type: <string> | default: Bearer]
Sets the credentials. It is mutually exclusive with
“credentials_file’.

[

#

#

[credentials: <secret>]

Sets the credentials to the credentials read from the configured file.
It is mutually exclusive with “credentials”.

[

credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:

[<oauth2>]

Optional proxy URL.

proxy_url: <string>]

Comma-separated string that can contain IPs, CIDR notation, domain names

that should be excluded from proxying. IP and domain names can

contain port numbers.

no_proxy: <string>]

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]

Specifies headers to send to proxies during CONNECT requests.

— H e H e H O H — H®

proxy_connect_header:
[<string>: [<secret>, ...]1 1]

Configure whether HTTP requests follow HTTP 3xx redirects.
follow_redirects: <boolean> | default = true]

—

Whether to enable HTTP2.
enable_http2: <boolean> | default: true]

—

TLS configuration.
tls_config:

[<tls_config>]

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 42/91

10/09/24, 19:16 Configuration | Prometheus

The port to scrape metrics from.
[port: <int> | default = 80]

The time after which the servers are refreshed.
[refresh_interval: <duration> | default = 60s]

<http_sd_config>

HTTP-based service discovery provides a more generic way to configure static targets and serves as
an interface to plug in custom service discovery mechanisms.

It fetches targets from an HTTP endpoint containing a list of zero or more <static_config> s. The
target must reply with an HTTP 200 response. The HTTP header Content-Type must be
application/json, and the body must be valid JSON.

Example response body:

{
"targets": ["<host>", ...],
"labels": {
"<labelname>": "<labelvalue>", ...
}
}s

The endpoint is queried periodically at the specified refresh interval. The
prometheus_sd_http_failures_total counter metric tracks the number of refresh failures.

Each target has a meta label __meta_url during the relabeling phase. Its value is set to the URL from
which the target was extracted.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 43/91

10/09/24, 19:16 Configuration | Prometheus

URL from which the targets are fetched.
url: <string>

Refresh interval to re-query the endpoint.
[refresh_interval: <duration> | default = 60s]

Authentication information used to authenticate to the API server.
Note that “basic_auth™, “authorization™ and “oauth2™ options are
mutually exclusive.

“password’ and "password_file' are mutually exclusive.

Optional HTTP basic authentication information.
basic_auth:

[username: <string>]

[password: <secret>]

[password_file: <string>]

Optional "Authorization™ header configuration.
authorization:
Sets the authentication type.
type: <string> | default: Bearer]
Sets the credentials. It is mutually exclusive with
“credentials_file’.

[

#

#

[credentials: <secret>]

Sets the credentials to the credentials read from the configured file.
It is mutually exclusive with “credentials”.

[

credentials_file: <filename>]

Optional OAuth 2.0 configuration.
oauth2:
[<oauth2>]

Optional proxy URL.

proxy_url: <string>]

Comma-separated string that can contain IPs, CIDR notation, domain names

that should be excluded from proxying. IP and domain names can

contain port numbers.

no_proxy: <string>]

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]

Specifies headers to send to proxies during CONNECT requests.

proxy_connect_header:

— H* =/ HF o/ H HF H — H

[<string>: [<secret>, ...]1 1]

Configure whether HTTP requests follow HTTP 3xx redirects.
follow_redirects: <boolean> | default = true]

—

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

TLS configuration.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 44/91

10/09/24, 19:16 Configuration | Prometheus

tls_config:
[<tls_config>]

<ionos_sd_config>

IONOS SD configurations allows retrieving scrape targets from IONOS Cloud
(https://cloud.ionos.com/) API. This service discovery uses the first NICs IP address by default, but
that can be changed with relabeling. The following meta labels are available on all targets during
relabeling:

e _ meta_ionos_server_availability zone :the availability zone of the server

e _ meta_ionos_server_boot_cdrom_id : the ID of the CD-ROM the server is booted from

e _ meta_ionos_server_boot_image_id : the ID of the boot image or snapshot the server is booted
from

e _ meta_ionos_server_boot_volume_id: the ID of the boot volume

e _ meta_ionos_server_cpu_family : the CPU family of the server to

e meta_ionos_server_id:the ID of the server

e _ meta_ionos_server_ip:comma separated list of all IPs assigned to the server

e _ meta_ionos_server_lifecycle : the lifecycle state of the server resource

e _ meta_ionos_server_name : the name of the server

e _ meta_ionos_server_nic_ip_<nic_name>: comma separated list of IPs, grouped by the name of
each NIC attached to the server

e _ meta_ionos_server_servers_id : the ID of the servers the server belongs to

e _ meta_ionos_server_state :the execution state of the server

e _ meta_ionos_server_type : the type of the server

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 45/91

https://cloud.ionos.com/
https://cloud.ionos.com/

10/09/24, 19:16 Configuration | Prometheus

The unique ID of the data center.
datacenter_id: <string>

Authentication information used to authenticate to the API server.
Note that “basic_auth™ and “authorization™ options are

mutually exclusive.

password and password_file are mutually exclusive.

Optional HTTP basic authentication information, required when using IONOS
Cloud username and password as authentication method.
basic_auth:

[username: <string>]

[password: <secret>]

[password_file: <string>]

Optional "Authorization™ header configuration, required when using IONOS
Cloud token as authentication method.
authorization:
Sets the authentication type.
type: <string> | default: Bearer]
Sets the credentials. It is mutually exclusive with
“credentials_file .

[

#

#

[credentials: <secret>]

Sets the credentials to the credentials read from the configured file.
It is mutually exclusive with "“credentials’.

[

credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:

[<oauth2>]

Optional proxy URL.

proxy_url: <string>]

Comma-separated string that can contain IPs, CIDR notation, domain names

that should be excluded from proxying. IP and domain names can

contain port numbers.

no_proxy: <string>]

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]

Specifies headers to send to proxies during CONNECT requests.

proxy_connect_header:

— H* =/ HF o/ H HF H — H

[<string>: [<secret>, ...]1 1]

Configure whether HTTP requests follow HTTP 3xx redirects.
follow_redirects: <boolean> | default = true]

—

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

TLS configuration.
tls_config:
[<tls_config>]

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 46/91

10/09/24, 19:16

Configuration | Prometheus

The port to scrape metrics from.
[port: <int> | default = 80]

The time after which the servers are refreshed.
[refresh_interval: <duration> | default = 60s]

<kubernetes_sd_config>

Kubernetes SD configurations allow retrieving scrape targets from Kubernetes'
(https://kubernetes.io/) REST APl and always staying synchronized with the cluster state.

One of the following role types can be configured to discover targets:

node

The node role discovers one target per cluster node with the address defaulting to the Kubelet's
HTTP port. The target address defaults to the first existing address of the Kubernetes node object in
the address type order of NodeInternalIP, NodeExternalIP, NodelLegacyHostIP, and NodeHostName .

Available meta labels:

e _ meta_kubernetes_node_name : The name of the node object.

e _ meta_kubernetes_node_provider_id : The cloud provider's name for the node object.

e _ meta_kubernetes_node_label_<labelname> : Each label from the node object, with any
unsupported characters converted to an underscore.

e _ meta_kubernetes_node_labelpresent_<labelname>: true for each label from the node object,
with any unsupported characters converted to an underscore.

e _ meta_kubernetes_node_annotation_<annotationname> : Each annotation from the node object.

e meta_kubernetes_node_annotationpresent_<annotationname>: true for each annotation from
the node object.

e _ meta_kubernetes_node_address_<address_type> : The first address for each node address type,

if it exists.

In addition, the instance label for the node will be set to the node name as retrieved from the API
server.

service

The service role discovers a target for each service port for each service. This is generally useful for
blackbox monitoring of a service. The address will be set to the Kubernetes DNS name of the service
and respective service port.

