
 INTRODUCTION

Overview (/docs/introduction/overview/)

First steps (/docs/introduction/first_steps/)

Comparison to alternatives (/docs/introduction/comparison/)

FAQ (/docs/introduction/faq/)

Roadmap (/docs/introduction/roadmap/)

Design Documents (/docs/introduction/design-doc/)

Media (/docs/introduction/media/)

Glossary (/docs/introduction/glossary/)

Long-Term Support (/docs/introduction/release-cycle/)

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

10/09/24, 19:11 Overview | Prometheus

https://prometheus.io/docs/introduction/overview/ 1/5

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/introduction/faq/
https://prometheus.io/docs/introduction/roadmap/
https://prometheus.io/docs/introduction/design-doc/
https://prometheus.io/docs/introduction/media/
https://prometheus.io/docs/introduction/glossary/
https://prometheus.io/docs/introduction/release-cycle/

What is Prometheus?

Features

What are metrics?

Components

Architecture

When does it fit?

When does it not fit?

OVERVIEW

What is Prometheus?

Prometheus (https://github.com/prometheus)

is an open-source systems monitoring and

alerting toolkit originally built at SoundCloud

(https://soundcloud.com). Since its inception

in 2012, many companies and organizations

have adopted Prometheus, and the project

has a very active developer and user

community (/community). It is now a standalone open source project and

maintained independently of any company. To emphasize this, and to clarify

the project's governance structure, Prometheus joined the Cloud Native

Computing Foundation (https://cncf.io/) in 2016 as the second hosted project,

after Kubernetes (http://kubernetes.io/).

Prometheus collects and stores its metrics as time series data, i.e. metrics

information is stored with the timestamp at which it was recorded, alongside

optional key-value pairs called labels.

For more elaborate overviews of Prometheus, see the resources linked from

the media (/docs/introduction/media/) section.

Features

Prometheus's main features are:

a multi-dimensional data model (/docs/concepts/data_model/) with time

series data identified by metric name and key/value pairs

PromQL, a flexible query language

(/docs/prometheus/latest/querying/basics/) to leverage this

dimensionality

 SPECIFICATIONS

10/09/24, 19:11 Overview | Prometheus

https://prometheus.io/docs/introduction/overview/ 2/5

https://github.com/prometheus
https://github.com/prometheus
https://soundcloud.com/
https://soundcloud.com/
https://prometheus.io/community
https://prometheus.io/community
https://cncf.io/
https://cncf.io/
https://cncf.io/
http://kubernetes.io/
http://kubernetes.io/
https://prometheus.io/docs/introduction/media/
https://prometheus.io/docs/introduction/media/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/

no reliance on distributed storage; single server nodes are autonomous

time series collection happens via a pull model over HTTP

pushing time series (/docs/instrumenting/pushing/) is supported via an

intermediary gateway

targets are discovered via service discovery or static configuration

multiple modes of graphing and dashboarding support

What are metrics?

Metrics are numerical measurements in layperson terms. The term time series

refers to the recording of changes over time. What users want to measure

differs from application to application. For a web server, it could be request

times; for a database, it could be the number of active connections or active

queries, and so on.

Metrics play an important role in understanding why your application is

working in a certain way. Let's assume you are running a web application and

discover that it is slow. To learn what is happening with your application, you

will need some information. For example, when the number of requests is high,

the application may become slow. If you have the request count metric, you can

determine the cause and increase the number of servers to handle the load.

Components

The Prometheus ecosystem consists of multiple components, many of which

are optional:

the main Prometheus server

(https://github.com/prometheus/prometheus) which scrapes and stores

time series data

client libraries (/docs/instrumenting/clientlibs/) for instrumenting

application code

a push gateway (https://github.com/prometheus/pushgateway) for

supporting short-lived jobs

special-purpose exporters (/docs/instrumenting/exporters/) for services

like HAProxy, StatsD, Graphite, etc.

an alertmanager (https://github.com/prometheus/alertmanager) to

handle alerts

10/09/24, 19:11 Overview | Prometheus

https://prometheus.io/docs/introduction/overview/ 3/5

https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/
https://github.com/prometheus/prometheus
https://github.com/prometheus/prometheus
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://github.com/prometheus/pushgateway
https://github.com/prometheus/pushgateway
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/exporters/
https://github.com/prometheus/alertmanager
https://github.com/prometheus/alertmanager

various support tools

Most Prometheus components are written in Go (https://golang.org/), making

them easy to build and deploy as static binaries.

Architecture

This diagram illustrates the architecture of Prometheus and some of its

ecosystem components:

Prometheus scrapes metrics from instrumented jobs, either directly or via an

intermediary push gateway for short-lived jobs. It stores all scraped samples

locally and runs rules over this data to either aggregate and record new time

series from existing data or generate alerts. Grafana (https://grafana.com/) or

other API consumers can be used to visualize the collected data.

When does it fit?

Prometheus works well for recording any purely numeric time series. It fits both

machine-centric monitoring as well as monitoring of highly dynamic service-

oriented architectures. In a world of microservices, its support for multi-

dimensional data collection and querying is a particular strength.

10/09/24, 19:11 Overview | Prometheus

https://prometheus.io/docs/introduction/overview/ 4/5

https://golang.org/
https://golang.org/
https://grafana.com/
https://grafana.com/

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

Prometheus is designed for reliability, to be the system you go to during an

outage to allow you to quickly diagnose problems. Each Prometheus server is

standalone, not depending on network storage or other remote services. You

can rely on it when other parts of your infrastructure are broken, and you do

not need to setup extensive infrastructure to use it.

When does it not fit?

Prometheus values reliability. You can always view what statistics are available

about your system, even under failure conditions. If you need 100% accuracy,

such as for per-request billing, Prometheus is not a good choice as the collected

data will likely not be detailed and complete enough. In such a case you would

be best off using some other system to collect and analyze the data for billing,

and Prometheus for the rest of your monitoring.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:11 Overview | Prometheus

https://prometheus.io/docs/introduction/overview/ 5/5

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

Overview (/docs/introduction/overview/)

First steps (/docs/introduction/first_steps/)

Comparison to alternatives (/docs/introduction/comparison/)

FAQ (/docs/introduction/faq/)

Roadmap (/docs/introduction/roadmap/)

Design Documents (/docs/introduction/design-doc/)

Media (/docs/introduction/media/)

Glossary (/docs/introduction/glossary/)

Long-Term Support (/docs/introduction/release-cycle/)

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

10/09/24, 19:13 First steps | Prometheus

https://prometheus.io/docs/introduction/first_steps/ 1/6

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/introduction/faq/
https://prometheus.io/docs/introduction/roadmap/
https://prometheus.io/docs/introduction/design-doc/
https://prometheus.io/docs/introduction/media/
https://prometheus.io/docs/introduction/glossary/
https://prometheus.io/docs/introduction/release-cycle/

Downloading

Prometheus

Configuring

Prometheus

Starting Prometheus

Using the expression

browser

Using the graphing

interface

Monitoring other

targets

Summary

FIRST STEPS WITH PROMETHEUS

Welcome to Prometheus! Prometheus is a

monitoring platform that collects metrics from

monitored targets by scraping metrics HTTP

endpoints on these targets. This guide will

show you how to install, configure and

monitor our first resource with Prometheus.

You'll download, install and run Prometheus.

You'll also download and install an exporter,

tools that expose time series data on hosts

and services. Our first exporter will be

Prometheus itself, which provides a wide

variety of host-level metrics about memory

usage, garbage collection, and more.

Downloading Prometheus

Download the latest release (/download) of Prometheus for your platform, then

extract it:

tar xvfz prometheus-*.tar.gz
cd prometheus-*

The Prometheus server is a single binary called prometheus (or prometheus.exe

on Microsoft Windows). We can run the binary and see help on its options by

passing the --help flag.

 SPECIFICATIONS

10/09/24, 19:13 First steps | Prometheus

https://prometheus.io/docs/introduction/first_steps/ 2/6

https://prometheus.io/download
https://prometheus.io/download

./prometheus --help
usage: prometheus [<flags>]

The Prometheus monitoring server

. . .

Before starting Prometheus, let's configure it.

Configuring Prometheus

Prometheus configuration is YAML (https://yaml.org/). The Prometheus

download comes with a sample configuration in a file called prometheus.yml

that is a good place to get started.

We've stripped out most of the comments in the example file to make it more

succinct (comments are the lines prefixed with a #).

global:
 scrape_interval: 15s
 evaluation_interval: 15s

rule_files:
 # - "first.rules"
 # - "second.rules"

scrape_configs:
 - job_name: prometheus
 static_configs:
 - targets: ['localhost:9090']

There are three blocks of configuration in the example configuration file:

global , rule_files , and scrape_configs .

The global block controls the Prometheus server's global configuration. We

have two options present. The first, scrape_interval , controls how often

Prometheus will scrape targets. You can override this for individual targets. In

10/09/24, 19:13 First steps | Prometheus

https://prometheus.io/docs/introduction/first_steps/ 3/6

https://yaml.org/
https://yaml.org/

this case the global setting is to scrape every 15 seconds. The

evaluation_interval option controls how often Prometheus will evaluate rules.

Prometheus uses rules to create new time series and to generate alerts.

The rule_files block specifies the location of any rules we want the

Prometheus server to load. For now we've got no rules.

The last block, scrape_configs , controls what resources Prometheus monitors.

Since Prometheus also exposes data about itself as an HTTP endpoint it can

scrape and monitor its own health. In the default configuration there is a single

job, called prometheus , which scrapes the time series data exposed by the

Prometheus server. The job contains a single, statically configured, target, the

localhost on port 9090 . Prometheus expects metrics to be available on

targets on a path of /metrics . So this default job is scraping via the URL:

http://localhost:9090/metrics (http://localhost:9090/metrics).

The time series data returned will detail the state and performance of the

Prometheus server.

For a complete specification of configuration options, see the configuration

documentation (/docs/operating/configuration).

Starting Prometheus

To start Prometheus with our newly created configuration file, change to the

directory containing the Prometheus binary and run:

./prometheus --config.file=prometheus.yml

Prometheus should start up. You should also be able to browse to a status

page about itself at http://localhost:9090 (http://localhost:9090). Give it about

30 seconds to collect data about itself from its own HTTP metrics endpoint.

You can also verify that Prometheus is serving metrics about itself by navigating

to its own metrics endpoint: http://localhost:9090/metrics

(http://localhost:9090/metrics).

10/09/24, 19:13 First steps | Prometheus

https://prometheus.io/docs/introduction/first_steps/ 4/6

http://localhost:9090/metrics
http://localhost:9090/metrics
https://prometheus.io/docs/operating/configuration
https://prometheus.io/docs/operating/configuration
https://prometheus.io/docs/operating/configuration
http://localhost:9090/
http://localhost:9090/
http://localhost:9090/metrics
http://localhost:9090/metrics

Using the expression browser

Let us try looking at some data that Prometheus has collected about itself. To

use Prometheus's built-in expression browser, navigate to

http://localhost:9090/graph (http://localhost:9090/graph) and choose the

"Table" view within the "Graph" tab.

As you can gather from http://localhost:9090/metrics

(http://localhost:9090/metrics), one metric that Prometheus exports about itself

is called promhttp_metric_handler_requests_total (the total number of

/metrics requests the Prometheus server has served). Go ahead and enter this

into the expression console:

promhttp_metric_handler_requests_total

This should return a number of different time series (along with the latest value

recorded for each), all with the metric name

promhttp_metric_handler_requests_total , but with different labels. These

labels designate different requests statuses.

If we were only interested in requests that resulted in HTTP code 200 , we could

use this query to retrieve that information:

promhttp_metric_handler_requests_total{code="200"}

To count the number of returned time series, you could write:

count(promhttp_metric_handler_requests_total)

For more about the expression language, see the expression language

documentation (/docs/querying/basics/).

Using the graphing interface

To graph expressions, navigate to http://localhost:9090/graph

(http://localhost:9090/graph) and use the "Graph" tab.

10/09/24, 19:13 First steps | Prometheus

https://prometheus.io/docs/introduction/first_steps/ 5/6

http://localhost:9090/graph
http://localhost:9090/graph
http://localhost:9090/metrics
http://localhost:9090/metrics
https://prometheus.io/docs/querying/basics/
https://prometheus.io/docs/querying/basics/
https://prometheus.io/docs/querying/basics/
http://localhost:9090/graph
http://localhost:9090/graph

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

For example, enter the following expression to graph the per-second HTTP

request rate returning status code 200 happening in the self-scraped

Prometheus:

rate(promhttp_metric_handler_requests_total{code="200"}[1m])

You can experiment with the graph range parameters and other settings.

Monitoring other targets

Collecting metrics from Prometheus alone isn't a great representation of

Prometheus' capabilities. To get a better sense of what Prometheus can do, we

recommend exploring documentation about other exporters. The Monitoring

Linux or macOS host metrics using a node exporter (/docs/guides/node-

exporter) guide is a good place to start.

Summary

In this guide, you installed Prometheus, configured a Prometheus instance to

monitor resources, and learned some basics of working with time series data in

Prometheus' expression browser. To continue learning about Prometheus,

check out the Overview (/docs/introduction/overview) for some ideas about

what to explore next.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:13 First steps | Prometheus

https://prometheus.io/docs/introduction/first_steps/ 6/6

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://prometheus.io/docs/guides/node-exporter
https://prometheus.io/docs/guides/node-exporter
https://prometheus.io/docs/guides/node-exporter
https://prometheus.io/docs/guides/node-exporter
https://prometheus.io/docs/introduction/overview
https://prometheus.io/docs/introduction/overview
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

Overview (/docs/introduction/overview/)

First steps (/docs/introduction/first_steps/)

Comparison to alternatives (/docs/introduction/comparison/)

FAQ (/docs/introduction/faq/)

Roadmap (/docs/introduction/roadmap/)

Design Documents (/docs/introduction/design-doc/)

Media (/docs/introduction/media/)

Glossary (/docs/introduction/glossary/)

Long-Term Support (/docs/introduction/release-cycle/)

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

10/09/24, 19:13 Comparison to alternatives | Prometheus

https://prometheus.io/docs/introduction/comparison/ 1/11

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/introduction/faq/
https://prometheus.io/docs/introduction/roadmap/
https://prometheus.io/docs/introduction/design-doc/
https://prometheus.io/docs/introduction/media/
https://prometheus.io/docs/introduction/glossary/
https://prometheus.io/docs/introduction/release-cycle/

Prometheus vs.

Graphite

Scope

Data model

Storage

Summary

Prometheus vs.

InfluxDB

Scope

Data model / storage

Architecture

Summary

Prometheus vs.

OpenTSDB

Scope

Data model

Storage

Summary

Prometheus vs. Nagios

Scope

Data model

Storage

Architecture

Summary

Prometheus vs. Sensu

Scope

Data model

Storage

Architecture

COMPARISON TO ALTERNATIVES

Prometheus vs. Graphite

Scope

Graphite

(http://graphite.readthedocs.org/en/latest/)

focuses on being a passive time series

database with a query language and graphing

features. Any other concerns are addressed by

external components.

Prometheus is a full monitoring and trending

system that includes built-in and active

scraping, storing, querying, graphing, and

alerting based on time series data. It has

knowledge about what the world should look

like (which endpoints should exist, what time

series patterns mean trouble, etc.), and

actively tries to find faults.

Data model

Graphite stores numeric samples for named

time series, much like Prometheus does.

However, Prometheus's metadata model is

richer: while Graphite metric names consist of

dot-separated components which implicitly

encode dimensions, Prometheus encodes

dimensions explicitly as key-value pairs, called

 SPECIFICATIONS

10/09/24, 19:13 Comparison to alternatives | Prometheus

https://prometheus.io/docs/introduction/comparison/ 2/11

http://graphite.readthedocs.org/en/latest/
http://graphite.readthedocs.org/en/latest/

Summarylabels, attached to a metric name. This allows

easy filtering, grouping, and matching by these

labels via the query language.

Further, especially when Graphite is used in combination with StatsD

(https://github.com/etsy/statsd/), it is common to store only aggregated data

over all monitored instances, rather than preserving the instance as a

dimension and being able to drill down into individual problematic instances.

For example, storing the number of HTTP requests to API servers with the

response code 500 and the method POST to the /tracks endpoint would

commonly be encoded like this in Graphite/StatsD:

stats.api-server.tracks.post.500 -> 93

In Prometheus the same data could be encoded like this (assuming three api-

server instances):

api_server_http_requests_total{method="POST",handler="/tracks",status="500",insta
api_server_http_requests_total{method="POST",handler="/tracks",status="500",insta
api_server_http_requests_total{method="POST",handler="/tracks",status="500",insta

Storage

Graphite stores time series data on local disk in the Whisper

(http://graphite.readthedocs.org/en/latest/whisper.html) format, an RRD-style

database that expects samples to arrive at regular intervals. Every time series is

stored in a separate file, and new samples overwrite old ones after a certain

amount of time.

Prometheus also creates one local file per time series, but allows storing

samples at arbitrary intervals as scrapes or rule evaluations occur. Since new

samples are simply appended, old data may be kept arbitrarily long.

Prometheus also works well for many short-lived, frequently changing sets of

time series.

10/09/24, 19:13 Comparison to alternatives | Prometheus

https://prometheus.io/docs/introduction/comparison/ 3/11

https://github.com/etsy/statsd/
https://github.com/etsy/statsd/
http://graphite.readthedocs.org/en/latest/whisper.html
http://graphite.readthedocs.org/en/latest/whisper.html

Summary

Prometheus offers a richer data model and query language, in addition to being

easier to run and integrate into your environment. If you want a clustered

solution that can hold historical data long term, Graphite may be a better

choice.

Prometheus vs. InfluxDB

InfluxDB (https://influxdata.com/) is an open-source time series database, with

a commercial option for scaling and clustering. The InfluxDB project was

released almost a year after Prometheus development began, so we were

unable to consider it as an alternative at the time. Still, there are significant

differences between Prometheus and InfluxDB, and both systems are geared

towards slightly different use cases.

Scope

For a fair comparison, we must also consider Kapacitor

(https://github.com/influxdata/kapacitor) together with InfluxDB, as in

combination they address the same problem space as Prometheus and the

Alertmanager.

The same scope differences as in the case of Graphite apply here for InfluxDB

itself. In addition InfluxDB offers continuous queries, which are equivalent to

Prometheus recording rules.

Kapacitor’s scope is a combination of Prometheus recording rules, alerting

rules, and the Alertmanager's notification functionality. Prometheus offers a

more powerful query language for graphing and alerting

(https://www.robustperception.io/translating-between-monitoring-languages/).

The Prometheus Alertmanager additionally offers grouping, deduplication and

silencing functionality.

10/09/24, 19:13 Comparison to alternatives | Prometheus

https://prometheus.io/docs/introduction/comparison/ 4/11

https://influxdata.com/
https://influxdata.com/
https://github.com/influxdata/kapacitor
https://github.com/influxdata/kapacitor
https://www.robustperception.io/translating-between-monitoring-languages/
https://www.robustperception.io/translating-between-monitoring-languages/
https://www.robustperception.io/translating-between-monitoring-languages/

Data model / storage

Like Prometheus, the InfluxDB data model has key-value pairs as labels, which

are called tags. In addition, InfluxDB has a second level of labels called fields,

which are more limited in use. InfluxDB supports timestamps with up to

nanosecond resolution, and float64, int64, bool, and string data types.

Prometheus, by contrast, supports the float64 data type with limited support

for strings, and millisecond resolution timestamps.

InfluxDB uses a variant of a log-structured merge tree for storage with a write

ahead log

(https://docs.influxdata.com/influxdb/v1.7/concepts/storage_engine/), sharded

by time. This is much more suitable to event logging than Prometheus's

append-only file per time series approach.

Logs and Metrics and Graphs, Oh My!

(https://grafana.com/blog/2016/01/05/logs-and-metrics-and-graphs-oh-my/)

describes the differences between event logging and metrics recording.

Architecture

Prometheus servers run independently of each other and only rely on their

local storage for their core functionality: scraping, rule processing, and alerting.

The open source version of InfluxDB is similar.

The commercial InfluxDB offering is, by design, a distributed storage cluster

with storage and queries being handled by many nodes at once.

This means that the commercial InfluxDB will be easier to scale horizontally, but

it also means that you have to manage the complexity of a distributed storage

system from the beginning. Prometheus will be simpler to run, but at some

point you will need to shard servers explicitly along scalability boundaries like

products, services, datacenters, or similar aspects. Independent servers (which

can be run redundantly in parallel) may also give you better reliability and

failure isolation.

10/09/24, 19:13 Comparison to alternatives | Prometheus

https://prometheus.io/docs/introduction/comparison/ 5/11

https://docs.influxdata.com/influxdb/v1.7/concepts/storage_engine/
https://docs.influxdata.com/influxdb/v1.7/concepts/storage_engine/
https://docs.influxdata.com/influxdb/v1.7/concepts/storage_engine/
https://grafana.com/blog/2016/01/05/logs-and-metrics-and-graphs-oh-my/
https://grafana.com/blog/2016/01/05/logs-and-metrics-and-graphs-oh-my/

Kapacitor's open-source release has no built-in distributed/redundant options

for rules, alerting, or notifications. The open-source release of Kapacitor can be

scaled via manual sharding by the user, similar to Prometheus itself. Influx

offers Enterprise Kapacitor (https://docs.influxdata.com/enterprise_kapacitor),

which supports an HA/redundant alerting system.