Available meta labels:

e _ meta_kubernetes_namespace : The namespace of the service object.
e _ meta_kubernetes_service_annotation_<annotationname> : Each annotation from the service

object.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/

47/91

https://kubernetes.io/
https://kubernetes.io/

10/09/24, 19:16

pod

The

Configuration | Prometheus

__meta_kubernetes_service_annotationpresent_<annotationname> : "true" for each annotation of
the service object.

__meta_kubernetes_service_cluster_ip : The cluster IP address of the service. (Does not apply
to services of type ExternalName)

__meta_kubernetes_service_loadbalancer_ip : The IP address of the loadbalancer. (Applies to
services of type LoadBalancer)

__meta_kubernetes_service_external_name : The DNS name of the service. (Applies to services
of type ExternalName)

__meta_kubernetes_service_label_<labelname> : Each label from the service object, with any
unsupported characters converted to an underscore.
__meta_kubernetes_service_labelpresent_<labelname>: true for each label of the service
object, with any unsupported characters converted to an underscore.
__meta_kubernetes_service_name : The name of the service object.
__meta_kubernetes_service_port_name : Name of the service port for the target.
__meta_kubernetes_service_port_number : Number of the service port for the target.
__meta_kubernetes_service_port_protocol : Protocol of the service port for the target.
__meta_kubernetes_service_type : The type of the service.

pod role discovers all pods and exposes their containers as targets. For each declared port of a

container, a single target is generated. If a container has no specified ports, a port-free target per
container is created for manually adding a port via relabeling.

Available meta labels:

__meta_kubernetes_namespace : The namespace of the pod object.
__meta_kubernetes_pod_name : The name of the pod object.

__meta_kubernetes_pod_ip : The pod IP of the pod object.
__meta_kubernetes_pod_label_<labelname>: Each label from the pod object, with any
unsupported characters converted to an underscore.
__meta_kubernetes_pod_labelpresent_<labelname> : true for each label from the pod object,
with any unsupported characters converted to an underscore.
__meta_kubernetes_pod_annotation_<annotationname> : Each annotation from the pod object.
__meta_kubernetes_pod_annotationpresent_<annotationname> : true for each annotation from
the pod object.

__meta_kubernetes_pod_container_init: true if the container is an InitContainer
(https://kubernetes.io/docs/concepts/workloads/pods/init-containers/)
__meta_kubernetes_pod_container_name : Name of the container the target address points to.
__meta_kubernetes_pod_container_id : ID of the container the target address points to. The ID is
in the form <type>://<container_id> .

__meta_kubernetes_pod_container_image : The image the container is using.
__meta_kubernetes_pod_container_port_name : Name of the container port.
__meta_kubernetes_pod_container_port_number : Number of the container port.
__meta_kubernetes_pod_container_port_protocol : Protocol of the container port.
__meta_kubernetes_pod_ready : Set to true or false for the pod's ready state.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/

48/91

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

10/09/24, 19:16

Configuration | Prometheus

__meta_kubernetes_pod_phase : Set to Pending, Running, Succeeded, Failed Or Unknown in the
lifecycle (https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase).
__meta_kubernetes_pod_node_name : The name of the node the pod is scheduled onto.
__meta_kubernetes_pod_host_ip : The current host IP of the pod object.
__meta_kubernetes_pod_uid : The UID of the pod object.
__meta_kubernetes_pod_controller_kind : Object kind of the pod controller.
__meta_kubernetes_pod_controller_name : Name of the pod controller.

endpoints

The endpoints role discovers targets from listed endpoints of a service. For each endpoint address
one target is discovered per port. If the endpoint is backed by a pod, all additional container ports of
the pod, not bound to an endpoint port, are discovered as targets as well.

Available meta labels:

__meta_kubernetes_namespace : The namespace of the endpoints object.
__meta_kubernetes_endpoints_name : The names of the endpoints object.
__meta_kubernetes_endpoints_label_<labelname> : Each label from the endpoints object, with
any unsupported characters converted to an underscore.
__meta_kubernetes_endpoints_labelpresent_<labelname>: true for each label from the
endpoints object, with any unsupported characters converted to an underscore.
__meta_kubernetes_endpoints_annotation_<annotationname> : Each annotation from the
endpoints object.
__meta_kubernetes_endpoints_annotationpresent_<annotationname>: true for each annotation
from the endpoints object.
For all targets discovered directly from the endpoints list (those not additionally inferred from
underlying pods), the following labels are attached:

o _ meta_kubernetes_endpoint_hostname : Hostname of the endpoint.

o _ meta_kubernetes_endpoint_node_name : Name of the node hosting the endpoint.

o _ meta_kubernetes_endpoint_ready : Set to true or false for the endpoint's ready state.

o _ meta_kubernetes_endpoint_port_name : Name of the endpoint port.

o _ meta_kubernetes_endpoint_port_protocol : Protocol of the endpoint port.

o _ meta_kubernetes_endpoint_address_target_kind : Kind of the endpoint address target.

o _ meta_kubernetes_endpoint_address_target_name : Name of the endpoint address target.
If the endpoints belong to a service, all labels of the role: service discovery are attached.
For all targets backed by a pod, all labels of the role: pod discovery are attached.

endpointslice

The endpointslice role discovers targets from existing endpointslices. For each endpoint address
referenced in the endpointslice object one target is discovered. If the endpoint is backed by a pod,
all additional container ports of the pod, not bound to an endpoint port, are discovered as targets as

well.

Available meta labels:

__meta_kubernetes_namespace : The namespace of the endpoints object.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/

49/91

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase

10/09/24, 19:16

Configuration | Prometheus

e _ meta_kubernetes_endpointslice_name : The name of endpointslice object.

e _ meta_kubernetes_endpointslice_label_<labelname> : Each label from the endpointslice object,
with any unsupported characters converted to an underscore.

e _ meta_kubernetes_endpointslice_labelpresent_<labelname>: true for each label from the
endpointslice object, with any unsupported characters converted to an underscore.

e _ meta_kubernetes_endpointslice_annotation_<annotationname> : Each annotation from the
endpointslice object.

e _ meta_kubernetes_endpointslice_annotationpresent_<annotationname>: true for each
annotation from the endpointslice object.

e For all targets discovered directly from the endpointslice list (those not additionally inferred
from underlying pods), the following labels are attached:

[e]

o

(o]

(o]

[e]

[e]

__meta_kubernetes_endpointslice_address_target_kind : Kind of the referenced object.
__meta_kubernetes_endpointslice address_target_ name : Name of referenced object.
__meta_kubernetes_endpointslice_address_type : The ip protocol family of the address of
the target.

__meta_kubernetes_endpointslice _endpoint_conditions_ready : Setto true or false for
the referenced endpoint's ready state.
__meta_kubernetes_endpointslice_endpoint_conditions_serving:Setto true or false for
the referenced endpoint's serving state.
__meta_kubernetes_endpointslice_endpoint_conditions_terminating: Setto true or
false for the referenced endpoint's terminating state.
__meta_kubernetes_endpointslice_endpoint_topology kubernetes_io_hostname : Name of
the node hosting the referenced endpoint.
__meta_kubernetes_endpointslice_endpoint_topology present_kubernetes_io_hostname:
Flag that shows if the referenced object has a kubernetes.io/hostname annotation.
__meta_kubernetes_endpointslice_endpoint_hostname : Hostname of the referenced
endpoint.

__meta_kubernetes_endpointslice_endpoint_node_name : Name of the Node hosting the
referenced endpoint.

__meta_kubernetes_endpointslice_endpoint_zone : Zone the referenced endpoint exists in
(only available when using the discovery.k8s.io/v1 API group).
__meta_kubernetes_endpointslice_port : Port of the referenced endpoint.

_ meta_kubernetes_endpointslice_port_name : Named port of the referenced endpoint.
__meta_kubernetes_endpointslice_port_protocol : Protocol of the referenced endpoint.

¢ |f the endpoints belong to a service, all labels of the role: service discovery are attached.
e For all targets backed by a pod, all labels of the role: pod discovery are attached.

ingress

The ingress role discovers a target for each path of each ingress. This is generally useful for
blackbox monitoring of an ingress. The address will be set to the host specified in the ingress spec.

Available meta labels:

e _ meta_kubernetes_namespace : The namespace of the ingress object.
e _ meta_kubernetes_ingress_name : The name of the ingress object.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 50/91

10/09/24, 19:16 Configuration | Prometheus

e _ meta_kubernetes_ingress_label_<labelname> : Each label from the ingress object, with any
unsupported characters converted to an underscore.

e _ meta_kubernetes_ingress_labelpresent_<labelname>: true for each label from the ingress
object, with any unsupported characters converted to an underscore.

e _ meta_kubernetes_ingress_annotation_<annotationname>: Each annotation from the ingress
object.

e _ meta_kubernetes_ingress_annotationpresent_<annotationname>: true for each annotation
from the ingress object.

e _ meta_kubernetes_ingress_class_name : Class name from ingress spec, if present.

e _ meta_kubernetes_ingress_scheme : Protocol scheme of ingress, https if TLS config is set.
Defaults to http.

e _ meta_kubernetes_ingress_path : Path from ingress spec. Defaults to /.

See below for the configuration options for Kubernetes discovery:

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 51/91

10/09/24, 19:16 Configuration | Prometheus

The information to access the Kubernetes API.

The API server addresses. If left empty, Prometheus is assumed to run inside
of the cluster and will discover API servers automatically and use the pod's
CA certificate and bearer token file at /var/run/secrets/kubernetes.io/serviceaccount/.

—/ ¥ H# H

api_server: <host>]

The Kubernetes role of entities that should be discovered.
One of endpoints, endpointslice, service, pod, node, or ingress.
role: <string>

Optional path to a kubeconfig file.
Note that api_server and kube_config are mutually exclusive.
[kubeconfig file: <filename>]

Optional authentication information used to authenticate to the API server.
Note that “basic_auth™ and “authorization® options are mutually exclusive.
password and password_file are mutually exclusive.

Optional HTTP basic authentication information.
basic_auth:

[username: <string>]

[password: <secret>]

[password_file: <string>]

Optional “Authorization™ header configuration.
authorization:
Sets the authentication type.
[type: <string> | default: Bearer]
Sets the credentials. It is mutually exclusive with
“credentials_file’.
[credentials: <secret>]
Sets the credentials to the credentials read from the configured file.
It is mutually exclusive with “credentials”.
[credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:

[<oauth2>]

Optional proxy URL.

proxy_url: <string>]

Comma-separated string that can contain IPs, CIDR notation, domain names

that should be excluded from proxying. IP and domain names can

contain port numbers.

no_proxy: <string>]

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]

Specifies headers to send to proxies during CONNECT requests.

proxy_connect_header:

— H — HF o/ H HF OH — H

[<string>: [<secret>, ...]1 1]

Configure whether HTTP requests follow HTTP 3xx redirects.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 52/91

10/09/24, 19:16 Configuration | Prometheus

[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

TLS configuration.
tls_config:
[<tls_config>]

Optional namespace discovery. If omitted, all namespaces are used.
namespaces:
own_namespace: <boolean>
names:
[- <string>]

Optional label and field selectors to limit the discovery process to a subset of available resources
See https://kubernetes.io/docs/concepts/overview/working-with-objects/field-selectors/

and https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/ to learn more about th
filters that can be used. The endpoints role supports pod, service and endpoints selectors.

The pod role supports node selectors when configured with ~attach_metadata: {node: true} .

Other roles only support selectors matching the role itself (e.g. node role can only contain node se

H OH OH OH OH OH

Note: When making decision about using field/label selector make sure that this

is the best approach - it will prevent Prometheus from reusing single list/watch

for all scrape configs. This might result in a bigger load on the Kubernetes API,

because per each selector combination there will be additional LIST/WATCH. On the other hand,

if you just want to monitor small subset of pods in large cluster it's recommended to use selectors.
Decision, if selectors should be used or not depends on the particular situation.

— H H O H O #H #

selectors:
[- role: <string>
[label: <string>]
[field: <string>] 1]

Optional metadata to attach to discovered targets. If omitted, no additional metadata is attached.
attach_metadata:
Attaches node metadata to discovered targets. Valid for roles: pod, endpoints, endpointslice.
When set to true, Prometheus must have permissions to get Nodes.
[node: <boolean> | default = false]

See this example Prometheus configuration file
(https://github.com/prometheus/prometheus/blob/release-
2.54/documentation/examples/prometheus-kubernetes.yml) for a detailed example of configuring
Prometheus for Kubernetes.

You may wish to check out the 3rd party Prometheus Operator (https://github.com/prometheus-
operator/prometheus-operator), which automates the Prometheus setup on top of Kubernetes.

<kuma_sd_config>

Kuma SD configurations allow retrieving scrape target from the Kuma (https://kuma.io) control
plane.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 53/91

https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-kubernetes.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-kubernetes.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-kubernetes.yml
https://github.com/prometheus-operator/prometheus-operator
https://github.com/prometheus-operator/prometheus-operator
https://github.com/prometheus-operator/prometheus-operator
https://kuma.io/
https://kuma.io/

10/09/24, 19:16 Configuration | Prometheus

This SD discovers "monitoring assignments" based on Kuma Dataplane Proxies
(https://kuma.io/docs/latest/documentation/dps-and-data-model), via the MADS v1 (Monitoring
Assignment Discovery Service) xDS API, and will create a target for each proxy inside a Prometheus-
enabled mesh.

The following meta labels are available for each target:

e _ meta_kuma_mesh : the name of the proxy's Mesh

e _ meta_kuma_dataplane : the name of the proxy

e _ meta_kuma_service : the name of the proxy's associated Service
e _ meta_kuma_label_<tagname> : each tag of the proxy

See below for the configuration options for Kuma MonitoringAssignment discovery:

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 54/91

https://kuma.io/docs/latest/documentation/dps-and-data-model
https://kuma.io/docs/latest/documentation/dps-and-data-model

10/09/24, 19:16 Configuration | Prometheus

Address of the Kuma Control Plane's MADS xDS server.
server: <string>

Client id is used by Kuma Control Plane to compute Monitoring Assignment for specific Prometheus bac
This is useful when migrating between multiple Prometheus backends, or having separate backend for e
When not specified, system hostname/fqdn will be used if available, if not “prometheus’ will be used

— H# H #

client_id: <string>]

The time to wait between polling update requests.
refresh_interval: <duration> | default = 30s]

— #

The time after which the monitoring assignments are refreshed.

—

fetch_timeout: <duration> | default = 2m]

Optional proxy URL.

proxy_url: <string>]

Comma-separated string that can contain IPs, CIDR notation, domain names

that should be excluded from proxying. IP and domain names can

contain port numbers.

no_proxy: <string>]

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]

Specifies headers to send to proxies during CONNECT requests.

— H =/ HF o/ H HF H — H

proxy_connect_header:
[<string>: [<secret>, ...]1 1]

TLS configuration.
tls_config:
[<tls_config>]

Authentication information used to authenticate to the Docker daemon.
Note that “basic_auth™ and “authorization™ options are

mutually exclusive.

password and password_file are mutually exclusive.

Optional HTTP basic authentication information.
basic_auth:

[username: <string>]

[password: <secret>]

[password_file: <string>]

Optional the “Authorization™ header configuration.
authorization:
Sets the authentication type.
type: <string> | default: Bearer]
Sets the credentials. It is mutually exclusive with
“credentials_file .

Sets the credentials with the credentials read from the configured file.

[

#

#

[credentials: <secret>]

#

It is mutually exclusive with "“credentials’.
[

credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 55/91

10/09/24, 19:16 Configuration | Prometheus

oauth2:
[<oauth2>]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

The relabeling phase is the preferred and more powerful way to filter proxies and user-defined tags.

<lightsail_sd_config>

Lightsail SD configurations allow retrieving scrape targets from AWS Lightsail
(https://aws.amazon.com/lightsail/) instances. The private IP address is used by default, but may be
changed to the public IP address with relabeling.

The following meta labels are available on targets during relabeling:

e _ meta_lightsail_availability_zone : the availability zone in which the instance is running

e _ meta_lightsail_blueprint_id : the Lightsail blueprint ID

e _ meta_lightsail_bundle_id : the Lightsail bundle ID

e _ meta_lightsail_instance_name : the name of the Lightsail instance

e _ meta_lightsail_instance_state : the state of the Lightsail instance

e _ meta_lightsail_instance_support_code : the support code of the Lightsail instance

e _ meta_lightsail_ipv6_addresses: comma separated list of IPv6 addresses assigned to the
instance's network interfaces, if present

e _ meta_lightsail_private_ip: the private IP address of the instance

e _ meta_lightsail_public_ip:the public IP address of the instance, if available

e _ meta_lightsail_region: the region of the instance

e _ meta_lightsail_tag_<tagkey>: each tag value of the instance

See below for the configuration options for Lightsail discovery:

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 56/91

https://aws.amazon.com/lightsail/
https://aws.amazon.com/lightsail/

10/09/24, 19:16

—

—

— —/ H# — — H# H®

—

H OH O O

#

Configuration | Prometheus

The information to access the Lightsail API.