Prometheus and the Alertmanager by contrast offer a fully open-source

redundant option via running redundant replicas of Prometheus and using the

Alertmanager's High Availability

(https://github.com/prometheus/alertmanager#high-availability) mode.

Summary

There are many similarities between the systems. Both have labels (called tags

in InfluxDB) to efficiently support multi-dimensional metrics. Both use basically

the same data compression algorithms. Both have extensive integrations,

including with each other. Both have hooks allowing you to extend them

further, such as analyzing data in statistical tools or performing automated

actions.

Where InfluxDB is better:

If you're doing event logging.

Commercial option offers clustering for InfluxDB, which is also better for

long term data storage.

Eventually consistent view of data between replicas.

Where Prometheus is better:

If you're primarily doing metrics.

More powerful query language, alerting, and notification functionality.

Higher availability and uptime for graphing and alerting.

InfluxDB is maintained by a single commercial company following the open-

core model, offering premium features like closed-source clustering, hosting

and support. Prometheus is a fully open source and independent project

(/community/), maintained by a number of companies and individuals, some of

whom also offer commercial services and support.

10/09/24, 19:13 Comparison to alternatives | Prometheus

https://prometheus.io/docs/introduction/comparison/ 6/11

https://docs.influxdata.com/enterprise_kapacitor
https://docs.influxdata.com/enterprise_kapacitor
https://github.com/prometheus/alertmanager#high-availability
https://github.com/prometheus/alertmanager#high-availability
https://prometheus.io/community/
https://prometheus.io/community/

Prometheus vs. OpenTSDB

OpenTSDB (http://opentsdb.net/) is a distributed time series database based on

Hadoop (http://hadoop.apache.org/) and HBase (http://hbase.apache.org/).

Scope

The same scope differences as in the case of Graphite

(/docs/introduction/comparison/#prometheus-vs-graphite) apply here.

Data model

OpenTSDB's data model is almost identical to Prometheus's: time series are

identified by a set of arbitrary key-value pairs (OpenTSDB tags are Prometheus

labels). All data for a metric is stored together

(http://opentsdb.net/docs/build/html/user_guide/writing/index.html#time-

series-cardinality), limiting the cardinality of metrics. There are minor

differences though: Prometheus allows arbitrary characters in label values,

while OpenTSDB is more restrictive. OpenTSDB also lacks a full query language,

only allowing simple aggregation and math via its API.

Storage

OpenTSDB (http://opentsdb.net/)'s storage is implemented on top of Hadoop

(http://hadoop.apache.org/) and HBase (http://hbase.apache.org/). This means

that it is easy to scale OpenTSDB horizontally, but you have to accept the

overall complexity of running a Hadoop/HBase cluster from the beginning.

Prometheus will be simpler to run initially, but will require explicit sharding

once the capacity of a single node is exceeded.

Summary

Prometheus offers a much richer query language, can handle higher cardinality

metrics, and forms part of a complete monitoring system. If you're already

running Hadoop and value long term storage over these benefits, OpenTSDB is

a good choice.

10/09/24, 19:13 Comparison to alternatives | Prometheus

https://prometheus.io/docs/introduction/comparison/ 7/11

http://opentsdb.net/
http://opentsdb.net/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hbase.apache.org/
http://hbase.apache.org/
http://opentsdb.net/docs/build/html/user_guide/writing/index.html#time-series-cardinality
http://opentsdb.net/docs/build/html/user_guide/writing/index.html#time-series-cardinality
http://opentsdb.net/docs/build/html/user_guide/writing/index.html#time-series-cardinality
http://opentsdb.net/
http://opentsdb.net/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hbase.apache.org/
http://hbase.apache.org/

Prometheus vs. Nagios

Nagios (https://www.nagios.org/) is a monitoring system that originated in the

1990s as NetSaint.

Scope

Nagios is primarily about alerting based on the exit codes of scripts. These are

called “checks”. There is silencing of individual alerts, however no grouping,

routing or deduplication.

There are a variety of plugins. For example, piping the few kilobytes of perfData

plugins are allowed to return to a time series database such as Graphite

(https://github.com/shawn-sterling/graphios) or using NRPE to run checks on

remote machines (https://exchange.nagios.org/directory/Addons/Monitoring-

Agents/NRPE--2D-Nagios-Remote-Plugin-Executor/details).

Data model

Nagios is host-based. Each host can have one or more services and each service

can perform one check.

There is no notion of labels or a query language.

Storage

Nagios has no storage per-se, beyond the current check state. There are

plugins which can store data such as for visualisation

(https://docs.pnp4nagios.org/).

Architecture

Nagios servers are standalone. All configuration of checks is via file.

Summary

Nagios is suitable for basic monitoring of small and/or static systems where

blackbox probing is sufficient.

10/09/24, 19:13 Comparison to alternatives | Prometheus

https://prometheus.io/docs/introduction/comparison/ 8/11

https://www.nagios.org/
https://www.nagios.org/
https://github.com/shawn-sterling/graphios
https://github.com/shawn-sterling/graphios
https://exchange.nagios.org/directory/Addons/Monitoring-Agents/NRPE--2D-Nagios-Remote-Plugin-Executor/details
https://exchange.nagios.org/directory/Addons/Monitoring-Agents/NRPE--2D-Nagios-Remote-Plugin-Executor/details
https://exchange.nagios.org/directory/Addons/Monitoring-Agents/NRPE--2D-Nagios-Remote-Plugin-Executor/details
https://exchange.nagios.org/directory/Addons/Monitoring-Agents/NRPE--2D-Nagios-Remote-Plugin-Executor/details
https://docs.pnp4nagios.org/
https://docs.pnp4nagios.org/

If you want to do whitebox monitoring, or have a dynamic or cloud based

environment, then Prometheus is a good choice.

Prometheus vs. Sensu

Sensu (https://sensu.io) is an open source monitoring and observability pipeline

with a commercial distribution which offers additional features for scalability. It

can reuse existing Nagios plugins.

Scope

Sensu is an observability pipeline that focuses on processing and alerting of

observability data as a stream of Events (https://docs.sensu.io/sensu-

go/latest/observability-pipeline/observe-events/events/). It provides an

extensible framework for event filtering (https://docs.sensu.io/sensu-

go/latest/observability-pipeline/observe-filter/), aggregation, transformation

(https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-

transform/), and processing (https://docs.sensu.io/sensu-

go/latest/observability-pipeline/observe-process/) – including sending alerts to

other systems and storing events in third-party systems. Sensu's event

processing capabilities are similar in scope to Prometheus alerting rules and

Alertmanager.

Data model

Sensu Events (https://docs.sensu.io/sensu-go/latest/observability-

pipeline/observe-events/events/) represent service health and/or metrics

(https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-

events/events/#metric-attributes) in a structured data format identified by an

entity (https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-

entities/entities/) name (e.g. server, cloud compute instance, container, or

service), an event name, and optional key-value metadata

(https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-

events/events/#metadata-attributes) called "labels" or "annotations". The

Sensu Event payload may include one or more metric points

10/09/24, 19:13 Comparison to alternatives | Prometheus

https://prometheus.io/docs/introduction/comparison/ 9/11

https://sensu.io/
https://sensu.io/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-filter/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-filter/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-filter/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-transform/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-transform/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-transform/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-process/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-process/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-process/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/#metric-attributes
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/#metric-attributes
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/#metric-attributes
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-entities/entities/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-entities/entities/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-entities/entities/
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/#metadata-attributes
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/#metadata-attributes
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/#metadata-attributes
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/#points-attributes

(https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-

events/events/#points-attributes), represented as a JSON object containing a

name , tags (key/value pairs), timestamp , and value (always a float).

Storage

Sensu stores current and recent event status information and real-time

inventory data in an embedded database (etcd) or an external RDBMS

(PostgreSQL).

Architecture

All components of a Sensu deployment can be clustered for high availability

and improved event-processing throughput.

Summary

Sensu and Prometheus have a few capabilities in common, but they take very

different approaches to monitoring. Both offer extensible discovery

mechanisms for dynamic cloud-based environments and ephemeral compute

platforms, though the underlying mechanisms are quite different. Both provide

support for collecting multi-dimensional metrics via labels and annotations.

Both have extensive integrations, and Sensu natively supports collecting

metrics from all Prometheus exporters. Both are capable of forwarding

observability data to third-party data platforms (e.g. event stores or TSDBs).

Where Sensu and Prometheus differ the most is in their use cases.

Where Sensu is better:

If you're collecting and processing hybrid observability data (including

metrics and/or events)

If you're consolidating multiple monitoring tools and need support for

metrics and Nagios-style plugins or check scripts

More powerful event-processing platform

Where Prometheus is better:

If you're primarily collecting and evaluating metrics

10/09/24, 19:13 Comparison to alternatives | Prometheus

https://prometheus.io/docs/introduction/comparison/ 10/11

https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/#points-attributes
https://docs.sensu.io/sensu-go/latest/observability-pipeline/observe-events/events/#points-attributes

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

If you're monitoring homogeneous Kubernetes infrastructure (if 100% of

the workloads you're monitoring are in K8s, Prometheus offers better K8s

integration)

More powerful query language, and built-in support for historical data

analysis

Sensu is maintained by a single commercial company following the open-core

business model, offering premium features like closed-source event correlation

and aggregation, federation, and support. Prometheus is a fully open source

and independent project, maintained by a number of companies and

individuals, some of whom also offer commercial services and support.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:13 Comparison to alternatives | Prometheus

https://prometheus.io/docs/introduction/comparison/ 11/11

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

Overview (/docs/introduction/overview/)

First steps (/docs/introduction/first_steps/)

Comparison to alternatives (/docs/introduction/comparison/)

FAQ (/docs/introduction/faq/)

Roadmap (/docs/introduction/roadmap/)

Design Documents (/docs/introduction/design-doc/)

Media (/docs/introduction/media/)

Glossary (/docs/introduction/glossary/)

Long-Term Support (/docs/introduction/release-cycle/)

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:13 FAQ | Prometheus

https://prometheus.io/docs/introduction/faq/ 1/8

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/introduction/faq/
https://prometheus.io/docs/introduction/roadmap/
https://prometheus.io/docs/introduction/design-doc/
https://prometheus.io/docs/introduction/media/
https://prometheus.io/docs/introduction/glossary/
https://prometheus.io/docs/introduction/release-cycle/

FREQUENTLY ASKED QUESTIONS

General

What is Prometheus?

How does Prometheus compare against other monitoring systems?

What dependencies does Prometheus have?

Can Prometheus be made highly available?

I was told Prometheus “doesn't scale”.

What language is Prometheus written in?

How stable are Prometheus features, storage formats, and APIs?

Why do you pull rather than push?

How to feed logs into Prometheus?

Who wrote Prometheus?

What license is Prometheus released under?

What is the plural of Prometheus?

Can I reload Prometheus's configuration?

Can I send alerts?

Can I create dashboards?

Can I change the timezone? Why is everything in UTC?

Instrumentation

Which languages have instrumentation libraries?

Can I monitor machines?

Can I monitor network devices?

Can I monitor batch jobs?

What applications can Prometheus monitor out of the box?

Can I monitor JVM applications via JMX?

What is the performance impact of instrumentation?

Implementation

Why are all sample values 64-bit floats?

10/09/24, 19:13 FAQ | Prometheus

https://prometheus.io/docs/introduction/faq/ 2/8

General

What is Prometheus?

Prometheus is an open-source systems monitoring and alerting toolkit with an

active ecosystem. It is the only system directly supported by Kubernetes

(https://kubernetes.io/) and the de facto standard across the cloud native

ecosystem (https://landscape.cncf.io/). See the overview

(/docs/introduction/overview/).

How does Prometheus compare against other monitoring
systems?

See the comparison (/docs/introduction/comparison/) page.

What dependencies does Prometheus have?

The main Prometheus server runs standalone as a single monolithic binary and

has no external dependencies.

Is this cloud native?

Yes.

Cloud native is a flexible operating model, breaking up old service boundaries to

allow for more flexible and scalable deployments.

Prometheus's service discovery

(https://prometheus.io/docs/prometheus/latest/configuration/configuration/)

integrates with most tools and clouds. Its dimensional data model and scale into

the tens of millions of active series allows it to monitor large cloud-native

deployments. There are always trade-offs to make when running services, and

Prometheus values reliably getting alerts out to humans above all else.

Can Prometheus be made highly available?

Yes, run identical Prometheus servers on two or more separate machines.

Identical alerts will be deduplicated by the Alertmanager

(https://github.com/prometheus/alertmanager).

10/09/24, 19:13 FAQ | Prometheus

https://prometheus.io/docs/introduction/faq/ 3/8

https://kubernetes.io/
https://kubernetes.io/
https://landscape.cncf.io/
https://landscape.cncf.io/
https://landscape.cncf.io/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://github.com/prometheus/alertmanager
https://github.com/prometheus/alertmanager

Alertmanager supports high availability

(https://github.com/prometheus/alertmanager#high-availability) by

interconnecting multiple Alertmanager instances to build an Alertmanager

cluster. Instances of a cluster communicate using a gossip protocol managed via

HashiCorp's Memberlist (https://github.com/hashicorp/memberlist) library.

I was told Prometheus “doesn't scale”.

This is often more of a marketing claim than anything else.

A single instance of Prometheus can be more performant than some systems

positioning themselves as long term storage solution for Prometheus. You can

run Prometheus reliably with tens of millions of active series.

If you need more than that, there are several options. Scaling and Federating

Prometheus (https://www.robustperception.io/scaling-and-federating-

prometheus/) on the Robust Perception blog is a good starting point, as are the

long storage systems listed on our integrations page

(https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-

storage).

What language is Prometheus written in?

Most Prometheus components are written in Go. Some are also written in Java,

Python, and Ruby.

How stable are Prometheus features, storage formats, and
APIs?

All repositories in the Prometheus GitHub organization that have reached version

1.0.0 broadly follow semantic versioning (http://semver.org/). Breaking changes

are indicated by increments of the major version. Exceptions are possible for

experimental components, which are clearly marked as such in announcements.

Even repositories that have not yet reached version 1.0.0 are, in general, quite

stable. We aim for a proper release process and an eventual 1.0.0 release for

each repository. In any case, breaking changes will be pointed out in release

notes (marked by [CHANGE]) or communicated clearly for components that do

not have formal releases yet.

10/09/24, 19:13 FAQ | Prometheus

https://prometheus.io/docs/introduction/faq/ 4/8

https://github.com/prometheus/alertmanager#high-availability
https://github.com/prometheus/alertmanager#high-availability
https://github.com/hashicorp/memberlist
https://github.com/hashicorp/memberlist
https://www.robustperception.io/scaling-and-federating-prometheus/
https://www.robustperception.io/scaling-and-federating-prometheus/
https://www.robustperception.io/scaling-and-federating-prometheus/
https://www.robustperception.io/scaling-and-federating-prometheus/
https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
http://semver.org/
http://semver.org/

Why do you pull rather than push?

Pulling over HTTP offers a number of advantages:

You can start extra monitoring instances as needed, e.g. on your laptop

when developing changes.

You can more easily and reliably tell if a target is down.

You can manually go to a target and inspect its health with a web browser.

Overall, we believe that pulling is slightly better than pushing, but it should not be

considered a major point when considering a monitoring system.

For cases where you must push, we offer the Pushgateway

(/docs/instrumenting/pushing/).

How to feed logs into Prometheus?

Short answer: Don't! Use something like Grafana Loki

(https://grafana.com/oss/loki/) or OpenSearch (https://opensearch.org/) instead.

Longer answer: Prometheus is a system to collect and process metrics, not an

event logging system. The Grafana blog post Logs and Metrics and Graphs, Oh

My! (https://grafana.com/blog/2016/01/05/logs-and-metrics-and-graphs-oh-my/)

provides more details about the differences between logs and metrics.

If you want to extract Prometheus metrics from application logs, Grafana Loki is

designed for just that. See Loki's metric queries

(https://grafana.com/docs/loki/latest/logql/metric_queries/) documentation.

Who wrote Prometheus?

Prometheus was initially started privately by Matt T. Proud

(http://www.matttproud.com) and Julius Volz (http://juliusv.com). The majority of

its initial development was sponsored by SoundCloud (https://soundcloud.com).

It's now maintained and extended by a wide range of companies

(https://prometheus.devstats.cncf.io/d/5/companies-table?orgId=1) and

individuals (https://prometheus.io/governance).

10/09/24, 19:13 FAQ | Prometheus

https://prometheus.io/docs/introduction/faq/ 5/8

https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/
https://grafana.com/oss/loki/
https://grafana.com/oss/loki/
https://opensearch.org/
https://opensearch.org/
https://grafana.com/blog/2016/01/05/logs-and-metrics-and-graphs-oh-my/
https://grafana.com/blog/2016/01/05/logs-and-metrics-and-graphs-oh-my/
https://grafana.com/blog/2016/01/05/logs-and-metrics-and-graphs-oh-my/
https://grafana.com/docs/loki/latest/logql/metric_queries/
https://grafana.com/docs/loki/latest/logql/metric_queries/
http://www.matttproud.com/
http://www.matttproud.com/
http://juliusv.com/
http://juliusv.com/
https://soundcloud.com/
https://soundcloud.com/
https://prometheus.devstats.cncf.io/d/5/companies-table?orgId=1
https://prometheus.devstats.cncf.io/d/5/companies-table?orgId=1
https://prometheus.io/governance
https://prometheus.io/governance

What license is Prometheus released under?

Prometheus is released under the Apache 2.0

(https://github.com/prometheus/prometheus/blob/main/LICENSE) license.

What is the plural of Prometheus?

After extensive research (https://youtu.be/B_CDeYrqxjQ), it has been determined

that the correct plural of 'Prometheus' is 'Prometheis'.

If you can not remember this, "Prometheus instances" is a good workaround.

Can I reload Prometheus's configuration?

Yes, sending SIGHUP to the Prometheus process or an HTTP POST request to the

/-/reload endpoint will reload and apply the configuration file. The various

components attempt to handle failing changes gracefully.

Can I send alerts?

Yes, with the Alertmanager (https://github.com/prometheus/alertmanager).

We support sending alerts through email, various native integrations

(https://prometheus.io/docs/alerting/latest/configuration/), and a webhook

system anyone can add integrations to

(https://prometheus.io/docs/operating/integrations/#alertmanager-webhook-

receiver).

Can I create dashboards?

Yes, we recommend Grafana (/docs/visualization/grafana/) for production usage.

There are also Console templates (/docs/visualization/consoles/).

Can I change the timezone? Why is everything in UTC?

To avoid any kind of timezone confusion, especially when the so-called daylight

saving time is involved, we decided to exclusively use Unix time internally and

UTC for display purposes in all components of Prometheus. A carefully done

timezone selection could be introduced into the UI. Contributions are welcome.

See issue #500 (https://github.com/prometheus/prometheus/issues/500) for the

current state of this effort.

10/09/24, 19:13 FAQ | Prometheus

https://prometheus.io/docs/introduction/faq/ 6/8

https://github.com/prometheus/prometheus/blob/main/LICENSE
https://github.com/prometheus/prometheus/blob/main/LICENSE
https://youtu.be/B_CDeYrqxjQ
https://youtu.be/B_CDeYrqxjQ
https://github.com/prometheus/alertmanager
https://github.com/prometheus/alertmanager
https://prometheus.io/docs/alerting/latest/configuration/
https://prometheus.io/docs/alerting/latest/configuration/
https://prometheus.io/docs/operating/integrations/#alertmanager-webhook-receiver
https://prometheus.io/docs/operating/integrations/#alertmanager-webhook-receiver
https://prometheus.io/docs/operating/integrations/#alertmanager-webhook-receiver
https://prometheus.io/docs/operating/integrations/#alertmanager-webhook-receiver
https://prometheus.io/docs/visualization/grafana/
https://prometheus.io/docs/visualization/grafana/
https://prometheus.io/docs/visualization/consoles/
https://prometheus.io/docs/visualization/consoles/
https://github.com/prometheus/prometheus/issues/500
https://github.com/prometheus/prometheus/issues/500

Instrumentation

Which languages have instrumentation libraries?

There are a number of client libraries for instrumenting your services with

Prometheus metrics. See the client libraries (/docs/instrumenting/clientlibs/)

documentation for details.

If you are interested in contributing a client library for a new language, see the

exposition formats (/docs/instrumenting/exposition_formats/).

Can I monitor machines?

Yes, the Node Exporter (https://github.com/prometheus/node_exporter) exposes

an extensive set of machine-level metrics on Linux and other Unix systems such

as CPU usage, memory, disk utilization, filesystem fullness, and network

bandwidth.

Can I monitor network devices?

Yes, the SNMP Exporter (https://github.com/prometheus/snmp_exporter) allows

monitoring of devices that support SNMP. For industrial networks, there's also a

Modbus exporter (https://github.com/RichiH/modbus_exporter).

Can I monitor batch jobs?