The AWS region. If blank, the region from the instance metadata is used.
region: <string>]

Custom endpoint to be used.
endpoint: <string>]

The AWS API keys. If blank, the environment variables ~AWS_ACCESS_KEY_ID"
and "~ AWS_SECRET_ACCESS_KEY" are used.

access_key: <string>]

secret_key: <secret>]

Named AWS profile used to connect to the API.

profile: <string>]

AWS Role ARN, an alternative to using AWS API keys.
role_arn: <string>]

Refresh interval to re-read the instance list.

refresh_interval: <duration> | default = 60s]

The port to scrape metrics from. If using the public IP address, this must
instead be specified in the relabeling rule.
port: <int> | default = 80]

Authentication information used to authenticate to the Lightsail API.
Note that “basic_auth™, “authorization™ and “oauth2® options are
mutually exclusive.

“password™ and “password_file® are mutually exclusive.

Optional HTTP basic authentication information, currently not supported by AWS.

basic_auth:

#

[username: <string>]
[password: <secret>]
[password_file: <string>]

Optional "Authorization™ header configuration, currently not supported by AWS.

authorization:

#

Sets the authentication type.
type: <string> | default: Bearer]
Sets the credentials. It is mutually exclusive with
“credentials_file .

Sets the credentials to the credentials read from the configured file.

[

#

#

[credentials: <secret>]

#

It is mutuall exclusive with “credentials’.
[

credentials_file: <filename>]

Optional OAuth 2.0 configuration, currently not supported by AWS.

oauth2:

#

[
#

[<oauth2>]

Optional proxy URL.
proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names

https://prometheus.io/docs/prometheus/latest/configuration/configuration/

57/91

10/09/24, 19:16 Configuration | Prometheus

that should be excluded from proxying. IP and domain names can

contain port numbers.

no_proxy: <string>]

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]

Specifies headers to send to proxies during CONNECT requests.

proxy_connect_header:

—/ H — H — H H

[<string>: [<secret>, ...]1 1]

Configure whether HTTP requests follow HTTP 3xx redirects.
follow_redirects: <boolean> | default = true]

—

Whether to enable HTTP2.
enable_http2: <boolean> | default: true]

—

TLS configuration.
tls_config:
[<tls_config>]

<linode_sd_config>

Linode SD configurations allow retrieving scrape targets from Linode's (https://www.linode.com/)
Linode APIv4. This service discovery uses the public IPv4 address by default, by that can be changed
with relabeling, as demonstrated in the Prometheus linode-sd configuration file
(https://github.com/prometheus/prometheus/blob/release-
2.54/documentation/examples/prometheus-linode.yml).

The following meta labels are available on targets during relabeling:

e _ meta_linode_instance_id: the id of the linode instance

e _ meta_linode_instance_label : the label of the linode instance

e _ meta_linode_image : the slug of the linode instance's image

e _ meta_linode_private_ipv4 : the private IPv4 of the linode instance

e _ meta_linode_public_ipv4 : the public IPv4 of the linode instance

e _ meta_linode_public_ipvé : the public IPv6 of the linode instance

e _ meta_linode_private_ipv4_rdns : the reverse DNS for the first private IPv4 of the linode
instance

e _ meta_linode_public_ipv4_rdns :the reverse DNS for the first public IPv4 of the linode
instance

e _ meta_linode_public_ipv6_rdns : the reverse DNS for the first public IPv6 of the linode
instance

e _ meta_linode_region : the region of the linode instance

e _ meta_linode_type : the type of the linode instance

e meta_linode_status : the status of the linode instance

e _ meta_linode_tags: a list of tags of the linode instance joined by the tag separator

e _ meta_linode_group : the display group a linode instance is a member of

e _ meta_linode gpus :the number of GPU's of the linode instance

e _ meta_linode_hypervisor : the virtualization software powering the linode instance

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 58/91

https://www.linode.com/
https://www.linode.com/
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-linode.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-linode.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-linode.yml

10/09/24, 19:16 Configuration | Prometheus

e _ meta_linode_backups : the backup service status of the linode instance

e _ meta_linode_specs_disk_bytes : the amount of storage space the linode instance has access
to

e meta_linode_specs_memory bytes :the amount of RAM the linode instance has access to

e meta_linode_specs_vcpus : the number of VCPUS this linode has access to

e _ meta_linode_specs_transfer_bytes : the amount of network transfer the linode instance is
allotted each month

e _ meta_linode_extra_ips : a list of all extra IPv4 addresses assigned to the linode instance
joined by the tag separator

e _ meta_linode_ipv6_ranges : a list of IPv6 ranges with mask assigned to the linode instance
joined by the tag separator

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 59/91

10/09/24, 19:16 Configuration | Prometheus

Authentication information used to authenticate to the API server.
Note that “basic_auth™ and ~“authorization™ options are

mutually exclusive.

password and password_file are mutually exclusive.

H OH H H OB

Note: Linode APIv4 Token must be created with scopes: 'linodes:read_only', 'ips:read_only', and 'eve

Optional HTTP basic authentication information, not currently supported by Linode APIv4.
basic_auth:

[username: <string>]

[password: <secret>]

[password_file: <string>]

Optional the “Authorization® header configuration.
authorization:
Sets the authentication type.
type: <string> | default: Bearer]
Sets the credentials. It is mutually exclusive with
“credentials_file .

[

#

#

[credentials: <secret>]

Sets the credentials with the credentials read from the configured file.
It is mutually exclusive with "“credentials’.

[

credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:

[<oauth2>]

Optional region to filter on.

—

region: <string>]

Optional proxy URL.

proxy_url: <string>]

Comma-separated string that can contain IPs, CIDR notation, domain names

that should be excluded from proxying. IP and domain names can

contain port numbers.

no_proxy: <string>]

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]

Specifies headers to send to proxies during CONNECT requests.

—/ H o/ H — HF H H — H

proxy_connect_header:
[<string>: [<secret>, ...]1 1]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
enable_http2: <boolean> | default: true]

—

TLS configuration.
tls_config:
[<tls_config>]

The port to scrape metrics from.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/

60/91

10/09/24, 19:16 Configuration | Prometheus

[port: <int> | default = 80]

The string by which Linode Instance tags are joined into the tag label.
[tag_separator: <string> | default = ,]

The time after which the linode instances are refreshed.
[refresh_interval: <duration> | default = 6@s]

<marathon_sd_config>

Marathon SD configurations allow retrieving scrape targets using the Marathon
(https://mesosphere.github.io/marathon/) REST API. Prometheus will periodically check the REST
endpoint for currently running tasks and create a target group for every app that has at least one
healthy task.

The following meta labels are available on targets during relabeling:

e _ meta_marathon_app : the name of the app (with slashes replaced by dashes)

e _ meta_marathon_image : the name of the Docker image used (if available)

e _ meta_marathon_task : the ID of the Mesos task

e _ meta_marathon_app_label_<labelname>:any Marathon labels attached to the app, with any
unsupported characters converted to an underscore

e _ meta_marathon_port_definition_label_<labelname> : the port definition labels, with any
unsupported characters converted to an underscore

e _ meta_marathon_port_mapping_label_<labelname> : the port mapping labels, with any
unsupported characters converted to an underscore

e _ meta_marathon_port_index : the port index number (e.g. 1 for PORT1)

See below for the configuration options for Marathon discovery:

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 61/91

https://mesosphere.github.io/marathon/
https://mesosphere.github.io/marathon/

10/09/24, 19:16

—

— # H H

—/ H# H# #

#
#
#
#

Configuration | Prometheus

List of URLs to be used to contact Marathon servers.
You need to provide at least one server URL.
servers:

<string>

Polling interval
refresh_interval: <duration> | default = 30s]

Optional authentication information for token-based authentication

https://docs.mesosphere.com/1.11/security/ent/iam-api/#passing-an-authentication-token
It is mutually exclusive with ~auth_token_file® and other authentication mechanisms.

auth_token: <secret>]

Optional authentication information for token-based authentication

https://docs.mesosphere.com/1.11/security/ent/iam-api/#passing-an-authentication-token
It is mutually exclusive with “auth_token™ and other authentication mechanisms.

auth_token_file: <filename>]

Sets the “Authorization™ header on every request with the

configured username and password.
This is mutually exclusive with other authentication mechanisms.

password and password_file are mutually exclusive.