Yes, using the Pushgateway (/docs/instrumenting/pushing/). See also the best

practices (/docs/practices/instrumentation/#batch-jobs) for monitoring batch

jobs.

What applications can Prometheus monitor out of the box?

See the list of exporters and integrations (/docs/instrumenting/exporters/).

Can I monitor JVM applications via JMX?

Yes, for applications that you cannot instrument directly with the Java client, you

can use the JMX Exporter (https://github.com/prometheus/jmx_exporter) either

standalone or as a Java Agent.

10/09/24, 19:13 FAQ | Prometheus

https://prometheus.io/docs/introduction/faq/ 7/8

https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/snmp_exporter
https://github.com/prometheus/snmp_exporter
https://github.com/RichiH/modbus_exporter
https://github.com/RichiH/modbus_exporter
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/practices/instrumentation/#batch-jobs
https://prometheus.io/docs/practices/instrumentation/#batch-jobs
https://prometheus.io/docs/practices/instrumentation/#batch-jobs
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/exporters/
https://github.com/prometheus/jmx_exporter
https://github.com/prometheus/jmx_exporter

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses

trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

What is the performance impact of instrumentation?

Performance across client libraries and languages may vary. For Java,

benchmarks

(https://github.com/prometheus/client_java/blob/master/benchmarks/README.md)

indicate that incrementing a counter/gauge with the Java client will take 12-17ns,

depending on contention. This is negligible for all but the most latency-critical

code.

Implementation

Why are all sample values 64-bit floats?

We restrained ourselves to 64-bit floats to simplify the design. The IEEE 754

double-precision binary floating-point format

(https://en.wikipedia.org/wiki/Double-precision_floating-point_format) supports

integer precision for values up to 2 . Supporting native 64 bit integers would

(only) help if you need integer precision above 2 but below 2 . In principle,

support for different sample value types (including some kind of big integer,

supporting even more than 64 bit) could be implemented, but it is not a priority

right now. A counter, even if incremented one million times per second, will only

run into precision issues after over 285 years.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

53

53 63

10/09/24, 19:13 FAQ | Prometheus

https://prometheus.io/docs/introduction/faq/ 8/8

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/client_java/blob/master/benchmarks/README.md
https://github.com/prometheus/client_java/blob/master/benchmarks/README.md
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

Overview (/docs/introduction/overview/)

First steps (/docs/introduction/first_steps/)

Comparison to alternatives (/docs/introduction/comparison/)

FAQ (/docs/introduction/faq/)

Roadmap (/docs/introduction/roadmap/)

Design Documents (/docs/introduction/design-doc/)

Media (/docs/introduction/media/)

Glossary (/docs/introduction/glossary/)

Long-Term Support (/docs/introduction/release-cycle/)

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

10/09/24, 19:13 Roadmap | Prometheus

https://prometheus.io/docs/introduction/roadmap/ 1/3

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/introduction/faq/
https://prometheus.io/docs/introduction/roadmap/
https://prometheus.io/docs/introduction/design-doc/
https://prometheus.io/docs/introduction/media/
https://prometheus.io/docs/introduction/glossary/
https://prometheus.io/docs/introduction/release-cycle/

Server-side metric

metadata support

Adopt OpenMetrics

Retroactive rule

evaluations

TLS and authentication

in HTTP serving

endpoints

Support the Ecosystem

ROADMAP

The following is only a selection of some of the

major features we plan to implement in the

near future. To get a more complete overview

of planned features and current work, see the

issue trackers for the various repositories, for

example, the Prometheus server

(https://github.com/prometheus/prometheus/issues).

Server-side metric metadata support

At this time, metric types and other metadata are only used in the client

libraries and in the exposition format, but not persisted or utilized in the

Prometheus server. We plan on making use of this metadata in the future. The

first step is to aggregate this data in-memory in Prometheus and provide it via

an experimental API endpoint.

Adopt OpenMetrics

The OpenMetrics working group is developing a new standard for metric

exposition. We plan to support this format in our client libraries and

Prometheus itself.

Retroactive rule evaluations

Add support for retroactive rule evaluations making use of backfill.

 SPECIFICATIONS

10/09/24, 19:13 Roadmap | Prometheus

https://prometheus.io/docs/introduction/roadmap/ 2/3

https://github.com/prometheus/prometheus/issues
https://github.com/prometheus/prometheus/issues

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

TLS and authentication in HTTP serving endpoints

TLS and authentication are currently being rolled out to the Prometheus,

Alertmanager, and the official exporters. Adding this support will make it easier

for people to deploy Prometheus components securely without requiring a

reverse proxy to add those features externally.

Support the Ecosystem

Prometheus has a range of client libraries and exporters. There are always

more languages that could be supported, or systems that would be useful to

export metrics from. We will support the ecosystem in creating and expanding

these.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:13 Roadmap | Prometheus

https://prometheus.io/docs/introduction/roadmap/ 3/3

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

DESIGN DOCUMENTS

See the github.com/prometheus/proposals (https://github.com/prometheus/proposals) repository to

see all the past and current proposals for the Prometheus Ecosystem.

 INTRODUCTION

Overview (/docs/introduction/overview/)

First steps (/docs/introduction/first_steps/)

Comparison to alternatives (/docs/introduction/comparison/)

FAQ (/docs/introduction/faq/)

Roadmap (/docs/introduction/roadmap/)

Design Documents (/docs/introduction/design-doc/)

Media (/docs/introduction/media/)

Glossary (/docs/introduction/glossary/)

Long-Term Support (/docs/introduction/release-cycle/)

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:13 Design Documents | Prometheus

https://prometheus.io/docs/introduction/design-doc/ 1/2

https://github.com/prometheus/proposals
https://github.com/prometheus/proposals
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/introduction/faq/
https://prometheus.io/docs/introduction/roadmap/
https://prometheus.io/docs/introduction/design-doc/
https://prometheus.io/docs/introduction/media/
https://prometheus.io/docs/introduction/glossary/
https://prometheus.io/docs/introduction/release-cycle/

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list of

trademarks of The Linux Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-usage) page.

If you are interested in creating a new proposal, read our proposal process

(https://github.com/prometheus/proposals#proposal-process).

PROBLEM STATEMENTS AND EXPLORATORY

DOCUMENTS

Sometimes we're looking even further into potential futures. The documents in this section are largely

exploratory. They should be taken as informing our collective thoughts, not as anything concrete or

specific.

Document

Initial

date

Prometheus is not feature complete (https://docs.google.com/document/d/1lEP7pGYM2-

5GT9fAIDqrOecG86VRU8-1qAV8b6xZ29Q)

2020-

05

Thoughts about timestamps and durations in PromQL

(https://docs.google.com/document/d/1jMeDsLvDfO92Qnry_JLAXalvMRzMSB1sBr9V7LolpYM)

2020-

10

Prometheus, OpenMetrics & OTLP (https://docs.google.com/document/d/1hn-

u6WKLHxIsqYT1_u6eh94lyQeXrFaAouMshJcQFXs)

2021-

03

Prometheus Sparse Histograms and PromQL

(https://docs.google.com/document/d/1ch6ru8GKg03N02jRjYriurt-

CZqUVY09evPg6yKTA1s/edit)

2021-

10

Quoting Prometheus names

(https://docs.google.com/document/d/1yFj5QSd1AgCYecZ9EJ8f2t4OgF2KBZgJYVde-

uzVEtI/edit)

2023-

01

 This documentation is open-source (https://github.com/prometheus/docs#contributing-

changes). Please help improve it by filing issues or pull requests.

10/09/24, 19:13 Design Documents | Prometheus

https://prometheus.io/docs/introduction/design-doc/ 2/2

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/proposals#proposal-process
https://github.com/prometheus/proposals#proposal-process
https://docs.google.com/document/d/1lEP7pGYM2-5GT9fAIDqrOecG86VRU8-1qAV8b6xZ29Q
https://docs.google.com/document/d/1lEP7pGYM2-5GT9fAIDqrOecG86VRU8-1qAV8b6xZ29Q
https://docs.google.com/document/d/1lEP7pGYM2-5GT9fAIDqrOecG86VRU8-1qAV8b6xZ29Q
https://docs.google.com/document/d/1jMeDsLvDfO92Qnry_JLAXalvMRzMSB1sBr9V7LolpYM
https://docs.google.com/document/d/1jMeDsLvDfO92Qnry_JLAXalvMRzMSB1sBr9V7LolpYM
https://docs.google.com/document/d/1hn-u6WKLHxIsqYT1_u6eh94lyQeXrFaAouMshJcQFXs
https://docs.google.com/document/d/1hn-u6WKLHxIsqYT1_u6eh94lyQeXrFaAouMshJcQFXs
https://docs.google.com/document/d/1hn-u6WKLHxIsqYT1_u6eh94lyQeXrFaAouMshJcQFXs
https://docs.google.com/document/d/1ch6ru8GKg03N02jRjYriurt-CZqUVY09evPg6yKTA1s/edit
https://docs.google.com/document/d/1ch6ru8GKg03N02jRjYriurt-CZqUVY09evPg6yKTA1s/edit
https://docs.google.com/document/d/1ch6ru8GKg03N02jRjYriurt-CZqUVY09evPg6yKTA1s/edit
https://docs.google.com/document/d/1yFj5QSd1AgCYecZ9EJ8f2t4OgF2KBZgJYVde-uzVEtI/edit
https://docs.google.com/document/d/1yFj5QSd1AgCYecZ9EJ8f2t4OgF2KBZgJYVde-uzVEtI/edit
https://docs.google.com/document/d/1yFj5QSd1AgCYecZ9EJ8f2t4OgF2KBZgJYVde-uzVEtI/edit
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

Blogs

Tutorials

Podcasts and interviews

Recorded talks

MEDIA

There is a subreddit

(https://www.reddit.com/r/prometheusmonitoring) collecting

all Prometheus-related resources on the internet.

 INTRODUCTION

Overview (/docs/introduction/overview/)

First steps (/docs/introduction/first_steps/)

Comparison to alternatives (/docs/introduction/comparison/)

FAQ (/docs/introduction/faq/)

Roadmap (/docs/introduction/roadmap/)

Design Documents (/docs/introduction/design-doc/)

Media (/docs/introduction/media/)

Glossary (/docs/introduction/glossary/)

Long-Term Support (/docs/introduction/release-cycle/)

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:13 Media | Prometheus

https://prometheus.io/docs/introduction/media/ 1/3

https://www.reddit.com/r/prometheusmonitoring
https://www.reddit.com/r/prometheusmonitoring
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/introduction/faq/
https://prometheus.io/docs/introduction/roadmap/
https://prometheus.io/docs/introduction/design-doc/
https://prometheus.io/docs/introduction/media/
https://prometheus.io/docs/introduction/glossary/
https://prometheus.io/docs/introduction/release-cycle/

Presentation slides

General

Docker

Python

The following selection of resources are particularly useful to

get started with Prometheus. Awesome Prometheus

(https://github.com/roaldnefs/awesome-prometheus)

contains a more comprehensive community-maintained list of

resources.

Blogs

This site has its own blog (/blog/).

SoundCloud's blog post announcing Prometheus

(https://developers.soundcloud.com/blog/prometheus-monitoring-at-soundcloud) – a more

elaborate overview than the one given on this site.

Prometheus-related posts on the Robust Perception blog

(https://www.robustperception.io/tag/prometheus/).

Tutorials

Instructions and example code for a Prometheus workshop

(https://github.com/juliusv/prometheus_workshop).

How To Install Prometheus using Docker on Ubuntu 14.04

(https://www.digitalocean.com/community/tutorials/how-to-install-prometheus-using-docker-on-

ubuntu-14-04).

Podcasts and interviews

Prometheus on FLOSS Weekly 357 (https://twit.tv/shows/floss-weekly/episodes/357) - Julius Volz on

the FLOSS Weekly TWiT.tv (https://twit.tv/shows/floss-weekly/) show.

Prometheus and Service Monitoring (https://changelog.com/podcast/168) - Julius Volz on the

Changelog (https://changelog.com/) podcast.

Recorded talks

Prometheus: A Next-Generation Monitoring System

(https://www.usenix.org/conference/srecon15europe/program/presentation/rabenstein) – Julius

Volz and Björn Rabenstein at SREcon15 Europe, Dublin.

Prometheus: A Next-Generation Monitoring System (https://www.youtube.com/watch?

v=cwRmXqXKGtk) - Brian Brazil at FOSDEM 2016 (slides

(http://www.slideshare.net/brianbrazil/prometheus-a-next-generation-monitoring-system-fosdem-

2016)).

What is your application doing right now? (https://youtu.be/Z0LlilNpX1U) – Matthias Gruter,

Transmode, at DevOps Stockholm Meetup.

Prometheus workshop (https://vimeo.com/131581353) – Jamie Wilkinson at Monitorama PDX 2015

(slides

(https://docs.google.com/presentation/d/1X1rKozAUuF2MVc1YXElFWq9wkcWv3Axdldl8LOH9Vik/edit)).

Monitoring Hadoop with Prometheus (https://www.youtube.com/watch?v=qs2sqOLNGtw) – Brian

Brazil at the Hadoop User Group Ireland (slides (http://www.slideshare.net/brianbrazil/monitoring-

hadoop-with-prometheus-hadoop-user-group-ireland-december-2015)).

In German: Monitoring mit Prometheus (https://media.ccc.de/v/eh16-43-

monitoring_mit_prometheus#video&t=2804) – Michael Stapelberg at Easterhegg 2016

(https://eh16.easterhegg.eu/).

10/09/24, 19:13 Media | Prometheus

https://prometheus.io/docs/introduction/media/ 2/3

https://github.com/roaldnefs/awesome-prometheus
https://github.com/roaldnefs/awesome-prometheus
https://prometheus.io/blog/
https://prometheus.io/blog/
https://developers.soundcloud.com/blog/prometheus-monitoring-at-soundcloud
https://developers.soundcloud.com/blog/prometheus-monitoring-at-soundcloud
https://www.robustperception.io/tag/prometheus/
https://www.robustperception.io/tag/prometheus/
https://github.com/juliusv/prometheus_workshop
https://github.com/juliusv/prometheus_workshop
https://www.digitalocean.com/community/tutorials/how-to-install-prometheus-using-docker-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-install-prometheus-using-docker-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-install-prometheus-using-docker-on-ubuntu-14-04
https://twit.tv/shows/floss-weekly/episodes/357
https://twit.tv/shows/floss-weekly/episodes/357
https://twit.tv/shows/floss-weekly/
https://twit.tv/shows/floss-weekly/
https://changelog.com/podcast/168
https://changelog.com/podcast/168
https://changelog.com/
https://changelog.com/
https://www.usenix.org/conference/srecon15europe/program/presentation/rabenstein
https://www.usenix.org/conference/srecon15europe/program/presentation/rabenstein
https://www.youtube.com/watch?v=cwRmXqXKGtk
https://www.youtube.com/watch?v=cwRmXqXKGtk
https://www.youtube.com/watch?v=cwRmXqXKGtk
http://www.slideshare.net/brianbrazil/prometheus-a-next-generation-monitoring-system-fosdem-2016
http://www.slideshare.net/brianbrazil/prometheus-a-next-generation-monitoring-system-fosdem-2016
http://www.slideshare.net/brianbrazil/prometheus-a-next-generation-monitoring-system-fosdem-2016
https://youtu.be/Z0LlilNpX1U
https://youtu.be/Z0LlilNpX1U
https://vimeo.com/131581353
https://vimeo.com/131581353
https://docs.google.com/presentation/d/1X1rKozAUuF2MVc1YXElFWq9wkcWv3Axdldl8LOH9Vik/edit
https://docs.google.com/presentation/d/1X1rKozAUuF2MVc1YXElFWq9wkcWv3Axdldl8LOH9Vik/edit
https://www.youtube.com/watch?v=qs2sqOLNGtw
https://www.youtube.com/watch?v=qs2sqOLNGtw
http://www.slideshare.net/brianbrazil/monitoring-hadoop-with-prometheus-hadoop-user-group-ireland-december-2015
http://www.slideshare.net/brianbrazil/monitoring-hadoop-with-prometheus-hadoop-user-group-ireland-december-2015
http://www.slideshare.net/brianbrazil/monitoring-hadoop-with-prometheus-hadoop-user-group-ireland-december-2015
https://media.ccc.de/v/eh16-43-monitoring_mit_prometheus#video&t=2804
https://media.ccc.de/v/eh16-43-monitoring_mit_prometheus#video&t=2804
https://media.ccc.de/v/eh16-43-monitoring_mit_prometheus#video&t=2804
https://eh16.easterhegg.eu/
https://eh16.easterhegg.eu/

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list of

trademarks of The Linux Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-usage) page.

In German: Prometheus in der Praxis (https://media.ccc.de/v/MRMCD16-7754-

prometheus_in_der_praxis) – Jonas Große Sundrup at MRMCD 2016 (https://2016.mrmcd.net/)

Presentation slides

General

Prometheus Overview (http://www.slideshare.net/brianbrazil/prometheus-overview) – by Brian

Brazil.

Systems Monitoring with Prometheus (http://www.slideshare.net/brianbrazil/devops-ireland-

systems-monitoring-with-prometheus) – Brian Brazil at Devops Ireland Meetup, Dublin.

OMG! Prometheus (https://www.dropbox.com/s/0l7kxhjqjbabtb0/prometheus%20site-

ops%20preso.pdf?dl=0) – Benjamin Staffin, Fitbit Site Operations, explains the case for Prometheus

to his team.

Docker

Prometheus and Docker (http://www.slideshare.net/brianbrazil/prometheus-and-docker-docker-

galway-november-2015) – Brian Brazil at Docker Galway.

Python

Better Monitoring for Python (http://www.slideshare.net/brianbrazil/better-monitoring-for-python-

inclusive-monitoring-with-prometheus-pycon-ireland-lightning-talk) – Brian Brazil at Pycon Ireland.

Monitoring your Python with Prometheus (http://www.slideshare.net/brianbrazil/python-ireland-

monitoring-your-python-with-prometheus) – Brian Brazil at Python Ireland Meetup, Dublin.

 This documentation is open-source (https://github.com/prometheus/docs#contributing-changes).

Please help improve it by filing issues or pull requests.

10/09/24, 19:13 Media | Prometheus

https://prometheus.io/docs/introduction/media/ 3/3

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://media.ccc.de/v/MRMCD16-7754-prometheus_in_der_praxis
https://media.ccc.de/v/MRMCD16-7754-prometheus_in_der_praxis
https://media.ccc.de/v/MRMCD16-7754-prometheus_in_der_praxis
https://2016.mrmcd.net/
https://2016.mrmcd.net/
http://www.slideshare.net/brianbrazil/prometheus-overview
http://www.slideshare.net/brianbrazil/prometheus-overview
http://www.slideshare.net/brianbrazil/devops-ireland-systems-monitoring-with-prometheus
http://www.slideshare.net/brianbrazil/devops-ireland-systems-monitoring-with-prometheus
http://www.slideshare.net/brianbrazil/devops-ireland-systems-monitoring-with-prometheus
https://www.dropbox.com/s/0l7kxhjqjbabtb0/prometheus%20site-ops%20preso.pdf?dl=0
https://www.dropbox.com/s/0l7kxhjqjbabtb0/prometheus%20site-ops%20preso.pdf?dl=0
https://www.dropbox.com/s/0l7kxhjqjbabtb0/prometheus%20site-ops%20preso.pdf?dl=0
http://www.slideshare.net/brianbrazil/prometheus-and-docker-docker-galway-november-2015
http://www.slideshare.net/brianbrazil/prometheus-and-docker-docker-galway-november-2015
http://www.slideshare.net/brianbrazil/prometheus-and-docker-docker-galway-november-2015
http://www.slideshare.net/brianbrazil/better-monitoring-for-python-inclusive-monitoring-with-prometheus-pycon-ireland-lightning-talk
http://www.slideshare.net/brianbrazil/better-monitoring-for-python-inclusive-monitoring-with-prometheus-pycon-ireland-lightning-talk
http://www.slideshare.net/brianbrazil/better-monitoring-for-python-inclusive-monitoring-with-prometheus-pycon-ireland-lightning-talk
http://www.slideshare.net/brianbrazil/python-ireland-monitoring-your-python-with-prometheus
http://www.slideshare.net/brianbrazil/python-ireland-monitoring-your-python-with-prometheus
http://www.slideshare.net/brianbrazil/python-ireland-monitoring-your-python-with-prometheus
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

Overview (/docs/introduction/overview/)

First steps (/docs/introduction/first_steps/)

Comparison to alternatives (/docs/introduction/comparison/)

FAQ (/docs/introduction/faq/)

Roadmap (/docs/introduction/roadmap/)

Design Documents (/docs/introduction/design-doc/)

Media (/docs/introduction/media/)

Glossary (/docs/introduction/glossary/)

Long-Term Support (/docs/introduction/release-cycle/)

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

10/09/24, 19:14 Glossary | Prometheus

https://prometheus.io/docs/introduction/glossary/ 1/6

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/introduction/faq/
https://prometheus.io/docs/introduction/roadmap/
https://prometheus.io/docs/introduction/design-doc/
https://prometheus.io/docs/introduction/media/
https://prometheus.io/docs/introduction/glossary/
https://prometheus.io/docs/introduction/release-cycle/

Alert

Alertmanager

Bridge

Client library

Collector

Direct instrumentation

Endpoint

Exporter

Instance

Job

Notification

Promdash

Prometheus

PromQL

Pushgateway

Recording Rules

Remote Read

Remote Read Adapter

Remote Read Endpoint

Remote Write

Remote Write Adapter

Remote Write Endpoint

Sample

Silence

Target

Time Series

GLOSSARY

Alert

An alert is the outcome of an alerting rule in

Prometheus that is actively firing. Alerts are

sent from Prometheus to the Alertmanager.