[

basic_auth:

[username: <string>]
[password: <secret>]
[password_file: <string>]
Optional "Authorization™ header configuration.
NOTE: The current version of DC/0S marathon (v1.11.0) does not support
standard "Authentication® header, use “auth_token™ or “auth_token_file"
instead.
authorization:
Sets the authentication type.
[type: <string> | default: Bearer]
Sets the credentials. It is mutually exclusive with
~credentials_file .
[credentials: <secret>]
Sets the credentials to the credentials read from the configured file.
It is mutually exclusive with "“credentials’.
[credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:

<oauth2>]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

TLS configuration for connecting to marathon servers
tls_config:

https://prometheus.io/docs/prometheus/latest/configuration/configuration/

62/91

10/09/24, 19:16

Configuration | Prometheus

[<tls_config>]

Optional proxy URL.

proxy_url: <string>]

Comma-separated string that can contain IPs, CIDR notation, domain names

that should be excluded from proxying. IP and domain names can

contain port numbers.

no_proxy: <string>]

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]

Specifies headers to send to proxies during CONNECT requests.

— H o/ H e H H H — H®

proxy_connect_header:
[<string>: [<secret>, ...]1 1]

By default every app listed in Marathon will be scraped by Prometheus. If not all of your services
provide Prometheus metrics, you can use a Marathon label and Prometheus relabeling to control
which instances will actually be scraped. See the Prometheus marathon-sd configuration file
(https://github.com/prometheus/prometheus/blob/release-
2.54/documentation/examples/prometheus-marathon.yml) for a practical example on how to set up
your Marathon app and your Prometheus configuration.

By default, all apps will show up as a single job in Prometheus (the one specified in the configuration
file), which can also be changed using relabeling.

<nerve_sd_config>

Nerve SD configurations allow retrieving scrape targets from AirBnB's Nerve
(https://github.com/airbnb/nerve) which are stored in Zookeeper (https://zookeeper.apache.org/).

The following meta labels are available on targets during relabeling:

e _ meta_nerve_path : the full path to the endpoint node in Zookeeper
e _ meta_nerve_endpoint_host : the host of the endpoint

e _ meta_nerve_endpoint_port : the port of the endpoint

e _ meta_nerve_endpoint_name : the name of the endpoint

The Zookeeper servers.
servers:
- <host>
Paths can point to a single service, or the root of a tree of services.
paths:
- <string>
[timeout: <duration> | default = 10s]

<nomad_sd_config>

Nomad SD configurations allow retrieving scrape targets from Nomad's
(https://www.nomadproject.io/) Service API.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/

63/91

https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-marathon.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-marathon.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-marathon.yml
https://github.com/airbnb/nerve
https://github.com/airbnb/nerve
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://www.nomadproject.io/
https://www.nomadproject.io/

10/09/24, 19:16 Configuration | Prometheus

The following meta labels are available on targets during relabeling:

e _ meta_nomad_address : the service address of the target

e _ meta_nomad_dc : the datacenter name for the target

e _ meta_nomad_namespace : the namespace of the target

e _ meta_nomad_node_id : the node name defined for the target

e _ meta_nomad_service : the name of the service the target belongs to

e _ meta_nomad_service_address : the service address of the target

e _ meta_nomad_service_id : the service ID of the target

e _ meta_nomad_service_port : the service port of the target

e _ meta_nomad_tags : the list of tags of the target joined by the tag separator

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 64/91

10/09/24, 19:16 Configuration | Prometheus

The information to access the Nomad API. It is to be defined
as the Nomad documentation requires.

allow_stale: <boolean> | default = true]

namespace: <string> | default = default]

refresh_interval: <duration> | default = 60s]

region: <string> | default = global]

server: <host>]

— ———— e H®

tag_separator: <string> | default = ,]

Authentication information used to authenticate to the nomad server.
Note that “basic_auth™, “authorization® and “oauth2™ options are
mutually exclusive.

H OH H %

“password” and “password_file' are mutually exclusive.

Optional HTTP basic authentication information.
basic_auth:

[username: <string>]

[password: <secret>]

[password_file: <string>]

Optional "Authorization™ header configuration.
authorization:
Sets the authentication type.
type: <string> | default: Bearer]
Sets the credentials. It is mutually exclusive with
“credentials_file .

[

#

#

[credentials: <secret>]

Sets the credentials to the credentials read from the configured file.
It is mutually exclusive with "“credentials’.

[

credentials_file: <filename>]

Optional OAuth 2.0 configuration.
oauth2:
[<oauth2>]

Optional proxy URL.

proxy_url: <string>]

Comma-separated string that can contain IPs, CIDR notation, domain names

that should be excluded from proxying. IP and domain names can

contain port numbers.

no_proxy: <string>]

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]

Specifies headers to send to proxies during CONNECT requests.

— H =/ H o/ H H H — H

proxy_connect_header:
[<string>: [<secret>, ...]]]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
enable_http2: <boolean> | default: true]

—

TLS configuration.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 65/91

10/09/24, 19:16 Configuration | Prometheus

tls_config:
[<tls_config>]

<serverset_sd_config>

Serverset SD configurations allow retrieving scrape targets from Serversets
(https://github.com/twitter/finagle/tree/develop/finagle-serversets) which are stored in Zookeeper
(https://zookeeper.apache.org/). Serversets are commonly used by Finagle
(https://twitter.github.io/finagle/) and Aurora (https://aurora.apache.org/).

The following meta labels are available on targets during relabeling:

e _ meta_serverset_path: the full path to the serverset member node in Zookeeper
e _ meta_serverset_endpoint_host : the host of the default endpoint

e _ meta_serverset_endpoint_port : the port of the default endpoint

e _ meta_serverset_endpoint_host_<endpoint> : the host of the given endpoint

e _ meta_serverset_endpoint_port_<endpoint> : the port of the given endpoint

e _ meta_serverset_shard : the shard number of the member

e _ meta_serverset_status:the status of the member

The Zookeeper servers.
servers:
- <host>
Paths can point to a single serverset, or the root of a tree of serversets.
paths:
- <string>
[timeout: <duration> | default = 10s]

Serverset data must be in the JSON format, the Thrift format is not currently supported.

<triton_sd_config>

Triton (https://github.com/joyent/triton) SD configurations allow retrieving scrape targets from
Container Monitor (https://github.com/joyent/rfd/blob/master/rfd/0027/README.md) discovery
endpoints.

One of the following <triton_role> types can be configured to discover targets:

container

The container role discovers one target per "virtual machine" owned by the account. These are
SmartOS zones or Ix’KVM/bhyve branded zones.

The following meta labels are available on targets during relabeling:

e _ meta_triton_groups : the list of groups belonging to the target joined by a comma separator
e _ meta_triton_machine_alias :the alias of the target container
e _ meta_triton_machine_brand :the brand of the target container

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 66/91

https://github.com/twitter/finagle/tree/develop/finagle-serversets
https://github.com/twitter/finagle/tree/develop/finagle-serversets
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://twitter.github.io/finagle/
https://twitter.github.io/finagle/
https://aurora.apache.org/
https://aurora.apache.org/
https://github.com/joyent/triton
https://github.com/joyent/triton
https://github.com/joyent/rfd/blob/master/rfd/0027/README.md
https://github.com/joyent/rfd/blob/master/rfd/0027/README.md

10/09/24, 19:16 Configuration | Prometheus

e _ meta_triton_machine_id:the UUID of the target container
e _ meta_triton_machine_image : the target container's image type
e _ meta_triton_server_id:the server UUID the target container is running on

cn

The cn role discovers one target for per compute node (also known as "server" or "global zone")
making up the Triton infrastructure. The account must be a Triton operator and is currently
required to own at least one container.

The following meta labels are available on targets during relabeling:

e _ meta_triton_machine_alias :the hostname of the target (requires triton-cmon 1.7.0 or
newer)

e _ meta_triton_machine_id:the UUID of the target

See below for the configuration options for Triton discovery:

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 67/91

10/09/24, 19:16 Configuration | Prometheus

The information to access the Triton discovery API.

The account to use for discovering new targets.
account: <string>

The type of targets to discover, can be set to:

* "container" to discover virtual machines (SmartOS zones, 1x/KVM/bhyve branded zones) running on Tr
* "cn" to discover compute nodes (servers/global zones) making up the Triton infrastructure

[role : <string> | default = "container"]

The DNS suffix which should be applied to target.
dns_suffix: <string>

The Triton discovery endpoint (e.g. 'cmon.us-east-3b.triton.zone'). This is
often the same value as dns_suffix.
endpoint: <string>

A list of groups for which targets are retrieved, only supported when “role’ == "container’.
If omitted all containers owned by the requesting account are scraped.
groups:

[- <string> ...]

The port to use for discovery and metric scraping.
[port: <int> | default = 9163]

The interval which should be used for refreshing targets.
refresh_interval: <duration> | default = 60s]

—

The Triton discovery API version.
version: <int> | default =1]

—

TLS configuration.
tls_config:
[<tls_config>]

<eureka_sd_config>

Eureka SD configurations allow retrieving scrape targets using the Eureka
(https://github.com/Netflix/eureka) REST API. Prometheus will periodically check the REST endpoint
and create a target for every app instance.

The following meta labels are available on targets during relabeling:

e _ meta_eureka_app_name : the name of the app

e _ meta_eureka_app_instance_id : the ID of the app instance

e _ meta_eureka_app_instance_hostname : the hostname of the instance

e _ meta_eureka_app_instance_homepage_url : the homepage url of the app instance

e _ meta_eureka_app_instance_statuspage_url: the status page url of the app instance

e _ meta_eureka_app_instance_healthcheck_url : the health check url of the app instance
e _ meta_eureka_app_instance_ip_addr : the IP address of the app instance

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 68/91

https://github.com/Netflix/eureka
https://github.com/Netflix/eureka

10/09/24, 19:16 Configuration | Prometheus

e _ meta_eureka_app_instance_vip_address : the VIP address of the app instance

e _ meta_eureka_app_instance_secure_vip_address : the secure VIP address of the app instance
e _ meta_eureka_app_instance_status : the status of the app instance

e _ meta_eureka_app_instance_port : the port of the app instance

e _ meta_eureka_app_instance_port_enabled : the port enabled of the app instance

e _ meta_eureka_app_instance_secure_port : the secure port address of the app instance

e _ meta_eureka_app_instance_secure_port_enabled : the secure port of the app instance

e _ meta_eureka_app_instance_country_id: the country ID of the app instance

e _ meta_eureka_app_instance_metadata_<metadataname> : app instance metadata

e _ meta_eureka_app_instance_datacenterinfo_name : the datacenter name of the app instance
e _ meta_eureka_app_instance_datacenterinfo_<metadataname> : the datacenter metadata

See below for the configuration options for Eureka discovery:

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 69/91

10/09/24, 19:16 Configuration | Prometheus

The URL to connect to the Eureka server.
server: <string>

Sets the "Authorization™ header on every request with the
configured username and password.
password and password_file are mutually exclusive.
basic_auth:

[username: <string>]

[password: <secret>]

[password_file: <string>]

Optional "Authorization™ header configuration.
authorization:
Sets the authentication type.
type: <string> | default: Bearer]
Sets the credentials. It is mutually exclusive with
“credentials_file .

[

#

#

[credentials: <secret>]

Sets the credentials to the credentials read from the configured file.
It is mutually exclusive with “credentials”.

[

credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:

[<oauth2>]

Configures the scrape request's TLS settings.
tls_config:
[<tls_config>]

Optional proxy URL.

proxy_url: <string>]

Comma-separated string that can contain IPs, CIDR notation, domain names

that should be excluded from proxying. IP and domain names can

contain port numbers.

no_proxy: <string>]

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]

Specifies headers to send to proxies during CONNECT requests.

—/ H o/ H — HF H H — H

proxy_connect_header:
[<string>: [<secret>, ...]1 1]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
enable_http2: <boolean> | default: true]

—

Refresh interval to re-read the app instance list.

—

refresh_interval: <duration> | default = 30s]

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 70/91

10/09/24, 19:16 Configuration | Prometheus

See the Prometheus eureka-sd configuration file
(https://github.com/prometheus/prometheus/blob/release-
2.54/documentation/examples/prometheus-eureka.yml) for a practical example on how to set up
your Eureka app and your Prometheus configuration.

<scaleway_sd_config>

Scaleway SD configurations allow retrieving scrape targets from Scaleway instances
(https://www.scaleway.com/en/virtual-instances/) and baremetal services
(https://www.scaleway.com/en/bare-metal-servers/).

The following meta labels are available on targets during relabeling:

Instance role

e _ meta_scaleway_instance_boot_type : the boot type of the server

e _ meta_scaleway_instance_hostname : the hostname of the server

e meta_scaleway_instance_id:the ID of the server

e _ meta_scaleway_instance_image_arch : the arch of the server image

e _ meta_scaleway_instance_image_id : the ID of the server image

e _ meta_scaleway_instance_image_name : the name of the server image

e meta_scaleway_instance location_cluster_id:the cluster ID of the server location

e _ meta_scaleway_instance_location_hypervisor_id: the hypervisor ID of the server location

e meta_scaleway_instance location_node_id:the node ID of the server location

e meta_scaleway_instance name : name of the server

e _ meta_scaleway_instance_organization_id: the organization of the server

e _ meta_scaleway_instance_private_ipv4 : the private IPv4 address of the server

e _ meta_scaleway_instance_project_id : project id of the server

e _ meta_scaleway_instance_public_ipv4 : the public IPv4 address of the server

e _ meta_scaleway_instance_public_ipvé : the public IPv6 address of the server

e _ meta_scaleway_instance_region : the region of the server

e _ meta_scaleway_instance_security_group_id : the ID of the security group of the server

e _ meta_scaleway_instance_security_group_name : the name of the security group of the server

e _ meta_scaleway_instance_status : status of the server

e _ meta_scaleway_instance_tags : the list of tags of the server joined by the tag separator

e _ meta_scaleway_instance_type : commercial type of the server

e _ meta_scaleway_instance_zone : the zone of the server (ex: fr-par-1, complete list here
(https://developers.scaleway.com/en/products/instance/api/#introduction))

This role uses the first address it finds in the following order: private IPv4, public IPv4, public IPv6.
This can be changed with relabeling, as demonstrated in the Prometheus scaleway-sd configuration
file (https://github.com/prometheus/prometheus/blob/release-
2.54/documentation/examples/prometheus-scaleway.yml). Should an instance have no address
before relabeling, it will not be added to the target list and you will not be able to relabel it.

Baremetal role

e meta_scaleway_baremetal_id:the ID of the server

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 71/91

https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-eureka.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-eureka.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-eureka.yml
https://www.scaleway.com/en/virtual-instances/
https://www.scaleway.com/en/virtual-instances/
https://www.scaleway.com/en/bare-metal-servers/
https://www.scaleway.com/en/bare-metal-servers/
https://developers.scaleway.com/en/products/instance/api/#introduction
https://developers.scaleway.com/en/products/instance/api/#introduction
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-scaleway.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-scaleway.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-scaleway.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-scaleway.yml

10/09/24, 19:16 Configuration | Prometheus

e _ meta_scaleway_baremetal_public_ipv4 : the public IPv4 address of the server

e _ meta_scaleway_baremetal_public_ipvé : the public IPv6 address of the server

e _ meta_scaleway_baremetal_name : the name of the server

e _ meta_scaleway_baremetal_os_name : the name of the operating system of the server

e _ meta_scaleway_baremetal os_version : the version of the operating system of the server

e _ meta_scaleway_baremetal project_id : the project ID of the server

e _ meta_scaleway_baremetal_status :the status of the server

e _ meta_scaleway_baremetal_tags : the list of tags of the server joined by the tag separator

e _ meta_scaleway_baremetal_type : the commercial type of the server

e _ meta_scaleway_baremetal_zone:the zone of the server (ex: fr-par-1, complete list here
(https://developers.scaleway.com/en/products/instance/api/#introduction))

This role uses the public IPv4 address by default. This can be changed with relabeling, as
demonstrated in the Prometheus scaleway-sd configuration file
(https://github.com/prometheus/prometheus/blob/release-
2.54/documentation/examples/prometheus-scaleway.yml).