Alertmanager

The Alertmanager (../../alerting/overview/)

takes in alerts, aggregates them into groups,

de-duplicates, applies silences, throttles, and

then sends out notifications to email,

Pagerduty, Slack etc.

Bridge

A bridge is a component that takes samples

from a client library and exposes them to a

non-Prometheus monitoring system. For

example, the Python, Go, and Java clients can

export metrics to Graphite.

Client library

A client library is a library in some language

(e.g. Go, Java, Python, Ruby) that makes it easy

to directly instrument your code, write custom

collectors to pull metrics from other systems

and expose the metrics to Prometheus.

 SPECIFICATIONS

10/09/24, 19:14 Glossary | Prometheus

https://prometheus.io/docs/introduction/glossary/ 2/6

https://prometheus.io/docs/alerting/overview/
https://prometheus.io/docs/alerting/overview/

Collector

A collector is a part of an exporter that represents a set of metrics. It may be a

single metric if it is part of direct instrumentation, or many metrics if it is pulling

metrics from another system.

Direct instrumentation

Direct instrumentation is instrumentation added inline as part of the source

code of a program, using a client library.

Endpoint

A source of metrics that can be scraped, usually corresponding to a single

process.

Exporter

An exporter is a binary running alongside the application you want to obtain

metrics from. The exporter exposes Prometheus metrics, commonly by

converting metrics that are exposed in a non-Prometheus format into a format

that Prometheus supports.

Instance

An instance is a label that uniquely identifies a target in a job.

Job

A collection of targets with the same purpose, for example monitoring a group

of like processes replicated for scalability or reliability, is called a job.

Notification

A notification represents a group of one or more alerts, and is sent by the

Alertmanager to email, Pagerduty, Slack etc.

10/09/24, 19:14 Glossary | Prometheus

https://prometheus.io/docs/introduction/glossary/ 3/6

Promdash

Promdash was a native dashboard builder for Prometheus. It has been

deprecated and replaced by Grafana (../../visualization/grafana/).

Prometheus

Prometheus usually refers to the core binary of the Prometheus system. It may

also refer to the Prometheus monitoring system as a whole.

PromQL

PromQL (/docs/prometheus/latest/querying/basics/) is the Prometheus Query

Language. It allows for a wide range of operations including aggregation, slicing

and dicing, prediction and joins.

Pushgateway

The Pushgateway (../../instrumenting/pushing/) persists the most recent push of

metrics from batch jobs. This allows Prometheus to scrape their metrics after

they have terminated.

Recording Rules

Recording rules precompute frequently needed or computationally expensive

expressions and save their results as a new set of time series.

Remote Read

Remote read is a Prometheus feature that allows transparent reading of time

series from other systems (such as long term storage) as part of queries.

Remote Read Adapter

Not all systems directly support remote read. A remote read adapter sits

between Prometheus and another system, converting time series requests and

responses between them.

10/09/24, 19:14 Glossary | Prometheus

https://prometheus.io/docs/introduction/glossary/ 4/6

https://prometheus.io/docs/visualization/grafana/
https://prometheus.io/docs/visualization/grafana/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/

Remote Read Endpoint

A remote read endpoint is what Prometheus talks to when doing a remote

read.

Remote Write

Remote write is a Prometheus feature that allows sending ingested samples on

the fly to other systems, such as long term storage.

Remote Write Adapter

Not all systems directly support remote write. A remote write adapter sits

between Prometheus and another system, converting the samples in the

remote write into a format the other system can understand.

Remote Write Endpoint

A remote write endpoint is what Prometheus talks to when doing a remote

write.

Sample

A sample is a single value at a point in time in a time series.

In Prometheus, each sample consists of a float64 value and a millisecond-

precision timestamp.

Silence

A silence in the Alertmanager prevents alerts, with labels matching the silence,

from being included in notifications.

Target

A target is the definition of an object to scrape. For example, what labels to

apply, any authentication required to connect, or other information that

defines how the scrape will occur.

10/09/24, 19:14 Glossary | Prometheus

https://prometheus.io/docs/introduction/glossary/ 5/6

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

Time Series

The Prometheus time series are streams of timestamped values belonging to

the same metric and the same set of labeled dimensions. Prometheus stores all

data as time series.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:14 Glossary | Prometheus

https://prometheus.io/docs/introduction/glossary/ 6/6

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

Overview (/docs/introduction/overview/)

First steps (/docs/introduction/first_steps/)

Comparison to alternatives (/docs/introduction/comparison/)

FAQ (/docs/introduction/faq/)

Roadmap (/docs/introduction/roadmap/)

Design Documents (/docs/introduction/design-doc/)

Media (/docs/introduction/media/)

Glossary (/docs/introduction/glossary/)

Long-Term Support (/docs/introduction/release-cycle/)

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

10/09/24, 19:14 Long-Term Support | Prometheus

https://prometheus.io/docs/introduction/release-cycle/ 1/3

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/introduction/comparison/
https://prometheus.io/docs/introduction/faq/
https://prometheus.io/docs/introduction/roadmap/
https://prometheus.io/docs/introduction/design-doc/
https://prometheus.io/docs/introduction/media/
https://prometheus.io/docs/introduction/glossary/
https://prometheus.io/docs/introduction/release-cycle/

List of LTS releases

Limitations of LTS

support

LONG TERM SUPPORT

Prometheus LTS are selected releases of

Prometheus that receive bugfixes for an

extended period of time.

Every 6 weeks, a new Prometheus minor

release cycle begins. After those 6 weeks, minor releases generally no longer

receive bugfixes. If a user is impacted by a bug in a minor release, they often

need to upgrade to the latest Prometheus release.

Upgrading Prometheus should be straightforward thanks to our API stability

guarantees (https://prometheus.io/docs/prometheus/latest/stability/).

However, there is a risk that new features and enhancements could also bring

regressions, requiring another upgrade.

Prometheus LTS only receive bug, security, and documentation fixes, but over a

time window of one year. The build toolchain will also be kept up-to-date. This

allows companies that rely on Prometheus to limit the upgrade risks while still

having a Prometheus server maintained by the community.

List of LTS releases

Release Date End of support

Prometheus 2.37 2022-07-14 2023-07-31

Prometheus 2.45 2023-06-23 2024-07-31

Prometheus 2.53 2024-06-16 2025-07-31

Limitations of LTS support

Some features are excluded from LTS support:

 SPECIFICATIONS

10/09/24, 19:14 Long-Term Support | Prometheus

https://prometheus.io/docs/introduction/release-cycle/ 2/3

https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/stability/

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

Things listed as unstable in our API stability guarantees

(https://prometheus.io/docs/prometheus/latest/stability/).

Experimental features

(https://prometheus.io/docs/prometheus/latest/feature_flags/).

OpenBSD support.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:14 Long-Term Support | Prometheus

https://prometheus.io/docs/introduction/release-cycle/ 3/3

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/feature_flags/
https://prometheus.io/docs/prometheus/latest/feature_flags/
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

Metric names and

labels

Samples

DATA MODEL

Prometheus fundamentally stores all data as

time series
(https://en.wikipedia.org/wiki/Time_series):

streams of timestamped values belonging to

 INTRODUCTION

 CONCEPTS

Data model (/docs/concepts/data_model/)

Metric types (/docs/concepts/metric_types/)

Jobs and instances (/docs/concepts/jobs_instances/)

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:14 Data model | Prometheus

https://prometheus.io/docs/concepts/data_model/ 1/4

https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Time_series
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/metric_types/
https://prometheus.io/docs/concepts/jobs_instances/

Notationthe same metric and the same set of labeled

dimensions. Besides stored time series,

Prometheus may generate temporary derived time series as the result of

queries.

Metric names and labels

Every time series is uniquely identified by its metric name and optional key-

value pairs called labels.

Metric names:

Specify the general feature of a system that is measured (e.g.

http_requests_total - the total number of HTTP requests received).

Metric names may contain ASCII letters, digits, underscores, and colons. It

must match the regex [a-zA-Z_:][a-zA-Z0-9_:]* .

Note: The colons are reserved for user defined recording rules. They should not

be used by exporters or direct instrumentation.

Metric labels:

Enable Prometheus's dimensional data model to identify any given

combination of labels for the same metric name. It identifies a particular

dimensional instantiation of that metric (for example: all HTTP requests

that used the method POST to the /api/tracks handler). The query

language allows filtering and aggregation based on these dimensions.

The change of any label's value, including adding or removing labels, will

create a new time series.

Labels may contain ASCII letters, numbers, as well as underscores. They

must match the regex [a-zA-Z_][a-zA-Z0-9_]* .

Label names beginning with __ (two "_") are reserved for internal use.

Label values may contain any Unicode characters.

Labels with an empty label value are considered equivalent to labels that

do not exist.

See also the best practices for naming metrics and labels

(/docs/practices/naming/).

10/09/24, 19:14 Data model | Prometheus

https://prometheus.io/docs/concepts/data_model/ 2/4

https://prometheus.io/docs/practices/naming/
https://prometheus.io/docs/practices/naming/

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

Samples

Samples form the actual time series data. Each sample consists of:

a float64 value

a millisecond-precision timestamp

NOTE: Beginning with Prometheus v2.40, there is experimental support for

native histograms. Instead of a simple float64, the sample value may now

take the form of a full histogram.

Notation

Given a metric name and a set of labels, time series are frequently identified

using this notation:

<metric name>{<label name>=<label value>, ...}

For example, a time series with the metric name api_http_requests_total and

the labels method="POST" and handler="/messages" could be written like this:

api_http_requests_total{method="POST", handler="/messages"}

This is the same notation that OpenTSDB (http://opentsdb.net/) uses.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:14 Data model | Prometheus

https://prometheus.io/docs/concepts/data_model/ 3/4

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
http://opentsdb.net/
http://opentsdb.net/
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

10/09/24, 19:14 Data model | Prometheus

https://prometheus.io/docs/concepts/data_model/ 4/4

Counter

Gauge

Histogram

Summary

METRIC TYPES

The Prometheus client libraries offer four core

metric types. These are currently only

differentiated in the client libraries (to enable

APIs tailored to the usage of the specific types)

 INTRODUCTION

 CONCEPTS

Data model (/docs/concepts/data_model/)

Metric types (/docs/concepts/metric_types/)

Jobs and instances (/docs/concepts/jobs_instances/)

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:14 Metric types | Prometheus

https://prometheus.io/docs/concepts/metric_types/ 1/4

https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/metric_types/
https://prometheus.io/docs/concepts/jobs_instances/

and in the wire protocol. The Prometheus server does not yet make use of the type

information and flattens all data into untyped time series. This may change in the

future.

Counter

A counter is a cumulative metric that represents a single monotonically increasing

counter (https://en.wikipedia.org/wiki/Monotonic_function) whose value can only

increase or be reset to zero on restart. For example, you can use a counter to

represent the number of requests served, tasks completed, or errors.

Do not use a counter to expose a value that can decrease. For example, do not use a

counter for the number of currently running processes; instead use a gauge.

Client library usage documentation for counters:

Go

(http://godoc.org/github.com/prometheus/client_golang/prometheus#Counter)

Java (https://github.com/prometheus/client_java#counter)

Python (https://prometheus.github.io/client_python/instrumenting/counter/)

Ruby (https://github.com/prometheus/client_ruby#counter)

.Net (https://github.com/prometheus-net/prometheus-net#counters)

Gauge

A gauge is a metric that represents a single numerical value that can arbitrarily go up

and down.

Gauges are typically used for measured values like temperatures or current memory

usage, but also "counts" that can go up and down, like the number of concurrent

requests.

Client library usage documentation for gauges:

Go

(http://godoc.org/github.com/prometheus/client_golang/prometheus#Gauge)

Java (https://github.com/prometheus/client_java#gauge)

Python (https://prometheus.github.io/client_python/instrumenting/gauge/)

Ruby (https://github.com/prometheus/client_ruby#gauge)

.Net (https://github.com/prometheus-net/prometheus-net#gauges)

10/09/24, 19:14 Metric types | Prometheus

https://prometheus.io/docs/concepts/metric_types/ 2/4

https://en.wikipedia.org/wiki/Monotonic_function
https://en.wikipedia.org/wiki/Monotonic_function
https://en.wikipedia.org/wiki/Monotonic_function
http://godoc.org/github.com/prometheus/client_golang/prometheus#Counter
http://godoc.org/github.com/prometheus/client_golang/prometheus#Counter
https://github.com/prometheus/client_java#counter
https://github.com/prometheus/client_java#counter
https://prometheus.github.io/client_python/instrumenting/counter/
https://prometheus.github.io/client_python/instrumenting/counter/
https://github.com/prometheus/client_ruby#counter
https://github.com/prometheus/client_ruby#counter
https://github.com/prometheus-net/prometheus-net#counters
https://github.com/prometheus-net/prometheus-net#counters
http://godoc.org/github.com/prometheus/client_golang/prometheus#Gauge
http://godoc.org/github.com/prometheus/client_golang/prometheus#Gauge
https://github.com/prometheus/client_java#gauge
https://github.com/prometheus/client_java#gauge
https://prometheus.github.io/client_python/instrumenting/gauge/
https://prometheus.github.io/client_python/instrumenting/gauge/
https://github.com/prometheus/client_ruby#gauge
https://github.com/prometheus/client_ruby#gauge
https://github.com/prometheus-net/prometheus-net#gauges
https://github.com/prometheus-net/prometheus-net#gauges

Histogram

A histogram samples observations (usually things like request durations or response

sizes) and counts them in configurable buckets. It also provides a sum of all

observed values.

A histogram with a base metric name of <basename> exposes multiple time series

during a scrape:

cumulative counters for the observation buckets, exposed as

<basename>_bucket{le="<upper inclusive bound>"}

the total sum of all observed values, exposed as <basename>_sum

the count of events that have been observed, exposed as <basename>_count

(identical to <basename>_bucket{le="+Inf"} above)

Use the histogram_quantile() function

(/docs/prometheus/latest/querying/functions/#histogram_quantile) to calculate

quantiles from histograms or even aggregations of histograms. A histogram is also

suitable to calculate an Apdex score (https://en.wikipedia.org/wiki/Apdex). When

operating on buckets, remember that the histogram is cumulative

(https://en.wikipedia.org/wiki/Histogram#Cumulative_histogram). See histograms

and summaries (/docs/practices/histograms) for details of histogram usage and

differences to summaries.

NOTE: Beginning with Prometheus v2.40, there is experimental support for

native histograms. A native histogram requires only one time series, which

includes a dynamic number of buckets in addition to the sum and count of

observations. Native histograms allow much higher resolution at a fraction of

the cost. Detailed documentation will follow once native histograms are closer

to becoming a stable feature.

Client library usage documentation for histograms:

Go

(http://godoc.org/github.com/prometheus/client_golang/prometheus#Histogram)

Java (https://github.com/prometheus/client_java#histogram)

Python (https://prometheus.github.io/client_python/instrumenting/histogram/)

Ruby (https://github.com/prometheus/client_ruby#histogram)

10/09/24, 19:14 Metric types | Prometheus

https://prometheus.io/docs/concepts/metric_types/ 3/4

https://prometheus.io/docs/prometheus/latest/querying/functions/#histogram_quantile
https://prometheus.io/docs/prometheus/latest/querying/functions/#histogram_quantile
https://en.wikipedia.org/wiki/Apdex
https://en.wikipedia.org/wiki/Apdex
https://en.wikipedia.org/wiki/Histogram#Cumulative_histogram
https://en.wikipedia.org/wiki/Histogram#Cumulative_histogram
https://prometheus.io/docs/practices/histograms
https://prometheus.io/docs/practices/histograms
https://prometheus.io/docs/practices/histograms
http://godoc.org/github.com/prometheus/client_golang/prometheus#Histogram
http://godoc.org/github.com/prometheus/client_golang/prometheus#Histogram
https://github.com/prometheus/client_java#histogram
https://github.com/prometheus/client_java#histogram
https://prometheus.github.io/client_python/instrumenting/histogram/
https://prometheus.github.io/client_python/instrumenting/histogram/
https://github.com/prometheus/client_ruby#histogram
https://github.com/prometheus/client_ruby#histogram

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses

trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

.Net (https://github.com/prometheus-net/prometheus-net#histogram)

Summary

Similar to a histogram, a summary samples observations (usually things like request

durations and response sizes). While it also provides a total count of observations

and a sum of all observed values, it calculates configurable quantiles over a sliding

time window.

A summary with a base metric name of <basename> exposes multiple time series

during a scrape:

streaming φ-quantiles (0 ≤ φ ≤ 1) of observed events, exposed as <basename>

{quantile="<φ>"}

the total sum of all observed values, exposed as <basename>_sum

the count of events that have been observed, exposed as <basename>_count

See histograms and summaries (/docs/practices/histograms) for detailed

explanations of φ-quantiles, summary usage, and differences to histograms.

Client library usage documentation for summaries:

Go

(http://godoc.org/github.com/prometheus/client_golang/prometheus#Summary)

Java (https://github.com/prometheus/client_java#summary)

Python (https://prometheus.github.io/client_python/instrumenting/summary/)

Ruby (https://github.com/prometheus/client_ruby#summary)

.Net (https://github.com/prometheus-net/prometheus-net#summary)

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:14 Metric types | Prometheus

https://prometheus.io/docs/concepts/metric_types/ 4/4

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus-net/prometheus-net#histogram
https://github.com/prometheus-net/prometheus-net#histogram
https://prometheus.io/docs/practices/histograms
https://prometheus.io/docs/practices/histograms
http://godoc.org/github.com/prometheus/client_golang/prometheus#Summary
http://godoc.org/github.com/prometheus/client_golang/prometheus#Summary
https://github.com/prometheus/client_java#summary
https://github.com/prometheus/client_java#summary
https://prometheus.github.io/client_python/instrumenting/summary/
https://prometheus.github.io/client_python/instrumenting/summary/
https://github.com/prometheus/client_ruby#summary
https://github.com/prometheus/client_ruby#summary
https://github.com/prometheus-net/prometheus-net#summary
https://github.com/prometheus-net/prometheus-net#summary
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

JOBS AND INSTANCES

In Prometheus terms, an endpoint you can scrape is called an instance, usually

corresponding to a single process. A collection of instances with the same

purpose, a process replicated for scalability or reliability for example, is called a

job.

 INTRODUCTION

 CONCEPTS

Data model (/docs/concepts/data_model/)

Metric types (/docs/concepts/metric_types/)

Jobs and instances (/docs/concepts/jobs_instances/)

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:14 Jobs and instances | Prometheus

https://prometheus.io/docs/concepts/jobs_instances/ 1/3

https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/metric_types/
https://prometheus.io/docs/concepts/jobs_instances/

For example, an API server job with four replicated instances:

job: api-server

instance 1: 1.2.3.4:5670

instance 2: 1.2.3.4:5671

instance 3: 5.6.7.8:5670

instance 4: 5.6.7.8:5671

Automatically generated labels and time series

When Prometheus scrapes a target, it attaches some labels automatically to the

scraped time series which serve to identify the scraped target:

job : The configured job name that the target belongs to.

instance : The <host>:<port> part of the target's URL that was scraped.

If either of these labels are already present in the scraped data, the behavior

depends on the honor_labels configuration option. See the scrape

configuration documentation

(/docs/prometheus/latest/configuration/configuration/#scrape_config) for more

information.

For each instance scrape, Prometheus stores a sample

(/docs/introduction/glossary#sample) in the following time series:

up{job="<job-name>", instance="<instance-id>"} : 1 if the instance is

healthy, i.e. reachable, or 0 if the scrape failed.

scrape_duration_seconds{job="<job-name>", instance="<instance-id>"} :

duration of the scrape.

scrape_samples_post_metric_relabeling{job="<job-name>", instance="

<instance-id>"} : the number of samples remaining after metric relabeling

was applied.

scrape_samples_scraped{job="<job-name>", instance="<instance-id>"} :

the number of samples the target exposed.

scrape_series_added{job="<job-name>", instance="<instance-id>"} : the

approximate number of new series in this scrape. New in v2.10

The up time series is useful for instance availability monitoring.

10/09/24, 19:14 Jobs and instances | Prometheus

https://prometheus.io/docs/concepts/jobs_instances/ 2/3

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config
https://prometheus.io/docs/introduction/glossary#sample
https://prometheus.io/docs/introduction/glossary#sample

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

With the extra-scrape-metrics feature flag

(/docs/prometheus/latest/feature_flags/#extra-scrape-metrics) several

addditonal metrics are available:

scrape_timeout_seconds{job="<job-name>", instance="<instance-id>"} :

The configured scrape_timeout for a target.

scrape_sample_limit{job="<job-name>", instance="<instance-id>"} : The

configured sample_limit for a target. Returns zero if there is no limit

configured.

scrape_body_size_bytes{job="<job-name>", instance="<instance-id>"} :

The uncompressed size of the most recent scrape response, if successful.