See below for the configuration options for Scaleway discovery:

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 72/91

https://developers.scaleway.com/en/products/instance/api/#introduction
https://developers.scaleway.com/en/products/instance/api/#introduction
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-scaleway.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-scaleway.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-scaleway.yml

10/09/24, 19:16 Configuration | Prometheus

Access key to use. https://console.scaleway.com/project/credentials
access_key: <string>

Secret key to use when listing targets. https://console.scaleway.com/project/credentials
It is mutually exclusive with “secret_key_file’.
[secret_key: <secret>]

Sets the secret key with the credentials read from the configured file.
It is mutually exclusive with "“secret_key".
[secret_key_file: <filename>]

Project ID of the targets.
project_id: <string>

Role of the targets to retrieve. Must be “instance’ or “baremetal’.
role: <string>

The port to scrape metrics from.
port: <int> | default = 80]

—

API URL to use when doing the server listing requests.

—

api_url: <string> | default = "https://api.scaleway.com"]

Zone is the availability zone of your targets (e.g. fr-par-1).

—

zone: <string> | default = fr-par-1]

NameFilter specify a name filter (works as a LIKE) to apply on the server listing request.

—

name_filter: <string>]

TagsFilter specify a tag filter (a server needs to have all defined tags to be listed) to apply on t
tags_filter:
[- <string>]

Refresh interval to re-read the targets list.
refresh_interval: <duration> | default = 60s]

—

Configure whether HTTP requests follow HTTP 3xx redirects.

—

follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
enable_http2: <boolean> | default: true]

—

Optional proxy URL.

proxy_url: <string>]

Comma-separated string that can contain IPs, CIDR notation, domain names

that should be excluded from proxying. IP and domain names can

contain port numbers.

no_proxy: <string>]

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]

Specifies headers to send to proxies during CONNECT requests.

— H = H o/ H H H — H

proxy_connect_header:
[<string>: [<secret>, ...]]]

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 73/91

10/09/24, 19:16 Configuration | Prometheus

TLS configuration.
tls_config:
[<tls_config>]

<uyuni_sd_config>

Uyuni SD configurations allow retrieving scrape targets from managed systems via Uyuni
(https://www.uyuni-project.org/) API.

The following meta labels are available on targets during relabeling:

e _ meta_uyuni_endpoint_name : the name of the application endpoint

e _ meta_uyuni_exporter : the exporter exposing metrics for the target

e _ meta_uyuni_groups : the system groups of the target

e _ meta_uyuni_metrics_path: metrics path for the target

e _ meta_uyuni_minion_hostname : hostname of the Uyuni client

e _ meta_uyuni_primary_fqgdn: primary FQDN of the Uyuni client

e _ meta_uyuni_proxy_module : the module name if Exporter Exporter proxy is configured for the
target

e _ meta_uyuni_scheme : the protocol scheme used for requests

e _ meta_uyuni_system_id : the system ID of the client

See below for the configuration options for Uyuni discovery:

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 74/91

https://www.uyuni-project.org/
https://www.uyuni-project.org/

10/09/24, 19:16 Configuration | Prometheus

The URL to connect to the Uyuni server.
server: <string>

Credentials are used to authenticate the requests to Uyuni API.
username: <string>

password: <secret>

The entitlement string to filter eligible systems.

—

entitlement: <string> | default = monitoring_entitled]

The string by which Uyuni group names are joined into the groups label.

—

separator: <string> | default = ,]

Refresh interval to re-read the managed targets list.

—

refresh_interval: <duration> | default = 60s]

Optional HTTP basic authentication information, currently not supported by Uyuni.
basic_auth:

[username: <string>]

[password: <secret>]

[password_file: <string>]

Optional "Authorization™ header configuration, currently not supported by Uyuni.
authorization:

Sets the authentication type.

[type: <string> | default: Bearer]

Sets the credentials. It is mutually exclusive with
“credentials_file .
credentials: <secret>]
Sets the credentials to the credentials read from the configured file.
It is mutually exclusive with “credentials’.
credentials_file: <filename>]

— H# H# — H #

Optional OAuth 2.0 configuration, currently not supported by Uyuni.
Cannot be used at the same time as basic_auth or authorization.
oauth2:

[<oauth2>]

Optional proxy URL.

proxy_url: <string>]

Comma-separated string that can contain IPs, CIDR notation, domain names

that should be excluded from proxying. IP and domain names can

contain port numbers.

no_proxy: <string>]

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]

Specifies headers to send to proxies during CONNECT requests.

— H o/ H — H H

proxy_connect_header:
[<string>: [<secret>, ...]1 1]

Configure whether HTTP requests follow HTTP 3xx redirects.

—

follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 75/91

10/09/24, 19:16 Configuration | Prometheus

[enable_http2: <boolean> | default: true]

TLS configuration.
tls_config:
[<tls_config>]

See the Prometheus uyuni-sd configuration file
(https://github.com/prometheus/prometheus/blob/release-
2.54/documentation/examples/prometheus-uyuni.yml) for a practical example on how to set up
Uyuni Prometheus configuration.

<vultr_sd_config>
Vultr SD configurations allow retrieving scrape targets from Vultr (https://www.vultr.com/).

This service discovery uses the main IPv4 address by default, which that be changed with relabeling,
as demonstrated in the Prometheus vultr-sd configuration file
(https://github.com/prometheus/prometheus/blob/release-
2.54/documentation/examples/prometheus-vultr.yml).

The following meta labels are available on targets during relabeling:

e _ meta_vultr_instance_id : A unique ID for the vultr Instance.

e _ meta_vultr_instance_label :The user-supplied label for this instance.

e _ meta_vultr_instance_os : The Operating System name.

e _ meta_vultr_instance_os_id : The Operating System id used by this instance.

e _ meta_vultr_instance_region : The Region id where the Instance is located.

e _ meta_vultr_instance_plan : A unique ID for the Plan.

e meta_vultr_instance_main_ip : The main IPv4 address.

e _ meta_vultr_instance_internal_ip :The private IP address.

e _ meta_vultr_instance_main_ipvé : The main IPv6 address.

e _ meta_vultr_instance_features : List of features that are available to the instance.
e _ meta_vultr_instance_tags : List of tags associated with the instance.

e _ meta_vultr_instance_hostname : The hostname for this instance.

e _ meta_vultr_instance_server_status : The server health status.

e meta_vultr_instance_vcpu_count : Number of vCPUs.

e _ meta_vultr_instance_ram_mb : The amount of RAM in MB.

e _ meta_vultr_instance_disk_gb : The size of the disk in GB.

e _ meta_vultr_instance_allowed_bandwidth_gb : Monthly bandwidth quota in GB.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 76/91

https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-uyuni.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-uyuni.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-uyuni.yml
https://www.vultr.com/
https://www.vultr.com/
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-vultr.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-vultr.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-vultr.yml

10/09/24, 19:16 Configuration | Prometheus

Authentication information used to authenticate to the API server.
Note that “basic_auth™ and “authorization™ options are

mutually exclusive.

password and password_file are mutually exclusive.

Optional HTTP basic authentication information, not currently supported by Vultr.
basic_auth:

[username: <string>]

[password: <secret>]

[password_file: <string>]

Optional "Authorization™ header configuration.
authorization:
Sets the authentication type.
type: <string> | default: Bearer]
Sets the credentials. It is mutually exclusive with
“credentials_file .

[

#

#

[credentials: <secret>]

Sets the credentials to the credentials read from the configured file.
It is mutually exclusive with “credentials”.

[

credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:

[<oauth2>]

Optional proxy URL.

proxy_url: <string>]

Comma-separated string that can contain IPs, CIDR notation, domain names

that should be excluded from proxying. IP and domain names can

contain port numbers.

no_proxy: <string>]

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]

Specifies headers to send to proxies during CONNECT requests.

proxy_connect_header:

— H — HF o/ H HF HF — H

[<string>: [<secret>, ...]]]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
enable_http2: <boolean> | default: true]

—

TLS configuration.
tls_config:
[<tls_config>]

The port to scrape metrics from.
[port: <int> | default = 80]

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 77/91

10/09/24, 19:16 Configuration | Prometheus

The time after which the instances are refreshed.
[refresh_interval: <duration> | default = 60s]

<static_config>

A static_config allows specifying a list of targets and a common label set for them. It is the
canonical way to specify static targets in a scrape configuration.

The targets specified by the static config.
targets:
[- '"<host>']

Labels assigned to all metrics scraped from the targets.
labels:

[<labelname>: <labelvalue> ...]

<relabel_config>

Relabeling is a powerful tool to dynamically rewrite the label set of a target before it gets scraped.
Multiple relabeling steps can be configured per scrape configuration. They are applied to the label
set of each target in order of their appearance in the configuration file.

Initially, aside from the configured per-target labels, a target's job label is set to the job_name value
of the respective scrape configuration. The __address__ label is set to the <host>:<port> address of
the target. After relabeling, the instance labelis set to the value of __address__ by default if it was
not set during relabeling. The __scheme__ and __metrics_path__ labels are set to the scheme and
metrics path of the target respectively. The _ param_<name> label is set to the value of the first
passed URL parameter called <name> .

The _ scrape_interval__ and _ scrape_timeout__ labels are set to the target's interval and timeout.

Additional labels prefixed with __meta_ may be available during the relabeling phase. They are set
by the service discovery mechanism that provided the target and vary between mechanisms.

Labels starting with __ will be removed from the label set after target relabeling is completed.

If a relabeling step needs to store a label value only temporarily (as the input to a subsequent
relabeling step), use the __tmp label name prefix. This prefix is guaranteed to never be used by
Prometheus itself.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 78/91

10/09/24, 19:16 Configuration | Prometheus

The source labels select values from existing labels. Their content is concatenated
using the configured separator and matched against the configured regular expression
for the replace, keep, and drop actions.

[source_labels: '[' <labelname> [, ...] ']"']

Separator placed between concatenated source label values.

[separator: <string> | default = ;]

Label to which the resulting value is written in a replace action.
It is mandatory for replace actions. Regex capture groups are available.

—

target_label: <labelname>]

Regular expression against which the extracted value is matched.
regex: <regex> | default = (.*)]

—

Modulus to take of the hash of the source label values.
modulus: <int>]

—

Replacement value against which a regex replace is performed if the
regular expression matches. Regex capture groups are available.
replacement: <string> | default = $1]

—

Action to perform based on regex matching.

—

action: <relabel_action> | default = replace]

<regex> is any valid RE2 regular expression (https://github.com/google/re2/wiki/Syntax). It is
required for the replace, keep, drop, labelmap, labeldrop and labelkeep actions. The regex is
anchored on both ends. To un-anchor the regex, use .*<regex>.*.

<relabel_action> determines the relabeling action to take:

e replace: Match regex against the concatenated source_labels.Then, set target_label to
replacement , with match group references (${1}, ${2},...)in replacement substituted by their
value. If regex does not match, no replacement takes place.

e lowercase : Maps the concatenated source_labels to their lower case.

e uppercase : Maps the concatenated source_labels to their upper case.

e keep: Drop targets for which regex does not match the concatenated source_labels.

e drop: Drop targets for which regex matches the concatenated source_labels.

e keepequal : Drop targets for which the concatenated source_labels do not match
target_label.

e dropequal : Drop targets for which the concatenated source_labels do match target_label.

e hashmod : Set target_label tothe modulus of a hash of the concatenated source_labels .

e labelmap: Match regex against all source label names, not just those specified in

source_labels . Then copy the values of the matching labels to label names given by

replacement with match group references (${1}, ${2},...) in replacement substituted by their

value.

labeldrop : Match regex against all label names. Any label that matches will be removed from

the set of labels.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 79/91

https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax

10/09/24, 19:16 Configuration | Prometheus

e labelkeep: Match regex against all label names. Any label that does not match will be
removed from the set of labels.

Care must be taken with labeldrop and labelkeep to ensure that metrics are still uniquely labeled
once the labels are removed.

<metric_relabel_configs>

Metric relabeling is applied to samples as the last step before ingestion. It has the same
configuration format and actions as target relabeling. Metric relabeling does not apply to
automatically generated timeseries such as up .

One use for this is to exclude time series that are too expensive to ingest.

<alert_relabel_configs>

Alert relabeling is applied to alerts before they are sent to the Alertmanager. It has the same
configuration format and actions as target relabeling. Alert relabeling is applied after external labels.

One use for this is ensuring a HA pair of Prometheus servers with different external labels send
identical alerts.

<alertmanager_config>

An alertmanager_config section specifies Alertmanager instances the Prometheus server sends
alerts to. It also provides parameters to configure how to communicate with these Alertmanagers.

Alertmanagers may be statically configured via the static_configs parameter or dynamically
discovered using one of the supported service-discovery mechanisms.

Additionally, relabel_configs allow selecting Alertmanagers from discovered entities and provide
advanced modifications to the used API path, which is exposed through the __alerts_path__ label.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 80/91

10/09/24, 19:16 Configuration | Prometheus

Per-target Alertmanager timeout when pushing alerts.

—

timeout: <duration> | default = 1@s]

The api version of Alertmanager.

—

api_version: <string> | default = v2]

Prefix for the HTTP path alerts are pushed to.
[path_prefix: <path> | default = /]

Configures the protocol scheme used for requests.
[scheme: <scheme> | default = http]

Sets the “Authorization™ header on every request with the
configured username and password.
password and password_file are mutually exclusive.
basic_auth:

[username: <string>]

[password: <secret>]

[password_file: <string>]

Optional "Authorization™ header configuration.
authorization:
Sets the authentication type.
type: <string> | default: Bearer]
Sets the credentials. It is mutually exclusive with
“credentials_file .

[

#

#

[credentials: <secret>]

Sets the credentials to the credentials read from the configured file.
It is mutually exclusive with "“credentials’.

[

credentials_file: <filename>]

Optionally configures AWS's Signature Verification 4 signing process to
sign requests. Cannot be set at the same time as basic_auth, authorization, or oauth2.
To use the default credentials from the AWS SDK, use “sigv4: {} .
sigv4:
The AWS region. If blank, the region from the default credentials chain
is used.
[region: <string>]

The AWS API keys. If blank, the environment variables “AWS_ACCESS_KEY_ID"
and ~AWS_SECRET_ACCESS_KEY" are used.

[access_key: <string>]
[secret_key: <secret>]

Named AWS profile used to authenticate.
[profile: <string>]

AWS Role ARN, an alternative to using AWS API keys.
role_arn: <string>]

—

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:

[<oauth2>]

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 81/91

10/09/24, 19:16 Configuration | Prometheus

Configures the scrape request's TLS settings.
tls_config:
[<tls_config>]

Optional proxy URL.

proxy_url: <string>]

Comma-separated string that can contain IPs, CIDR notation, domain names

that should be excluded from proxying. IP and domain names can

contain port numbers.

no_proxy: <string>]

Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
proxy_from_environment: <boolean> | default: false]

Specifies headers to send to proxies during CONNECT requests.

— H — H e O H — H®

proxy_connect_header:
[<string>: [<secret>, ...]1 1]

Configure whether HTTP requests follow HTTP 3xx redirects.
follow_redirects: <boolean> | default = true]

—

Whether to enable HTTP2.
enable_http2: <boolean> | default: true]

—

List of Azure service discovery configurations.
azure_sd_configs:
[- <azure_sd_config> ...]

List of Consul service discovery configurations.
consul_sd_configs:
[- <consul_sd_config> ...]

List of DNS service discovery configurations.
dns_sd_configs:
[- <dns_sd_config> ...]

List of EC2 service discovery configurations.
ec2_sd_configs:
[- <ec2_sd_config> ...]

List of Eureka service discovery configurations.
eureka_sd_configs:
[- <eureka_sd_config> ...]

List of file service discovery configurations.
file_sd_configs:
[- <file_sd_config> ...]

List of DigitalOcean service discovery configurations.
digitalocean_sd_configs:
[- <digitalocean_sd_config> ...]

List of Docker service discovery configurations.
docker_sd_configs:
[- <doc