Scrapes failing because body_size_limit is exceeded report -1, other

scrape failures report 0.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:14 Jobs and instances | Prometheus

https://prometheus.io/docs/concepts/jobs_instances/ 3/3

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://prometheus.io/docs/prometheus/latest/feature_flags/#extra-scrape-metrics
https://prometheus.io/docs/prometheus/latest/feature_flags/#extra-scrape-metrics
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: 2.54

Getting started (/docs/prometheus/2.54/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Querying

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

10/09/24, 19:16 Getting started | Prometheus

https://prometheus.io/docs/prometheus/2.54/getting_started/ 1/9

https://prometheus.io/docs/prometheus/2.54/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/feature_flags/

Downloading and

running Prometheus

Configuring

Prometheus to monitor

itself

Starting Prometheus

Using the expression

browser

Using the graphing

interface

Starting up some

sample targets

Configure Prometheus

to monitor the sample

targets

Configure rules for

aggregating scraped

data into new time

series

Reloading configuration

Shutting down your

instance gracefully.

GETTING STARTED

This guide is a "Hello World"-style tutorial

which shows how to install, configure, and use

a simple Prometheus instance. You will

download and run Prometheus locally,

configure it to scrape itself and an example

application, then work with queries, rules, and

graphs to use collected time series data.

Downloading and running
Prometheus

Download the latest release (/download) of

Prometheus for your platform, then extract

and run it:

tar xvfz prometheus-*.tar.gz
cd prometheus-*

Before starting Prometheus, let's configure it.

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:16 Getting started | Prometheus

https://prometheus.io/docs/prometheus/2.54/getting_started/ 2/9

https://prometheus.io/download
https://prometheus.io/download

Configuring Prometheus to monitor itself

Prometheus collects metrics from targets by scraping metrics HTTP endpoints.

Since Prometheus exposes data in the same manner about itself, it can also

scrape and monitor its own health.

While a Prometheus server that collects only data about itself is not very useful,

it is a good starting example. Save the following basic Prometheus

configuration as a file named prometheus.yml :

global:
 scrape_interval: 15s # By default, scrape targets every 15 seconds.

 # Attach these labels to any time series or alerts when communicating with
 # external systems (federation, remote storage, Alertmanager).
 external_labels:
 monitor: 'codelab-monitor'

A scrape configuration containing exactly one endpoint to scrape:
Here it's Prometheus itself.
scrape_configs:
 # The job name is added as a label `job=<job_name>` to any timeseries scraped f
 - job_name: 'prometheus'

 # Override the global default and scrape targets from this job every 5 second
 scrape_interval: 5s

 static_configs:
 - targets: ['localhost:9090']

For a complete specification of configuration options, see the configuration

documentation (../configuration/configuration/).

Starting Prometheus

To start Prometheus with your newly created configuration file, change to the

directory containing the Prometheus binary and run:

10/09/24, 19:16 Getting started | Prometheus

https://prometheus.io/docs/prometheus/2.54/getting_started/ 3/9

https://prometheus.io/docs/prometheus/2.54/configuration/configuration/
https://prometheus.io/docs/prometheus/2.54/configuration/configuration/
https://prometheus.io/docs/prometheus/2.54/configuration/configuration/

Start Prometheus.
By default, Prometheus stores its database in ./data (flag --storage.tsdb.path)
./prometheus --config.file=prometheus.yml

Prometheus should start up. You should also be able to browse to a status

page about itself at localhost:9090 (http://localhost:9090). Give it a couple of

seconds to collect data about itself from its own HTTP metrics endpoint.

You can also verify that Prometheus is serving metrics about itself by navigating

to its metrics endpoint: localhost:9090/metrics (http://localhost:9090/metrics)

Using the expression browser

Let us explore data that Prometheus has collected about itself. To use

Prometheus's built-in expression browser, navigate to

http://localhost:9090/graph (http://localhost:9090/graph) and choose the

"Table" view within the "Graph" tab.

As you can gather from localhost:9090/metrics (http://localhost:9090/metrics),

one metric that Prometheus exports about itself is named

prometheus_target_interval_length_seconds (the actual amount of time

between target scrapes). Enter the below into the expression console and then

click "Execute":

prometheus_target_interval_length_seconds

This should return a number of different time series (along with the latest value

recorded for each), each with the metric name

prometheus_target_interval_length_seconds , but with different labels. These

labels designate different latency percentiles and target group intervals.

If we are interested only in 99th percentile latencies, we could use this query:

prometheus_target_interval_length_seconds{quantile="0.99"}

10/09/24, 19:16 Getting started | Prometheus

https://prometheus.io/docs/prometheus/2.54/getting_started/ 4/9

http://localhost:9090/
http://localhost:9090/
http://localhost:9090/metrics
http://localhost:9090/metrics
http://localhost:9090/graph
http://localhost:9090/graph
http://localhost:9090/metrics
http://localhost:9090/metrics

To count the number of returned time series, you could write:

count(prometheus_target_interval_length_seconds)

For more about the expression language, see the expression language

documentation (../querying/basics/).

Using the graphing interface

To graph expressions, navigate to http://localhost:9090/graph

(http://localhost:9090/graph) and use the "Graph" tab.

For example, enter the following expression to graph the per-second rate of

chunks being created in the self-scraped Prometheus:

rate(prometheus_tsdb_head_chunks_created_total[1m])

Experiment with the graph range parameters and other settings.

Starting up some sample targets

Let's add additional targets for Prometheus to scrape.

The Node Exporter is used as an example target, for more information on using

it see these instructions. (/docs/guides/node-exporter/)

tar -xzvf node_exporter-*.*.tar.gz
cd node_exporter-*.*

Start 3 example targets in separate terminals:
./node_exporter --web.listen-address 127.0.0.1:8080
./node_exporter --web.listen-address 127.0.0.1:8081
./node_exporter --web.listen-address 127.0.0.1:8082

You should now have example targets listening on

http://localhost:8080/metrics (http://localhost:8080/metrics),

http://localhost:8081/metrics (http://localhost:8081/metrics), and

10/09/24, 19:16 Getting started | Prometheus

https://prometheus.io/docs/prometheus/2.54/getting_started/ 5/9

https://prometheus.io/docs/prometheus/2.54/querying/basics/
https://prometheus.io/docs/prometheus/2.54/querying/basics/
https://prometheus.io/docs/prometheus/2.54/querying/basics/
http://localhost:9090/graph
http://localhost:9090/graph
https://prometheus.io/docs/guides/node-exporter/
https://prometheus.io/docs/guides/node-exporter/
http://localhost:8080/metrics
http://localhost:8080/metrics
http://localhost:8081/metrics
http://localhost:8081/metrics

http://localhost:8082/metrics (http://localhost:8082/metrics).

Configure Prometheus to monitor the sample targets

Now we will configure Prometheus to scrape these new targets. Let's group all

three endpoints into one job called node . We will imagine that the first two

endpoints are production targets, while the third one represents a canary

instance. To model this in Prometheus, we can add several groups of endpoints

to a single job, adding extra labels to each group of targets. In this example, we

will add the group="production" label to the first group of targets, while adding

group="canary" to the second.

To achieve this, add the following job definition to the scrape_configs section

in your prometheus.yml and restart your Prometheus instance:

scrape_configs:
 - job_name: 'node'

 # Override the global default and scrape targets from this job every 5 second
 scrape_interval: 5s

 static_configs:
 - targets: ['localhost:8080', 'localhost:8081']
 labels:
 group: 'production'

 - targets: ['localhost:8082']
 labels:
 group: 'canary'

Go to the expression browser and verify that Prometheus now has information

about time series that these example endpoints expose, such as

node_cpu_seconds_total .

10/09/24, 19:16 Getting started | Prometheus

https://prometheus.io/docs/prometheus/2.54/getting_started/ 6/9

http://localhost:8082/metrics
http://localhost:8082/metrics

Configure rules for aggregating scraped data into new
time series

Though not a problem in our example, queries that aggregate over thousands

of time series can get slow when computed ad-hoc. To make this more efficient,

Prometheus can prerecord expressions into new persisted time series via

configured recording rules. Let's say we are interested in recording the per-

second rate of cpu time (node_cpu_seconds_total) averaged over all cpus per

instance (but preserving the job , instance and mode dimensions) as

measured over a window of 5 minutes. We could write this as:

avg by (job, instance, mode) (rate(node_cpu_seconds_total[5m]))

Try graphing this expression.

To record the time series resulting from this expression into a new metric

called job_instance_mode:node_cpu_seconds:avg_rate5m , create a file with the

following recording rule and save it as prometheus.rules.yml :

groups:
- name: cpu-node
 rules:
 - record: job_instance_mode:node_cpu_seconds:avg_rate5m
 expr: avg by (job, instance, mode) (rate(node_cpu_seconds_total[5m]))

To make Prometheus pick up this new rule, add a rule_files statement in

your prometheus.yml . The config should now look like this:

10/09/24, 19:16 Getting started | Prometheus

https://prometheus.io/docs/prometheus/2.54/getting_started/ 7/9

global:
 scrape_interval: 15s # By default, scrape targets every 15 seconds.
 evaluation_interval: 15s # Evaluate rules every 15 seconds.

 # Attach these extra labels to all timeseries collected by this Prometheus inst
 external_labels:
 monitor: 'codelab-monitor'

rule_files:
 - 'prometheus.rules.yml'

scrape_configs:
 - job_name: 'prometheus'

 # Override the global default and scrape targets from this job every 5 second
 scrape_interval: 5s

 static_configs:
 - targets: ['localhost:9090']

 - job_name: 'node'

 # Override the global default and scrape targets from this job every 5 second
 scrape_interval: 5s

 static_configs:
 - targets: ['localhost:8080', 'localhost:8081']
 labels:
 group: 'production'

 - targets: ['localhost:8082']
 labels:
 group: 'canary'

Restart Prometheus with the new configuration and verify that a new time

series with the metric name job_instance_mode:node_cpu_seconds:avg_rate5m is

now available by querying it through the expression browser or graphing it.

10/09/24, 19:16 Getting started | Prometheus

https://prometheus.io/docs/prometheus/2.54/getting_started/ 8/9

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

Reloading configuration

As mentioned in the configuration documentation

(../configuration/configuration/) a Prometheus instance can have its

configuration reloaded without restarting the process by using the SIGHUP

signal. If you're running on Linux this can be performed by using kill -s

SIGHUP <PID> , replacing <PID> with your Prometheus process ID.

Shutting down your instance gracefully.

While Prometheus does have recovery mechanisms in the case that there is an

abrupt process failure it is recommend to use the SIGTERM signal to cleanly

shutdown a Prometheus instance. If you're running on Linux this can be

performed by using kill -s SIGTERM <PID> , replacing <PID> with your

Prometheus process ID.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:16 Getting started | Prometheus

https://prometheus.io/docs/prometheus/2.54/getting_started/ 9/9

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://prometheus.io/docs/prometheus/2.54/configuration/configuration/
https://prometheus.io/docs/prometheus/2.54/configuration/configuration/
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Querying

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

10/09/24, 19:16 Installation | Prometheus

https://prometheus.io/docs/prometheus/latest/installation/ 1/5

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/feature_flags/

Using pre-compiled

binaries

From source

Using Docker

Setting command

line parameters

Volumes & bind-

mount

Save your

Prometheus data

Custom image

Using configuration

management systems

Ansible

Chef

Puppet

SaltStack

INSTALLATION

Using pre-compiled binaries

We provide precompiled binaries for most

official Prometheus components. Check out

the download section (/download) for a list of

all available versions.

From source

For building Prometheus components from

source, see the Makefile targets in the

respective repository.

Using Docker

All Prometheus services are available as

Docker images on Quay.io

(https://quay.io/repository/prometheus/prometheus) or Docker Hub

(https://hub.docker.com/r/prom/prometheus/).

Running Prometheus on Docker is as simple as docker run -p 9090:9090

prom/prometheus . This starts Prometheus with a sample configuration and

exposes it on port 9090.

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:16 Installation | Prometheus

https://prometheus.io/docs/prometheus/latest/installation/ 2/5

https://prometheus.io/download
https://prometheus.io/download
https://quay.io/repository/prometheus/prometheus
https://quay.io/repository/prometheus/prometheus
https://hub.docker.com/r/prom/prometheus/
https://hub.docker.com/r/prom/prometheus/

The Prometheus image uses a volume to store the actual metrics. For

production deployments it is highly recommended to use a named volume

(https://docs.docker.com/storage/volumes/) to ease managing the data on

Prometheus upgrades.

Setting command line parameters

The Docker image is started with a number of default command line

parameters, which can be found in the Dockerfile

(https://github.com/prometheus/prometheus/blob/main/Dockerfile) (adjust the

link to correspond with the version in use).

If you want to add extra command line parameters to the docker run

command, you will need to re-add these yourself as they will be overwritten.

Volumes & bind-mount

To provide your own configuration, there are several options. Here are two

examples.

Bind-mount your prometheus.yml from the host by running:

docker run \
 -p 9090:9090 \
 -v /path/to/prometheus.yml:/etc/prometheus/prometheus.yml \
 prom/prometheus

Or bind-mount the directory containing prometheus.yml onto /etc/prometheus

by running:

docker run \
 -p 9090:9090 \
 -v /path/to/config:/etc/prometheus \
 prom/prometheus

10/09/24, 19:16 Installation | Prometheus

https://prometheus.io/docs/prometheus/latest/installation/ 3/5

https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://github.com/prometheus/prometheus/blob/main/Dockerfile
https://github.com/prometheus/prometheus/blob/main/Dockerfile

Save your Prometheus data

Prometheus data is stored in /prometheus dir inside the container, so the data

is cleared every time the container gets restarted. To save your data, you need

to set up persistent storage (or bind mounts) for your container.

Run Prometheus container with persistent storage:

Create persistent volume for your data
docker volume create prometheus-data
Start Prometheus container
docker run \
 -p 9090:9090 \
 -v /path/to/prometheus.yml:/etc/prometheus/prometheus.yml \
 -v prometheus-data:/prometheus \
 prom/prometheus

Custom image

To avoid managing a file on the host and bind-mount it, the configuration can

be baked into the image. This works well if the configuration itself is rather

static and the same across all environments.

For this, create a new directory with a Prometheus configuration and a

Dockerfile like this:

FROM prom/prometheus
ADD prometheus.yml /etc/prometheus/

Now build and run it:

docker build -t my-prometheus .
docker run -p 9090:9090 my-prometheus

A more advanced option is to render the configuration dynamically on start

with some tooling or even have a daemon update it periodically.

10/09/24, 19:16 Installation | Prometheus

https://prometheus.io/docs/prometheus/latest/installation/ 4/5

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

Using configuration management systems

If you prefer using configuration management systems you might be interested

in the following third-party contributions:

Ansible

prometheus-community/ansible (https://github.com/prometheus-

community/ansible)

Chef

rayrod2030/chef-prometheus (https://github.com/rayrod2030/chef-

prometheus)

Puppet

puppet/prometheus (https://forge.puppet.com/puppet/prometheus)

SaltStack

saltstack-formulas/prometheus-formula (https://github.com/saltstack-

formulas/prometheus-formula)

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:16 Installation | Prometheus

https://prometheus.io/docs/prometheus/latest/installation/ 5/5

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus-community/ansible
https://github.com/prometheus-community/ansible
https://github.com/prometheus-community/ansible
https://github.com/rayrod2030/chef-prometheus
https://github.com/rayrod2030/chef-prometheus
https://github.com/rayrod2030/chef-prometheus
https://forge.puppet.com/puppet/prometheus
https://forge.puppet.com/puppet/prometheus
https://github.com/saltstack-formulas/prometheus-formula
https://github.com/saltstack-formulas/prometheus-formula
https://github.com/saltstack-formulas/prometheus-formula
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Configuration (/docs/prometheus/latest/configuration/configuration/)

Recording rules (/docs/prometheus/latest/configuration/recording_rules/)

Alerting rules (/docs/prometheus/latest/configuration/alerting_rules/)

Template examples (/docs/prometheus/latest/configuration/template_examples/)

Template reference (/docs/prometheus/latest/configuration/template_reference/)

Unit Testing for Rules (/docs/prometheus/latest/configuration/unit_testing_rules/)

HTTPS and authentication (/docs/prometheus/latest/configuration/https/)

Querying

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 1/91

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/template_examples/
https://prometheus.io/docs/prometheus/latest/configuration/template_reference/
https://prometheus.io/docs/prometheus/latest/configuration/unit_testing_rules/
https://prometheus.io/docs/prometheus/latest/configuration/https/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/feature_flags/

Configuration file

<scrape_config>

<tls_config>

<oauth2>

<azure_sd_config>

<consul_sd_config>

<digitalocean_sd_config>

<docker_sd_config>

<dockerswarm_sd_config>

<dns_sd_config>

<ec2_sd_config>

<openstack_sd_config>

<ovhcloud_sd_config>

<puppetdb_sd_config>

<file_sd_config>

<gce_sd_config>

<hetzner_sd_config>

<http_sd_config>

<ionos_sd_config>

<kubernetes_sd_config>

<kuma_sd_config>

<lightsail_sd_config>

<linode_sd_config>

<marathon_sd_config>

<nerve_sd_config>

<nomad_sd_config>

<serverset_sd_config>

<triton_sd_config>

<eureka_sd_config>

<scaleway_sd_config>

<uyuni_sd_config>

<vultr_sd_config>

<static_config>

CONFIGURATION

Prometheus is configured via command-line flags and a

configuration file. While the command-line flags configure

immutable system parameters (such as storage locations,

amount of data to keep on disk and in memory, etc.), the

configuration file defines everything related to scraping

jobs and their instances (/docs/concepts/jobs_instances/),

as well as which rule files to load

(../recording_rules/#configuring-rules).

To view all available command-line flags, run ./prometheus

-h .

Prometheus can reload its configuration at runtime. If the

new configuration is not well-formed, the changes will not

be applied. A configuration reload is triggered by sending a

SIGHUP to the Prometheus process or sending a HTTP

POST request to the /-/reload endpoint (when the --

web.enable-lifecycle flag is enabled). This will also reload

any configured rule files.

Configuration file

To specify which configuration file to load, use the --

config.file flag.

The file is written in YAML format

(https://en.wikipedia.org/wiki/YAML), defined by the

scheme described below. Brackets indicate that a

parameter is optional. For non-list parameters the value is

set to the specified default.

Generic placeholders are defined as follows:

<boolean> : a boolean that can take the values true

or false

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 2/91

https://prometheus.io/docs/concepts/jobs_instances/
https://prometheus.io/docs/concepts/jobs_instances/
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/#configuring-rules
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/#configuring-rules
https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/YAML

<relabel_config>

<metric_relabel_configs>

<alert_relabel_configs>

<alertmanager_config>

<remote_write>

<remote_read>

<tsdb>

<exemplars>

<tracing_config>

<duration> : a duration matching the regular

expression ((([0-9]+)y)?(([0-9]+)w)?(([0-9]+)d)?

(([0-9]+)h)?(([0-9]+)m)?(([0-9]+)s)?(([0-9]+)ms)?

|0) , e.g. 1d , 1h30m , 5m , 10s

<filename> : a valid path in the current working

directory

<float> : a floating-point number

<host> : a valid string consisting of a hostname or IP

followed by an optional port number

<int> : an integer value

<labelname> : a string matching the regular

expression [a-zA-Z_][a-zA-Z0-9_]* . Any other unsupported character in the source label

should be converted to an underscore. For example, the label app.kubernetes.io/name should

be written as app_kubernetes_io_name .

<labelvalue> : a string of unicode characters

<path> : a valid URL path

<scheme> : a string that can take the values http or https

<secret> : a regular string that is a secret, such as a password

<string> : a regular string

<size> : a size in bytes, e.g. 512MB . A unit is required. Supported units: B, KB, MB, GB, TB, PB,

EB.

<tmpl_string> : a string which is template-expanded before usage

The other placeholders are specified separately.

A valid example file can be found here (https://github.com/prometheus/prometheus/blob/release-

2.54/config/testdata/conf.good.yml).

The global configuration specifies parameters that are valid in all other configuration contexts. They

also serve as defaults for other configuration sections.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 3/91

https://github.com/prometheus/prometheus/blob/release-2.54/config/testdata/conf.good.yml
https://github.com/prometheus/prometheus/blob/release-2.54/config/testdata/conf.good.yml
https://github.com/prometheus/prometheus/blob/release-2.54/config/testdata/conf.good.yml

global:
 # How frequently to scrape targets by default.
 [scrape_interval: <duration> | default = 1m]

 # How long until a scrape request times out.
 [scrape_timeout: <duration> | default = 10s]

 # The protocols to negotiate during a scrape with the client.
 # Supported values (case sensitive): PrometheusProto, OpenMetricsText0.0.1,
 # OpenMetricsText1.0.0, PrometheusText0.0.4.
 # The default value changes to [PrometheusProto, OpenMetricsText1.0.0, OpenMetricsText0.0.1, Promet
 # when native_histogram feature flag is set.
 [scrape_protocols: [<string>, ...] | default = [OpenMetricsText1.0.0, OpenMetricsText0.0.1, Promet

 # How frequently to evaluate rules.
 [evaluation_interval: <duration> | default = 1m]

 # Offset the rule evaluation timestamp of this particular group by the specified duration into the p
 # Metric availability delays are more likely to occur when Prometheus is running as a remote write t
 [rule_query_offset: <duration> | default = 0s]

 # The labels to add to any time series or alerts when communicating with
 # external systems (federation, remote storage, Alertmanager).
 external_labels:
 [<labelname>: <labelvalue> ...]

 # File to which PromQL queries are logged.
 # Reloading the configuration will reopen the file.
 [query_log_file: <string>]

 # An uncompressed response body larger than this many bytes will cause the
 # scrape to fail. 0 means no limit. Example: 100MB.
 # This is an experimental feature, this behaviour could
 # change or be removed in the future.
 [body_size_limit: <size> | default = 0]

 # Per-scrape limit on number of scraped samples that will be accepted.
 # If more than this number of samples are present after metric relabeling
 # the entire scrape will be treated as failed. 0 means no limit.
 [sample_limit: <int> | default = 0]

 # Per-scrape limit on number of labels that will be accepted for a sample. If
 # more than this number of labels are present post metric-relabeling, the
 # entire scrape will be treated as failed. 0 means no limit.
 [label_limit: <int> | default = 0]

 # Per-scrape limit on length of labels name that will be accepted for a sample.
 # If a label name is longer than this number post metric-relabeling, the entire
 # scrape will be treated as failed. 0 means no limit.
 [label_name_length_limit: <int> | default = 0]

 # Per-scrape limit on length of labels value that will be accepted for a sample.
 # If a label value is longer than this number post metric-relabeling, the
 # entire scrape will be treated as failed. 0 means no limit.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 4/91

 [label_value_length_limit: <int> | default = 0]

 # Per-scrape config limit on number of unique targets that will be
 # accepted. If more than this number of targets are present after target
 # relabeling, Prometheus will mark the targets as failed without scraping them.
 # 0 means no limit. This is an experimental feature, this behaviour could
 # change in the future.
 [target_limit: <int> | default = 0]

 # Limit per scrape config on the number of targets dropped by relabeling
 # that will be kept in memory. 0 means no limit.
 [keep_dropped_targets: <int> | default = 0]

runtime:
 # Configure the Go garbage collector GOGC parameter
 # See: https://tip.golang.org/doc/gc-guide#GOGC
 # Lowering this number increases CPU usage.
 [gogc: <int> | default = 75]

Rule files specifies a list of globs. Rules and alerts are read from
all matching files.
rule_files:
 [- <filepath_glob> ...]

Scrape config files specifies a list of globs. Scrape configs are read from
all matching files and appended to the list of scrape configs.
scrape_config_files:
 [- <filepath_glob> ...]

A list of scrape configurations.
scrape_configs:
 [- <scrape_config> ...]

Alerting specifies settings related to the Alertmanager.
alerting:
 alert_relabel_configs:
 [- <relabel_config> ...]
 alertmanagers:
 [- <alertmanager_config> ...]

Settings related to the remote write feature.
remote_write:
 [- <remote_write> ...]

Settings related to the remote read feature.
remote_read:
 [- <remote_read> ...]

Storage related settings that are runtime reloadable.
storage:
 [tsdb: <tsdb>]
 [exemplars: <exemplars>]

Configures exporting traces.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 5/91

tracing:
 [<tracing_config>]

<scrape_config>

A scrape_config section specifies a set of targets and parameters describing how to scrape them. In

the general case, one scrape configuration specifies a single job. In advanced configurations, this

may change.

Targets may be statically configured via the static_configs parameter or dynamically discovered

using one of the supported service-discovery mechanisms.

Additionally, relabel_configs allow advanced modifications to any target and its labels before

scraping.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 6/91

The job name assigned to scraped metrics by default.
job_name: <job_name>

How frequently to scrape targets from this job.
[scrape_interval: <duration> | default = <global_config.scrape_interval>]

Per-scrape timeout when scraping this job.
[scrape_timeout: <duration> | default = <global_config.scrape_timeout>]

The protocols to negotiate during a scrape with the client.
Supported values (case sensitive): PrometheusProto, OpenMetricsText0.0.1,
OpenMetricsText1.0.0, PrometheusText0.0.4.
[scrape_protocols: [<string>, ...] | default = <global_config.scrape_protocols>]

Whether to scrape a classic histogram that is also exposed as a native
histogram (has no effect without --enable-feature=native-histograms).
[scrape_classic_histograms: <boolean> | default = false]

The HTTP resource path on which to fetch metrics from targets.
[metrics_path: <path> | default = /metrics]

honor_labels controls how Prometheus handles conflicts between labels that are
already present in scraped data and labels that Prometheus would attach
server-side ("job" and "instance" labels, manually configured target
labels, and labels generated by service discovery implementations).
#
If honor_labels is set to "true", label conflicts are resolved by keeping label
values from the scraped data and ignoring the conflicting server-side labels.
#
If honor_labels is set to "false", label conflicts are resolved by renaming
conflicting labels in the scraped data to "exported_<original-label>" (for
example "exported_instance", "exported_job") and then attaching server-side
labels.
#
Setting honor_labels to "true" is useful for use cases such as federation and
scraping the Pushgateway, where all labels specified in the target should be
preserved.
#
Note that any globally configured "external_labels" are unaffected by this
setting. In communication with external systems, they are always applied only
when a time series does not have a given label yet and are ignored otherwise.
[honor_labels: <boolean> | default = false]

honor_timestamps controls whether Prometheus respects the timestamps present
in scraped data.
#
If honor_timestamps is set to "true", the timestamps of the metrics exposed
by the target will be used.
#
If honor_timestamps is set to "false", the timestamps of the metrics exposed
by the target will be ignored.
[honor_timestamps: <boolean> | default = true]

track_timestamps_staleness controls whether Prometheus tracks staleness of

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 7/91

the metrics that have an explicit timestamps present in scraped data.
#
If track_timestamps_staleness is set to "true", a staleness marker will be
inserted in the TSDB when a metric is no longer present or the target
is down.
[track_timestamps_staleness: <boolean> | default = false]

Configures the protocol scheme used for requests.
[scheme: <scheme> | default = http]

Optional HTTP URL parameters.
params:
 [<string>: [<string>, ...]]

If enable_compression is set to "false", Prometheus will request uncompressed
response from the scraped target.
[enable_compression: <boolean> | default = true]

Sets the `Authorization` header on every scrape request with the
configured username and password.
password and password_file are mutually exclusive.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Sets the `Authorization` header on every scrape request with
the configured credentials.
authorization:
 # Sets the authentication type of the request.
 [type: <string> | default: Bearer]
 # Sets the credentials of the request. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials of the request with the credentials read from the
 # configured file. It is mutually exclusive with `credentials`.
 [credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:
 [<oauth2>]

Configure whether scrape requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

Configures the scrape request's TLS settings.
tls_config:
 [<tls_config>]

Optional proxy URL.
[proxy_url: <string>]

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 8/91

Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

List of Azure service discovery configurations.
azure_sd_configs:
 [- <azure_sd_config> ...]

List of Consul service discovery configurations.
consul_sd_configs:
 [- <consul_sd_config> ...]

List of DigitalOcean service discovery configurations.
digitalocean_sd_configs:
 [- <digitalocean_sd_config> ...]

List of Docker service discovery configurations.
docker_sd_configs:
 [- <docker_sd_config> ...]

List of Docker Swarm service discovery configurations.
dockerswarm_sd_configs:
 [- <dockerswarm_sd_config> ...]

List of DNS service discovery configurations.
dns_sd_configs:
 [- <dns_sd_config> ...]

List of EC2 service discovery configurations.
ec2_sd_configs:
 [- <ec2_sd_config> ...]

List of Eureka service discovery configurations.
eureka_sd_configs:
 [- <eureka_sd_config> ...]

List of file service discovery configurations.
file_sd_configs:
 [- <file_sd_config> ...]

List of GCE service discovery configurations.
gce_sd_configs:
 [- <gce_sd_config> ...]

List of Hetzner service discovery configurations.
hetzner_sd_configs:
 [- <hetzner_sd_config> ...]

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 9/91

List of HTTP service discovery configurations.
http_sd_configs:
 [- <http_sd_config> ...]

List of IONOS service discovery configurations.
ionos_sd_configs:
 [- <ionos_sd_config> ...]

List of Kubernetes service discovery configurations.
kubernetes_sd_configs:
 [- <kubernetes_sd_config> ...]

List of Kuma service discovery configurations.
kuma_sd_configs:
 [- <kuma_sd_config> ...]

List of Lightsail service discovery configurations.
lightsail_sd_configs:
 [- <lightsail_sd_config> ...]

List of Linode service discovery configurations.
linode_sd_configs:
 [- <linode_sd_config> ...]

List of Marathon service discovery configurations.
marathon_sd_configs:
 [- <marathon_sd_config> ...]

List of AirBnB's Nerve service discovery configurations.
nerve_sd_configs:
 [- <nerve_sd_config> ...]

List of Nomad service discovery configurations.
nomad_sd_configs:
 [- <nomad_sd_config> ...]

List of OpenStack service discovery configurations.
openstack_sd_configs:
 [- <openstack_sd_config> ...]

List of OVHcloud service discovery configurations.
ovhcloud_sd_configs:
 [- <ovhcloud_sd_config> ...]

List of PuppetDB service discovery configurations.
puppetdb_sd_configs:
 [- <puppetdb_sd_config> ...]

List of Scaleway service discovery configurations.
scaleway_sd_configs:
 [- <scaleway_sd_config> ...]

List of Zookeeper Serverset service discovery configurations.
serverset_sd_configs:

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 10/91

 [- <serverset_sd_config> ...]

List of Triton service discovery configurations.
triton_sd_configs:
 [- <triton_sd_config> ...]

List of Uyuni service discovery configurations.
uyuni_sd_configs:
 [- <uyuni_sd_config> ...]

List of labeled statically configured targets for this job.
static_configs:
 [- <static_config> ...]

List of target relabel configurations.
relabel_configs:
 [- <relabel_config> ...]

List of metric relabel configurations.
metric_relabel_configs:
 [- <relabel_config> ...]

An uncompressed response body larger than this many bytes will cause the
scrape to fail. 0 means no limit. Example: 100MB.
This is an experimental feature, this behaviour could
change or be removed in the future.
[body_size_limit: <size> | default = 0]

Per-scrape limit on number of scraped samples that will be accepted.
If more than this number of samples are present after metric relabeling
the entire scrape will be treated as failed. 0 means no limit.
[sample_limit: <int> | default = 0]

Per-scrape limit on number of labels that will be accepted for a sample. If
more than this number of labels are present post metric-relabeling, the
entire scrape will be treated as failed. 0 means no limit.
[label_limit: <int> | default = 0]

Per-scrape limit on length of labels name that will be accepted for a sample.
If a label name is longer than this number post metric-relabeling, the entire
scrape will be treated as failed. 0 means no limit.
[label_name_length_limit: <int> | default = 0]

Per-scrape limit on length of labels value that will be accepted for a sample.
If a label value is longer than this number post metric-relabeling, the
entire scrape will be treated as failed. 0 means no limit.
[label_value_length_limit: <int> | default = 0]

Per-scrape config limit on number of unique targets that will be
accepted. If more than this number of targets are present after target
relabeling, Prometheus will mark the targets as failed without scraping them.
0 means no limit. This is an experimental feature, this behaviour could
change in the future.
[target_limit: <int> | default = 0]

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 11/91

Per-job limit on the number of targets dropped by relabeling
that will be kept in memory. 0 means no limit.
[keep_dropped_targets: <int> | default = 0]

Limit on total number of positive and negative buckets allowed in a single
native histogram. The resolution of a histogram with more buckets will be
reduced until the number of buckets is within the limit. If the limit cannot
be reached, the scrape will fail.
0 means no limit.
[native_histogram_bucket_limit: <int> | default = 0]

Lower limit for the growth factor of one bucket to the next in each native
histogram. The resolution of a histogram with a lower growth factor will be
reduced as much as possible until it is within the limit.
To set an upper limit for the schema (equivalent to "scale" in OTel's
exponential histograms), use the following factor limits:

+----------------------------+----------------------------+
| growth factor | resulting schema AKA scale |
+----------------------------+----------------------------+
| 65536 | -4 |
+----------------------------+----------------------------+
| 256 | -3 |
+----------------------------+----------------------------+
| 16 | -2 |
+----------------------------+----------------------------+
| 4 | -1 |
+----------------------------+----------------------------+
| 2 | 0 |
+----------------------------+----------------------------+
| 1.4 | 1 |
+----------------------------+----------------------------+
| 1.1 | 2 |
+----------------------------+----------------------------+
| 1.09 | 3 |
+----------------------------+----------------------------+
| 1.04 | 4 |
+----------------------------+----------------------------+
| 1.02 | 5 |
+----------------------------+----------------------------+
| 1.01 | 6 |
+----------------------------+----------------------------+
| 1.005 | 7 |
+----------------------------+----------------------------+
| 1.002 | 8 |
+----------------------------+----------------------------+

0 results in the smallest supported factor (which is currently ~1.0027 or
schema 8, but might change in the future).
[native_histogram_min_bucket_factor: <float> | default = 0]

Where <job_name> must be unique across all scrape configurations.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 12/91

<tls_config>

A tls_config allows configuring TLS connections.

CA certificate to validate API server certificate with. At most one of ca and ca_file is allowed.
[ca: <string>]
[ca_file: <filename>]

Certificate and key for client cert authentication to the server.
At most one of cert and cert_file is allowed.
At most one of key and key_file is allowed.
[cert: <string>]
[cert_file: <filename>]
[key: <secret>]
[key_file: <filename>]

ServerName extension to indicate the name of the server.
https://tools.ietf.org/html/rfc4366#section-3.1
[server_name: <string>]

Disable validation of the server certificate.
[insecure_skip_verify: <boolean>]

Minimum acceptable TLS version. Accepted values: TLS10 (TLS 1.0), TLS11 (TLS
1.1), TLS12 (TLS 1.2), TLS13 (TLS 1.3).
If unset, Prometheus will use Go default minimum version, which is TLS 1.2.
See MinVersion in https://pkg.go.dev/crypto/tls#Config.
[min_version: <string>]
Maximum acceptable TLS version. Accepted values: TLS10 (TLS 1.0), TLS11 (TLS
1.1), TLS12 (TLS 1.2), TLS13 (TLS 1.3).
If unset, Prometheus will use Go default maximum version, which is TLS 1.3.
See MaxVersion in https://pkg.go.dev/crypto/tls#Config.
[max_version: <string>]

<oauth2>

OAuth 2.0 authentication using the client credentials grant type. Prometheus fetches an access

token from the specified endpoint with the given client access and secret keys.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 13/91

client_id: <string>
[client_secret: <secret>]

Read the client secret from a file.
It is mutually exclusive with `client_secret`.
[client_secret_file: <filename>]

Scopes for the token request.
scopes:
 [- <string> ...]

The URL to fetch the token from.
token_url: <string>

Optional parameters to append to the token URL.
endpoint_params:
 [<string>: <string> ...]

Configures the token request's TLS settings.
tls_config:
 [<tls_config>]

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

<azure_sd_config>

Azure SD configurations allow retrieving scrape targets from Azure VMs.

The following meta labels are available on targets during relabeling:

__meta_azure_machine_id : the machine ID

__meta_azure_machine_location : the location the machine runs in

__meta_azure_machine_name : the machine name

__meta_azure_machine_computer_name : the machine computer name

__meta_azure_machine_os_type : the machine operating system

__meta_azure_machine_private_ip : the machine's private IP

__meta_azure_machine_public_ip : the machine's public IP if it exists

__meta_azure_machine_resource_group : the machine's resource group

__meta_azure_machine_tag_<tagname> : each tag value of the machine

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 14/91

__meta_azure_machine_scale_set : the name of the scale set which the vm is part of (this value

is only set if you are using a scale set (https://docs.microsoft.com/en-us/azure/virtual-machine-

scale-sets/))

__meta_azure_machine_size : the machine size

__meta_azure_subscription_id : the subscription ID

__meta_azure_tenant_id : the tenant ID

See below for the configuration options for Azure discovery:

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 15/91

https://docs.microsoft.com/en-us/azure/virtual-machine-scale-sets/
https://docs.microsoft.com/en-us/azure/virtual-machine-scale-sets/
https://docs.microsoft.com/en-us/azure/virtual-machine-scale-sets/

The information to access the Azure API.
The Azure environment.
[environment: <string> | default = AzurePublicCloud]

The authentication method, either OAuth, ManagedIdentity or SDK.
See https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overv
SDK authentication method uses environment variables by default.
See https://learn.microsoft.com/en-us/azure/developer/go/azure-sdk-authentication
[authentication_method: <string> | default = OAuth]
The subscription ID. Always required.
subscription_id: <string>
Optional tenant ID. Only required with authentication_method OAuth.
[tenant_id: <string>]
Optional client ID. Only required with authentication_method OAuth.
[client_id: <string>]
Optional client secret. Only required with authentication_method OAuth.
[client_secret: <secret>]

Optional resource group name. Limits discovery to this resource group.
[resource_group: <string>]

Refresh interval to re-read the instance list.
[refresh_interval: <duration> | default = 300s]

The port to scrape metrics from. If using the public IP address, this must
instead be specified in the relabeling rule.
[port: <int> | default = 80]

Authentication information used to authenticate to the Azure API.
Note that `basic_auth`, `authorization` and `oauth2` options are
mutually exclusive.
`password` and `password_file` are mutually exclusive.

Optional HTTP basic authentication information, currently not support by Azure.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Optional `Authorization` header configuration, currently not supported by Azure.
authorization:
 # Sets the authentication type.
 [type: <string> | default: Bearer]
 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials to the credentials read from the configured file.
 # It is mutually exclusive with `credentials`.
 [credentials_file: <filename>]

Optional OAuth 2.0 configuration, currently not supported by Azure.
oauth2:
 [<oauth2>]

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 16/91

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

TLS configuration.
tls_config:
 [<tls_config>]

<consul_sd_config>

Consul SD configurations allow retrieving scrape targets from Consul's (https://www.consul.io)

Catalog API.

The following meta labels are available on targets during relabeling:

__meta_consul_address : the address of the target

__meta_consul_dc : the datacenter name for the target

__meta_consul_health : the health status of the service

__meta_consul_partition : the admin partition name where the service is registered

__meta_consul_metadata_<key> : each node metadata key value of the target

__meta_consul_node : the node name defined for the target

__meta_consul_service_address : the service address of the target

__meta_consul_service_id : the service ID of the target

__meta_consul_service_metadata_<key> : each service metadata key value of the target

__meta_consul_service_port : the service port of the target

__meta_consul_service : the name of the service the target belongs to

__meta_consul_tagged_address_<key> : each node tagged address key value of the target

__meta_consul_tags : the list of tags of the target joined by the tag separator

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 17/91

https://www.consul.io/
https://www.consul.io/

The information to access the Consul API. It is to be defined
as the Consul documentation requires.
[server: <host> | default = "localhost:8500"]
Prefix for URIs for when consul is behind an API gateway (reverse proxy).
[path_prefix: <string>]
[token: <secret>]
[datacenter: <string>]
Namespaces are only supported in Consul Enterprise.
[namespace: <string>]
Admin Partitions are only supported in Consul Enterprise.
[partition: <string>]
[scheme: <string> | default = "http"]
The username and password fields are deprecated in favor of the basic_auth configuration.
[username: <string>]
[password: <secret>]

A list of services for which targets are retrieved. If omitted, all services
are scraped.
services:
 [- <string>]

See https://www.consul.io/api/catalog.html#list-nodes-for-service to know more
about the possible filters that can be used.

An optional list of tags used to filter nodes for a given service. Services must contain all tags in
tags:
 [- <string>]

Node metadata key/value pairs to filter nodes for a given service.
[node_meta:
 [<string>: <string> ...]]

The string by which Consul tags are joined into the tag label.
[tag_separator: <string> | default = ,]

Allow stale Consul results (see https://www.consul.io/api/features/consistency.html). Will reduce lo
[allow_stale: <boolean> | default = true]

The time after which the provided names are refreshed.
On large setup it might be a good idea to increase this value because the catalog will change all th
[refresh_interval: <duration> | default = 30s]

Authentication information used to authenticate to the consul server.
Note that `basic_auth`, `authorization` and `oauth2` options are
mutually exclusive.
`password` and `password_file` are mutually exclusive.

Optional HTTP basic authentication information.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Optional `Authorization` header configuration.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 18/91

authorization:
 # Sets the authentication type.
 [type: <string> | default: Bearer]
 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials to the credentials read from the configured file.
 # It is mutually exclusive with `credentials`.
 [credentials_file: <filename>]

Optional OAuth 2.0 configuration.
oauth2:
 [<oauth2>]

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

TLS configuration.
tls_config:
 [<tls_config>]

Note that the IP number and port used to scrape the targets is assembled as

<__meta_consul_address>:<__meta_consul_service_port> . However, in some Consul setups, the

relevant address is in __meta_consul_service_address . In those cases, you can use the relabel

feature to replace the special __address__ label.

The relabeling phase is the preferred and more powerful way to filter services or nodes for a service

based on arbitrary labels. For users with thousands of services it can be more efficient to use the

Consul API directly which has basic support for filtering nodes (currently by node metadata and a

single tag).

<digitalocean_sd_config>

DigitalOcean SD configurations allow retrieving scrape targets from DigitalOcean's

(https://www.digitalocean.com/) Droplets API. This service discovery uses the public IPv4 address by

default, by that can be changed with relabeling, as demonstrated in the Prometheus digitalocean-sd

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 19/91

https://www.digitalocean.com/
https://www.digitalocean.com/
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-digitalocean.yml

configuration file (https://github.com/prometheus/prometheus/blob/release-

2.54/documentation/examples/prometheus-digitalocean.yml).

The following meta labels are available on targets during relabeling:

__meta_digitalocean_droplet_id : the id of the droplet

__meta_digitalocean_droplet_name : the name of the droplet

__meta_digitalocean_image : the slug of the droplet's image

__meta_digitalocean_image_name : the display name of the droplet's image

__meta_digitalocean_private_ipv4 : the private IPv4 of the droplet

__meta_digitalocean_public_ipv4 : the public IPv4 of the droplet

__meta_digitalocean_public_ipv6 : the public IPv6 of the droplet

__meta_digitalocean_region : the region of the droplet

__meta_digitalocean_size : the size of the droplet

__meta_digitalocean_status : the status of the droplet

__meta_digitalocean_features : the comma-separated list of features of the droplet

__meta_digitalocean_tags : the comma-separated list of tags of the droplet

__meta_digitalocean_vpc : the id of the droplet's VPC

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 20/91

https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-digitalocean.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-digitalocean.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-digitalocean.yml

Authentication information used to authenticate to the API server.
Note that `basic_auth` and `authorization` options are
mutually exclusive.
password and password_file are mutually exclusive.

Optional HTTP basic authentication information, not currently supported by DigitalOcean.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Optional `Authorization` header configuration.
authorization:
 # Sets the authentication type.
 [type: <string> | default: Bearer]
 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials to the credentials read from the configured file.
 # It is mutually exclusive with `credentials`.
 [credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:
 [<oauth2>]

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

TLS configuration.
tls_config:
 [<tls_config>]

The port to scrape metrics from.
[port: <int> | default = 80]

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 21/91

The time after which the droplets are refreshed.
[refresh_interval: <duration> | default = 60s]

<docker_sd_config>

Docker SD configurations allow retrieving scrape targets from Docker Engine

(https://docs.docker.com/engine/) hosts.

This SD discovers "containers" and will create a target for each network IP and port the container is

configured to expose.

Available meta labels:

__meta_docker_container_id : the id of the container

__meta_docker_container_name : the name of the container

__meta_docker_container_network_mode : the network mode of the container

__meta_docker_container_label_<labelname> : each label of the container, with any

unsupported characters converted to an underscore

__meta_docker_network_id : the ID of the network

__meta_docker_network_name : the name of the network

__meta_docker_network_ingress : whether the network is ingress

__meta_docker_network_internal : whether the network is internal

__meta_docker_network_label_<labelname> : each label of the network, with any unsupported

characters converted to an underscore

__meta_docker_network_scope : the scope of the network

__meta_docker_network_ip : the IP of the container in this network

__meta_docker_port_private : the port on the container

__meta_docker_port_public : the external port if a port-mapping exists

__meta_docker_port_public_ip : the public IP if a port-mapping exists

See below for the configuration options for Docker discovery:

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 22/91

https://docs.docker.com/engine/
https://docs.docker.com/engine/

Address of the Docker daemon.
host: <string>

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

TLS configuration.
tls_config:
 [<tls_config>]

The port to scrape metrics from, when `role` is nodes, and for discovered
tasks and services that don't have published ports.
[port: <int> | default = 80]

The host to use if the container is in host networking mode.
[host_networking_host: <string> | default = "localhost"]

Sort all non-nil networks in ascending order based on network name and
get the first network if the container has multiple networks defined,
thus avoiding collecting duplicate targets.
[match_first_network: <boolean> | default = true]

Optional filters to limit the discovery process to a subset of available
resources.
The available filters are listed in the upstream documentation:
https://docs.docker.com/engine/api/v1.40/#operation/ContainerList
[filters:
 [- name: <string>
 values: <string>, [...]]

The time after which the containers are refreshed.
[refresh_interval: <duration> | default = 60s]

Authentication information used to authenticate to the Docker daemon.
Note that `basic_auth` and `authorization` options are
mutually exclusive.
password and password_file are mutually exclusive.

Optional HTTP basic authentication information.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Optional `Authorization` header configuration.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 23/91

authorization:
 # Sets the authentication type.
 [type: <string> | default: Bearer]
 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials to the credentials read from the configured file.
 # It is mutually exclusive with `credentials`.
 [credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:
 [<oauth2>]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

The relabeling phase is the preferred and more powerful way to filter containers. For users with

thousands of containers it can be more efficient to use the Docker API directly which has basic

support for filtering containers (using filters).

See this example Prometheus configuration file

(https://github.com/prometheus/prometheus/blob/release-

2.54/documentation/examples/prometheus-docker.yml) for a detailed example of configuring

Prometheus for Docker Engine.

<dockerswarm_sd_config>

Docker Swarm SD configurations allow retrieving scrape targets from Docker Swarm

(https://docs.docker.com/engine/swarm/) engine.

One of the following roles can be configured to discover targets:

services

The services role discovers all Swarm services (https://docs.docker.com/engine/swarm/key-

concepts/#services-and-tasks) and exposes their ports as targets. For each published port of a

service, a single target is generated. If a service has no published ports, a target per service is

created using the port parameter defined in the SD configuration.

Available meta labels:

__meta_dockerswarm_service_id : the id of the service

__meta_dockerswarm_service_name : the name of the service

__meta_dockerswarm_service_mode : the mode of the service

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 24/91

https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-docker.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-docker.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-docker.yml
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/key-concepts/#services-and-tasks
https://docs.docker.com/engine/swarm/key-concepts/#services-and-tasks
https://docs.docker.com/engine/swarm/key-concepts/#services-and-tasks

__meta_dockerswarm_service_endpoint_port_name : the name of the endpoint port, if available

__meta_dockerswarm_service_endpoint_port_publish_mode : the publish mode of the endpoint

port

__meta_dockerswarm_service_label_<labelname> : each label of the service, with any

unsupported characters converted to an underscore

__meta_dockerswarm_service_task_container_hostname : the container hostname of the target, if

available

__meta_dockerswarm_service_task_container_image : the container image of the target

__meta_dockerswarm_service_updating_status : the status of the service, if available

__meta_dockerswarm_network_id : the ID of the network

__meta_dockerswarm_network_name : the name of the network

__meta_dockerswarm_network_ingress : whether the network is ingress

__meta_dockerswarm_network_internal : whether the network is internal

__meta_dockerswarm_network_label_<labelname> : each label of the network, with any

unsupported characters converted to an underscore

__meta_dockerswarm_network_scope : the scope of the network

tasks

The tasks role discovers all Swarm tasks (https://docs.docker.com/engine/swarm/key-

concepts/#services-and-tasks) and exposes their ports as targets. For each published port of a task,

a single target is generated. If a task has no published ports, a target per task is created using the

port parameter defined in the SD configuration.

Available meta labels:

__meta_dockerswarm_container_label_<labelname> : each label of the container, with any

unsupported characters converted to an underscore

__meta_dockerswarm_task_id : the id of the task

__meta_dockerswarm_task_container_id : the container id of the task

__meta_dockerswarm_task_desired_state : the desired state of the task

__meta_dockerswarm_task_slot : the slot of the task

__meta_dockerswarm_task_state : the state of the task

__meta_dockerswarm_task_port_publish_mode : the publish mode of the task port

__meta_dockerswarm_service_id : the id of the service

__meta_dockerswarm_service_name : the name of the service

__meta_dockerswarm_service_mode : the mode of the service

__meta_dockerswarm_service_label_<labelname> : each label of the service, with any

unsupported characters converted to an underscore

__meta_dockerswarm_network_id : the ID of the network

__meta_dockerswarm_network_name : the name of the network

__meta_dockerswarm_network_ingress : whether the network is ingress

__meta_dockerswarm_network_internal : whether the network is internal

__meta_dockerswarm_network_label_<labelname> : each label of the network, with any

unsupported characters converted to an underscore

__meta_dockerswarm_network_label : each label of the network, with any unsupported

characters converted to an underscore

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 25/91

https://docs.docker.com/engine/swarm/key-concepts/#services-and-tasks
https://docs.docker.com/engine/swarm/key-concepts/#services-and-tasks
https://docs.docker.com/engine/swarm/key-concepts/#services-and-tasks

__meta_dockerswarm_network_scope : the scope of the network

__meta_dockerswarm_node_id : the ID of the node

__meta_dockerswarm_node_hostname : the hostname of the node

__meta_dockerswarm_node_address : the address of the node

__meta_dockerswarm_node_availability : the availability of the node

__meta_dockerswarm_node_label_<labelname> : each label of the node, with any unsupported

characters converted to an underscore

__meta_dockerswarm_node_platform_architecture : the architecture of the node

__meta_dockerswarm_node_platform_os : the operating system of the node

__meta_dockerswarm_node_role : the role of the node

__meta_dockerswarm_node_status : the status of the node

The __meta_dockerswarm_network_* meta labels are not populated for ports which are published

with mode=host .

nodes

The nodes role is used to discover Swarm nodes (https://docs.docker.com/engine/swarm/key-

concepts/#nodes).

Available meta labels:

__meta_dockerswarm_node_address : the address of the node

__meta_dockerswarm_node_availability : the availability of the node

__meta_dockerswarm_node_engine_version : the version of the node engine

__meta_dockerswarm_node_hostname : the hostname of the node

__meta_dockerswarm_node_id : the ID of the node

__meta_dockerswarm_node_label_<labelname> : each label of the node, with any unsupported

characters converted to an underscore

__meta_dockerswarm_node_manager_address : the address of the manager component of the

node

__meta_dockerswarm_node_manager_leader : the leadership status of the manager component of

the node (true or false)

__meta_dockerswarm_node_manager_reachability : the reachability of the manager component of

the node

__meta_dockerswarm_node_platform_architecture : the architecture of the node

__meta_dockerswarm_node_platform_os : the operating system of the node

__meta_dockerswarm_node_role : the role of the node

__meta_dockerswarm_node_status : the status of the node

See below for the configuration options for Docker Swarm discovery:

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 26/91

https://docs.docker.com/engine/swarm/key-concepts/#nodes
https://docs.docker.com/engine/swarm/key-concepts/#nodes
https://docs.docker.com/engine/swarm/key-concepts/#nodes

Address of the Docker daemon.
host: <string>

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

TLS configuration.
tls_config:
 [<tls_config>]

Role of the targets to retrieve. Must be `services`, `tasks`, or `nodes`.
role: <string>

The port to scrape metrics from, when `role` is nodes, and for discovered
tasks and services that don't have published ports.
[port: <int> | default = 80]

Optional filters to limit the discovery process to a subset of available
resources.
The available filters are listed in the upstream documentation:
Services: https://docs.docker.com/engine/api/v1.40/#operation/ServiceList
Tasks: https://docs.docker.com/engine/api/v1.40/#operation/TaskList
Nodes: https://docs.docker.com/engine/api/v1.40/#operation/NodeList
[filters:
 [- name: <string>
 values: <string>, [...]]

The time after which the service discovery data is refreshed.
[refresh_interval: <duration> | default = 60s]

Authentication information used to authenticate to the Docker daemon.
Note that `basic_auth` and `authorization` options are
mutually exclusive.
password and password_file are mutually exclusive.

Optional HTTP basic authentication information.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Optional `Authorization` header configuration.
authorization:
 # Sets the authentication type.
 [type: <string> | default: Bearer]

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 27/91

 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials to the credentials read from the configured file.
 # It is mutually exclusive with `credentials`.
 [credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:
 [<oauth2>]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

The relabeling phase is the preferred and more powerful way to filter tasks, services or nodes. For

users with thousands of tasks it can be more efficient to use the Swarm API directly which has basic

support for filtering nodes (using filters).

See this example Prometheus configuration file

(https://github.com/prometheus/prometheus/blob/release-

2.54/documentation/examples/prometheus-dockerswarm.yml) for a detailed example of configuring

Prometheus for Docker Swarm.

<dns_sd_config>

A DNS-based service discovery configuration allows specifying a set of DNS domain names which are

periodically queried to discover a list of targets. The DNS servers to be contacted are read from

/etc/resolv.conf .

This service discovery method only supports basic DNS A, AAAA, MX, NS and SRV record queries, but

not the advanced DNS-SD approach specified in RFC6763 (https://tools.ietf.org/html/rfc6763).

The following meta labels are available on targets during relabeling:

__meta_dns_name : the record name that produced the discovered target.

__meta_dns_srv_record_target : the target field of the SRV record

__meta_dns_srv_record_port : the port field of the SRV record

__meta_dns_mx_record_target : the target field of the MX record

__meta_dns_ns_record_target : the target field of the NS record

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 28/91

https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-dockerswarm.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-dockerswarm.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-dockerswarm.yml
https://tools.ietf.org/html/rfc6763
https://tools.ietf.org/html/rfc6763

A list of DNS domain names to be queried.
names:
 [- <string>]

The type of DNS query to perform. One of SRV, A, AAAA, MX or NS.
[type: <string> | default = 'SRV']

The port number used if the query type is not SRV.
[port: <int>]

The time after which the provided names are refreshed.
[refresh_interval: <duration> | default = 30s]

<ec2_sd_config>

EC2 SD configurations allow retrieving scrape targets from AWS EC2 instances. The private IP

address is used by default, but may be changed to the public IP address with relabeling.

The IAM credentials used must have the ec2:DescribeInstances permission to discover scrape

targets, and may optionally have the ec2:DescribeAvailabilityZones permission if you want the

availability zone ID available as a label (see below).

The following meta labels are available on targets during relabeling:

__meta_ec2_ami : the EC2 Amazon Machine Image

__meta_ec2_architecture : the architecture of the instance

__meta_ec2_availability_zone : the availability zone in which the instance is running

__meta_ec2_availability_zone_id : the availability zone ID

(https://docs.aws.amazon.com/ram/latest/userguide/working-with-az-ids.html) in which the

instance is running (requires ec2:DescribeAvailabilityZones)

__meta_ec2_instance_id : the EC2 instance ID

__meta_ec2_instance_lifecycle : the lifecycle of the EC2 instance, set only for 'spot' or

'scheduled' instances, absent otherwise

__meta_ec2_instance_state : the state of the EC2 instance

__meta_ec2_instance_type : the type of the EC2 instance

__meta_ec2_ipv6_addresses : comma separated list of IPv6 addresses assigned to the instance's

network interfaces, if present

__meta_ec2_owner_id : the ID of the AWS account that owns the EC2 instance

__meta_ec2_platform : the Operating System platform, set to 'windows' on Windows servers,

absent otherwise

__meta_ec2_primary_ipv6_addresses : comma separated list of the Primary IPv6 addresses of

the instance, if present. The list is ordered based on the position of each corresponding

network interface in the attachment order.

__meta_ec2_primary_subnet_id : the subnet ID of the primary network interface, if available

__meta_ec2_private_dns_name : the private DNS name of the instance, if available

__meta_ec2_private_ip : the private IP address of the instance, if present

__meta_ec2_public_dns_name : the public DNS name of the instance, if available

__meta_ec2_public_ip : the public IP address of the instance, if available

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 29/91

https://docs.aws.amazon.com/ram/latest/userguide/working-with-az-ids.html
https://docs.aws.amazon.com/ram/latest/userguide/working-with-az-ids.html

__meta_ec2_region : the region of the instance

__meta_ec2_subnet_id : comma separated list of subnets IDs in which the instance is running, if

available

__meta_ec2_tag_<tagkey> : each tag value of the instance

__meta_ec2_vpc_id : the ID of the VPC in which the instance is running, if available

See below for the configuration options for EC2 discovery:

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 30/91

The information to access the EC2 API.

The AWS region. If blank, the region from the instance metadata is used.
[region: <string>]

Custom endpoint to be used.
[endpoint: <string>]

The AWS API keys. If blank, the environment variables `AWS_ACCESS_KEY_ID`
and `AWS_SECRET_ACCESS_KEY` are used.
[access_key: <string>]
[secret_key: <secret>]
Named AWS profile used to connect to the API.
[profile: <string>]

AWS Role ARN, an alternative to using AWS API keys.
[role_arn: <string>]

Refresh interval to re-read the instance list.
[refresh_interval: <duration> | default = 60s]

The port to scrape metrics from. If using the public IP address, this must
instead be specified in the relabeling rule.
[port: <int> | default = 80]

Filters can be used optionally to filter the instance list by other criteria.
Available filter criteria can be found here:
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeInstances.html
Filter API documentation: https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_Filter.html
filters:
 [- name: <string>
 values: <string>, [...]]

Authentication information used to authenticate to the EC2 API.
Note that `basic_auth`, `authorization` and `oauth2` options are
mutually exclusive.
`password` and `password_file` are mutually exclusive.

Optional HTTP basic authentication information, currently not supported by AWS.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Optional `Authorization` header configuration, currently not supported by AWS.
authorization:
 # Sets the authentication type.
 [type: <string> | default: Bearer]
 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials to the credentials read from the configured file.
 # It is mutuall exclusive with `credentials`.
 [credentials_file: <filename>]

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 31/91

Optional OAuth 2.0 configuration, currently not supported by AWS.
oauth2:
 [<oauth2>]

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

TLS configuration.
tls_config:
 [<tls_config>]

The relabeling phase is the preferred and more powerful way to filter targets based on arbitrary

labels. For users with thousands of instances it can be more efficient to use the EC2 API directly

which has support for filtering instances.

<openstack_sd_config>

OpenStack SD configurations allow retrieving scrape targets from OpenStack Nova instances.

One of the following <openstack_role> types can be configured to discover targets:

hypervisor

The hypervisor role discovers one target per Nova hypervisor node. The target address defaults to

the host_ip attribute of the hypervisor.

The following meta labels are available on targets during relabeling:

__meta_openstack_hypervisor_host_ip : the hypervisor node's IP address.

__meta_openstack_hypervisor_hostname : the hypervisor node's name.

__meta_openstack_hypervisor_id : the hypervisor node's ID.

__meta_openstack_hypervisor_state : the hypervisor node's state.

__meta_openstack_hypervisor_status : the hypervisor node's status.

__meta_openstack_hypervisor_type : the hypervisor node's type.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 32/91

instance

The instance role discovers one target per network interface of Nova instance. The target address

defaults to the private IP address of the network interface.

The following meta labels are available on targets during relabeling:

__meta_openstack_address_pool : the pool of the private IP.

__meta_openstack_instance_flavor : the flavor name of the OpenStack instance, or the flavor ID

if the flavor name isn't available.

__meta_openstack_instance_id : the OpenStack instance ID.

__meta_openstack_instance_image : the ID of the image the OpenStack instance is using.

__meta_openstack_instance_name : the OpenStack instance name.

__meta_openstack_instance_status : the status of the OpenStack instance.

__meta_openstack_private_ip : the private IP of the OpenStack instance.

__meta_openstack_project_id : the project (tenant) owning this instance.

__meta_openstack_public_ip : the public IP of the OpenStack instance.

__meta_openstack_tag_<key> : each metadata item of the instance, with any unsupported

characters converted to an underscore.

__meta_openstack_user_id : the user account owning the tenant.

See below for the configuration options for OpenStack discovery:

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 33/91

The information to access the OpenStack API.

The OpenStack role of entities that should be discovered.
role: <openstack_role>

The OpenStack Region.
region: <string>

identity_endpoint specifies the HTTP endpoint that is required to work with
the Identity API of the appropriate version. While it's ultimately needed by
all of the identity services, it will often be populated by a provider-level
function.
[identity_endpoint: <string>]

username is required if using Identity V2 API. Consult with your provider's
control panel to discover your account's username. In Identity V3, either
userid or a combination of username and domain_id or domain_name are needed.
[username: <string>]
[userid: <string>]

password for the Identity V2 and V3 APIs. Consult with your provider's
control panel to discover your account's preferred method of authentication.
[password: <secret>]

At most one of domain_id and domain_name must be provided if using username
with Identity V3. Otherwise, either are optional.
[domain_name: <string>]
[domain_id: <string>]

The project_id and project_name fields are optional for the Identity V2 API.
Some providers allow you to specify a project_name instead of the project_id.
Some require both. Your provider's authentication policies will determine
how these fields influence authentication.
[project_name: <string>]
[project_id: <string>]

The application_credential_id or application_credential_name fields are
required if using an application credential to authenticate. Some providers
allow you to create an application credential to authenticate rather than a
password.
[application_credential_name: <string>]
[application_credential_id: <string>]

The application_credential_secret field is required if using an application
credential to authenticate.
[application_credential_secret: <secret>]

Whether the service discovery should list all instances for all projects.
It is only relevant for the 'instance' role and usually requires admin permissions.
[all_tenants: <boolean> | default: false]

Refresh interval to re-read the instance list.
[refresh_interval: <duration> | default = 60s]

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 34/91

The port to scrape metrics from. If using the public IP address, this must
instead be specified in the relabeling rule.
[port: <int> | default = 80]

The availability of the endpoint to connect to. Must be one of public, admin or internal.
[availability: <string> | default = "public"]

TLS configuration.
tls_config:
 [<tls_config>]

<ovhcloud_sd_config>

OVHcloud SD configurations allow retrieving scrape targets from OVHcloud's dedicated servers

(https://www.ovhcloud.com/en/bare-metal/) and VPS (https://www.ovhcloud.com/en/vps/) using

their API (https://api.ovh.com/). Prometheus will periodically check the REST endpoint and create a

target for every discovered server. The role will try to use the public IPv4 address as default address,

if there's none it will try to use the IPv6 one. This may be changed with relabeling. For OVHcloud's

public cloud instances (https://www.ovhcloud.com/en/public-cloud/) you can use the

openstacksdconfig.

VPS

__meta_ovhcloud_vps_cluster : the cluster of the server

__meta_ovhcloud_vps_datacenter : the datacenter of the server

__meta_ovhcloud_vps_disk : the disk of the server

__meta_ovhcloud_vps_display_name : the display name of the server

__meta_ovhcloud_vps_ipv4 : the IPv4 of the server

__meta_ovhcloud_vps_ipv6 : the IPv6 of the server

__meta_ovhcloud_vps_keymap : the KVM keyboard layout of the server

__meta_ovhcloud_vps_maximum_additional_ip : the maximum additional IPs of the server

__meta_ovhcloud_vps_memory_limit : the memory limit of the server

__meta_ovhcloud_vps_memory : the memory of the server

__meta_ovhcloud_vps_monitoring_ip_blocks : the monitoring IP blocks of the server

__meta_ovhcloud_vps_name : the name of the server

__meta_ovhcloud_vps_netboot_mode : the netboot mode of the server

__meta_ovhcloud_vps_offer_type : the offer type of the server

__meta_ovhcloud_vps_offer : the offer of the server

__meta_ovhcloud_vps_state : the state of the server

__meta_ovhcloud_vps_vcore : the number of virtual cores of the server

__meta_ovhcloud_vps_version : the version of the server

__meta_ovhcloud_vps_zone : the zone of the server

Dedicated servers

__meta_ovhcloud_dedicated_server_commercial_range : the commercial range of the server

__meta_ovhcloud_dedicated_server_datacenter : the datacenter of the server

__meta_ovhcloud_dedicated_server_ipv4 : the IPv4 of the server

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 35/91

https://www.ovhcloud.com/en/bare-metal/
https://www.ovhcloud.com/en/bare-metal/
https://www.ovhcloud.com/en/vps/
https://www.ovhcloud.com/en/vps/
https://api.ovh.com/
https://api.ovh.com/
https://www.ovhcloud.com/en/public-cloud/
https://www.ovhcloud.com/en/public-cloud/

__meta_ovhcloud_dedicated_server_ipv6 : the IPv6 of the server

__meta_ovhcloud_dedicated_server_link_speed : the link speed of the server

__meta_ovhcloud_dedicated_server_name : the name of the server

__meta_ovhcloud_dedicated_server_no_intervention : whether datacenter intervention is

disabled for the server

__meta_ovhcloud_dedicated_server_os : the operating system of the server

__meta_ovhcloud_dedicated_server_rack : the rack of the server

__meta_ovhcloud_dedicated_server_reverse : the reverse DNS name of the server

__meta_ovhcloud_dedicated_server_server_id : the ID of the server

__meta_ovhcloud_dedicated_server_state : the state of the server

__meta_ovhcloud_dedicated_server_support_level : the support level of the server

See below for the configuration options for OVHcloud discovery:

Access key to use. https://api.ovh.com
application_key: <string>
application_secret: <secret>
consumer_key: <secret>
Service of the targets to retrieve. Must be `vps` or `dedicated_server`.
service: <string>
API endpoint. https://github.com/ovh/go-ovh#supported-apis
[endpoint: <string> | default = "ovh-eu"]
Refresh interval to re-read the resources list.
[refresh_interval: <duration> | default = 60s]

<puppetdb_sd_config>

PuppetDB SD configurations allow retrieving scrape targets from PuppetDB

(https://puppet.com/docs/puppetdb/latest/index.html) resources.

This SD discovers resources and will create a target for each resource returned by the API.

The resource address is the certname of the resource and can be changed during relabeling.

The following meta labels are available on targets during relabeling:

__meta_puppetdb_query : the Puppet Query Language (PQL) query

__meta_puppetdb_certname : the name of the node associated with the resource

__meta_puppetdb_resource : a SHA-1 hash of the resource’s type, title, and parameters, for

identification

__meta_puppetdb_type : the resource type

__meta_puppetdb_title : the resource title

__meta_puppetdb_exported : whether the resource is exported ("true" or "false")

__meta_puppetdb_tags : comma separated list of resource tags

__meta_puppetdb_file : the manifest file in which the resource was declared

__meta_puppetdb_environment : the environment of the node associated with the resource

__meta_puppetdb_parameter_<parametername> : the parameters of the resource

See below for the configuration options for PuppetDB discovery:

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 36/91

https://puppet.com/docs/puppetdb/latest/index.html
https://puppet.com/docs/puppetdb/latest/index.html

The URL of the PuppetDB root query endpoint.
url: <string>

Puppet Query Language (PQL) query. Only resources are supported.
https://puppet.com/docs/puppetdb/latest/api/query/v4/pql.html
query: <string>

Whether to include the parameters as meta labels.
Due to the differences between parameter types and Prometheus labels,
some parameters might not be rendered. The format of the parameters might
also change in future releases.
#
Note: Enabling this exposes parameters in the Prometheus UI and API. Make sure
that you don't have secrets exposed as parameters if you enable this.
[include_parameters: <boolean> | default = false]

Refresh interval to re-read the resources list.
[refresh_interval: <duration> | default = 60s]

The port to scrape metrics from.
[port: <int> | default = 80]

TLS configuration to connect to the PuppetDB.
tls_config:
 [<tls_config>]

basic_auth, authorization, and oauth2, are mutually exclusive.

Optional HTTP basic authentication information.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

`Authorization` HTTP header configuration.
authorization:
 # Sets the authentication type.
 [type: <string> | default: Bearer]
 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials with the credentials read from the configured file.
 # It is mutually exclusive with `credentials`.
 [credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:
 [<oauth2>]

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 37/91

contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

See this example Prometheus configuration file

(https://github.com/prometheus/prometheus/blob/release-

2.54/documentation/examples/prometheus-puppetdb.yml) for a detailed example of configuring

Prometheus with PuppetDB.

<file_sd_config>

File-based service discovery provides a more generic way to configure static targets and serves as an

interface to plug in custom service discovery mechanisms.

It reads a set of files containing a list of zero or more <static_config> s. Changes to all defined files

are detected via disk watches and applied immediately.

While those individual files are watched for changes, the parent directory is also watched implicitly.

This is to handle atomic renaming

(https://github.com/fsnotify/fsnotify/blob/c1467c02fba575afdb5f4201072ab8403bbf00f4/README.md?

plain=1#L128) efficiently and to detect new files that match the configured globs. This may cause

issues if the parent directory contains a large number of other files, as each of these files will be

watched too, even though the events related to them are not relevant.

Files may be provided in YAML or JSON format. Only changes resulting in well-formed target groups

are applied.

Files must contain a list of static configs, using these formats:

JSON

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 38/91

https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-puppetdb.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-puppetdb.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-puppetdb.yml
https://github.com/fsnotify/fsnotify/blob/c1467c02fba575afdb5f4201072ab8403bbf00f4/README.md?plain=1#L128
https://github.com/fsnotify/fsnotify/blob/c1467c02fba575afdb5f4201072ab8403bbf00f4/README.md?plain=1#L128
https://github.com/fsnotify/fsnotify/blob/c1467c02fba575afdb5f4201072ab8403bbf00f4/README.md?plain=1#L128

[
 {
 "targets": ["<host>", ...],
 "labels": {
 "<labelname>": "<labelvalue>", ...
 }
 },
 ...
]

YAML

- targets:
 [- '<host>']
 labels:
 [<labelname>: <labelvalue> ...]

As a fallback, the file contents are also re-read periodically at the specified refresh interval.

Each target has a meta label __meta_filepath during the relabeling phase. Its value is set to the

filepath from which the target was extracted.

There is a list of integrations (/docs/operating/integrations/#file-service-discovery) with this

discovery mechanism.

Patterns for files from which target groups are extracted.
files:
 [- <filename_pattern> ...]

Refresh interval to re-read the files.
[refresh_interval: <duration> | default = 5m]

Where <filename_pattern> may be a path ending in .json , .yml or .yaml . The last path segment

may contain a single * that matches any character sequence, e.g. my/path/tg_*.json .

<gce_sd_config>

GCE (https://cloud.google.com/compute/) SD configurations allow retrieving scrape targets from GCP

GCE instances. The private IP address is used by default, but may be changed to the public IP

address with relabeling.

The following meta labels are available on targets during relabeling:

__meta_gce_instance_id : the numeric id of the instance

__meta_gce_instance_name : the name of the instance

__meta_gce_label_<labelname> : each GCE label of the instance, with any unsupported

characters converted to an underscore

__meta_gce_machine_type : full or partial URL of the machine type of the instance

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 39/91

https://prometheus.io/docs/operating/integrations/#file-service-discovery
https://prometheus.io/docs/operating/integrations/#file-service-discovery
https://cloud.google.com/compute/
https://cloud.google.com/compute/

__meta_gce_metadata_<name> : each metadata item of the instance

__meta_gce_network : the network URL of the instance

__meta_gce_private_ip : the private IP address of the instance

__meta_gce_interface_ipv4_<name> : IPv4 address of each named interface

__meta_gce_project : the GCP project in which the instance is running

__meta_gce_public_ip : the public IP address of the instance, if present

__meta_gce_subnetwork : the subnetwork URL of the instance

__meta_gce_tags : comma separated list of instance tags

__meta_gce_zone : the GCE zone URL in which the instance is running

See below for the configuration options for GCE discovery:

The information to access the GCE API.

The GCP Project
project: <string>

The zone of the scrape targets. If you need multiple zones use multiple
gce_sd_configs.
zone: <string>

Filter can be used optionally to filter the instance list by other criteria
Syntax of this filter string is described here in the filter query parameter section:
https://cloud.google.com/compute/docs/reference/latest/instances/list
[filter: <string>]

Refresh interval to re-read the instance list
[refresh_interval: <duration> | default = 60s]

The port to scrape metrics from. If using the public IP address, this must
instead be specified in the relabeling rule.
[port: <int> | default = 80]

The tag separator is used to separate the tags on concatenation
[tag_separator: <string> | default = ,]

Credentials are discovered by the Google Cloud SDK default client by looking in the following places,

preferring the first location found:

1. a JSON file specified by the GOOGLE_APPLICATION_CREDENTIALS environment variable

2. a JSON file in the well-known path

$HOME/.config/gcloud/application_default_credentials.json

3. fetched from the GCE metadata server

If Prometheus is running within GCE, the service account associated with the instance it is running

on should have at least read-only permissions to the compute resources. If running outside of GCE

make sure to create an appropriate service account and place the credential file in one of the

expected locations.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 40/91

<hetzner_sd_config>

Hetzner SD configurations allow retrieving scrape targets from Hetzner (https://www.hetzner.com/)

Cloud (https://www.hetzner.cloud/) API and Robot (https://docs.hetzner.com/robot/) API. This service

discovery uses the public IPv4 address by default, but that can be changed with relabeling, as

demonstrated in the Prometheus hetzner-sd configuration file

(https://github.com/prometheus/prometheus/blob/release-

2.54/documentation/examples/prometheus-hetzner.yml).

The following meta labels are available on all targets during relabeling:

__meta_hetzner_server_id : the ID of the server

__meta_hetzner_server_name : the name of the server

__meta_hetzner_server_status : the status of the server

__meta_hetzner_public_ipv4 : the public ipv4 address of the server

__meta_hetzner_public_ipv6_network : the public ipv6 network (/64) of the server

__meta_hetzner_datacenter : the datacenter of the server

The labels below are only available for targets with role set to hcloud :

__meta_hetzner_hcloud_image_name : the image name of the server

__meta_hetzner_hcloud_image_description : the description of the server image

__meta_hetzner_hcloud_image_os_flavor : the OS flavor of the server image

__meta_hetzner_hcloud_image_os_version : the OS version of the server image

__meta_hetzner_hcloud_datacenter_location : the location of the server

__meta_hetzner_hcloud_datacenter_location_network_zone : the network zone of the server

__meta_hetzner_hcloud_server_type : the type of the server

__meta_hetzner_hcloud_cpu_cores : the CPU cores count of the server

__meta_hetzner_hcloud_cpu_type : the CPU type of the server (shared or dedicated)

__meta_hetzner_hcloud_memory_size_gb : the amount of memory of the server (in GB)

__meta_hetzner_hcloud_disk_size_gb : the disk size of the server (in GB)

__meta_hetzner_hcloud_private_ipv4_<networkname> : the private ipv4 address of the server

within a given network

__meta_hetzner_hcloud_label_<labelname> : each label of the server, with any unsupported

characters converted to an underscore

__meta_hetzner_hcloud_labelpresent_<labelname> : true for each label of the server, with any

unsupported characters converted to an underscore

The labels below are only available for targets with role set to robot :

__meta_hetzner_robot_product : the product of the server

__meta_hetzner_robot_cancelled : the server cancellation status

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 41/91

https://www.hetzner.com/
https://www.hetzner.com/
https://www.hetzner.cloud/
https://www.hetzner.cloud/
https://docs.hetzner.com/robot/
https://docs.hetzner.com/robot/
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-hetzner.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-hetzner.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-hetzner.yml

The Hetzner role of entities that should be discovered.
One of robot or hcloud.
role: <string>

Authentication information used to authenticate to the API server.
Note that `basic_auth` and `authorization` options are
mutually exclusive.
password and password_file are mutually exclusive.

Optional HTTP basic authentication information, required when role is robot
Role hcloud does not support basic auth.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Optional `Authorization` header configuration, required when role is
hcloud. Role robot does not support bearer token authentication.
authorization:
 # Sets the authentication type.
 [type: <string> | default: Bearer]
 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials to the credentials read from the configured file.
 # It is mutually exclusive with `credentials`.
 [credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:
 [<oauth2>]

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

TLS configuration.
tls_config:
 [<tls_config>]

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 42/91

The port to scrape metrics from.
[port: <int> | default = 80]

The time after which the servers are refreshed.
[refresh_interval: <duration> | default = 60s]

<http_sd_config>

HTTP-based service discovery provides a more generic way to configure static targets and serves as

an interface to plug in custom service discovery mechanisms.

It fetches targets from an HTTP endpoint containing a list of zero or more <static_config> s. The

target must reply with an HTTP 200 response. The HTTP header Content-Type must be

application/json , and the body must be valid JSON.

Example response body:

[
 {
 "targets": ["<host>", ...],
 "labels": {
 "<labelname>": "<labelvalue>", ...
 }
 },
 ...
]

The endpoint is queried periodically at the specified refresh interval. The

prometheus_sd_http_failures_total counter metric tracks the number of refresh failures.

Each target has a meta label __meta_url during the relabeling phase. Its value is set to the URL from

which the target was extracted.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 43/91

URL from which the targets are fetched.
url: <string>

Refresh interval to re-query the endpoint.
[refresh_interval: <duration> | default = 60s]

Authentication information used to authenticate to the API server.
Note that `basic_auth`, `authorization` and `oauth2` options are
mutually exclusive.
`password` and `password_file` are mutually exclusive.

Optional HTTP basic authentication information.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Optional `Authorization` header configuration.
authorization:
 # Sets the authentication type.
 [type: <string> | default: Bearer]
 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials to the credentials read from the configured file.
 # It is mutually exclusive with `credentials`.
 [credentials_file: <filename>]

Optional OAuth 2.0 configuration.
oauth2:
 [<oauth2>]

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

TLS configuration.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 44/91

tls_config:
 [<tls_config>]

<ionos_sd_config>

IONOS SD configurations allows retrieving scrape targets from IONOS Cloud

(https://cloud.ionos.com/) API. This service discovery uses the first NICs IP address by default, but

that can be changed with relabeling. The following meta labels are available on all targets during

relabeling:

__meta_ionos_server_availability_zone : the availability zone of the server

__meta_ionos_server_boot_cdrom_id : the ID of the CD-ROM the server is booted from

__meta_ionos_server_boot_image_id : the ID of the boot image or snapshot the server is booted

from

__meta_ionos_server_boot_volume_id : the ID of the boot volume

__meta_ionos_server_cpu_family : the CPU family of the server to

__meta_ionos_server_id : the ID of the server

__meta_ionos_server_ip : comma separated list of all IPs assigned to the server

__meta_ionos_server_lifecycle : the lifecycle state of the server resource

__meta_ionos_server_name : the name of the server

__meta_ionos_server_nic_ip_<nic_name> : comma separated list of IPs, grouped by the name of

each NIC attached to the server

__meta_ionos_server_servers_id : the ID of the servers the server belongs to

__meta_ionos_server_state : the execution state of the server

__meta_ionos_server_type : the type of the server

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 45/91

https://cloud.ionos.com/
https://cloud.ionos.com/

The unique ID of the data center.
datacenter_id: <string>

Authentication information used to authenticate to the API server.
Note that `basic_auth` and `authorization` options are
mutually exclusive.
password and password_file are mutually exclusive.

Optional HTTP basic authentication information, required when using IONOS
Cloud username and password as authentication method.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Optional `Authorization` header configuration, required when using IONOS
Cloud token as authentication method.
authorization:
 # Sets the authentication type.
 [type: <string> | default: Bearer]
 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials to the credentials read from the configured file.
 # It is mutually exclusive with `credentials`.
 [credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:
 [<oauth2>]

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

TLS configuration.
tls_config:
 [<tls_config>]

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 46/91

The port to scrape metrics from.
[port: <int> | default = 80]

The time after which the servers are refreshed.
[refresh_interval: <duration> | default = 60s]

<kubernetes_sd_config>

Kubernetes SD configurations allow retrieving scrape targets from Kubernetes'

(https://kubernetes.io/) REST API and always staying synchronized with the cluster state.

One of the following role types can be configured to discover targets:

node

The node role discovers one target per cluster node with the address defaulting to the Kubelet's

HTTP port. The target address defaults to the first existing address of the Kubernetes node object in

the address type order of NodeInternalIP , NodeExternalIP , NodeLegacyHostIP , and NodeHostName .

Available meta labels:

__meta_kubernetes_node_name : The name of the node object.

__meta_kubernetes_node_provider_id : The cloud provider's name for the node object.

__meta_kubernetes_node_label_<labelname> : Each label from the node object, with any

unsupported characters converted to an underscore.

__meta_kubernetes_node_labelpresent_<labelname> : true for each label from the node object,

with any unsupported characters converted to an underscore.

__meta_kubernetes_node_annotation_<annotationname> : Each annotation from the node object.

__meta_kubernetes_node_annotationpresent_<annotationname> : true for each annotation from

the node object.

__meta_kubernetes_node_address_<address_type> : The first address for each node address type,

if it exists.

In addition, the instance label for the node will be set to the node name as retrieved from the API

server.

service

The service role discovers a target for each service port for each service. This is generally useful for

blackbox monitoring of a service. The address will be set to the Kubernetes DNS name of the service

and respective service port.

Available meta labels:

__meta_kubernetes_namespace : The namespace of the service object.

__meta_kubernetes_service_annotation_<annotationname> : Each annotation from the service

object.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 47/91

https://kubernetes.io/
https://kubernetes.io/

__meta_kubernetes_service_annotationpresent_<annotationname> : "true" for each annotation of

the service object.

__meta_kubernetes_service_cluster_ip : The cluster IP address of the service. (Does not apply

to services of type ExternalName)

__meta_kubernetes_service_loadbalancer_ip : The IP address of the loadbalancer. (Applies to

services of type LoadBalancer)

__meta_kubernetes_service_external_name : The DNS name of the service. (Applies to services

of type ExternalName)

__meta_kubernetes_service_label_<labelname> : Each label from the service object, with any

unsupported characters converted to an underscore.

__meta_kubernetes_service_labelpresent_<labelname> : true for each label of the service

object, with any unsupported characters converted to an underscore.

__meta_kubernetes_service_name : The name of the service object.

__meta_kubernetes_service_port_name : Name of the service port for the target.

__meta_kubernetes_service_port_number : Number of the service port for the target.

__meta_kubernetes_service_port_protocol : Protocol of the service port for the target.

__meta_kubernetes_service_type : The type of the service.

pod

The pod role discovers all pods and exposes their containers as targets. For each declared port of a

container, a single target is generated. If a container has no specified ports, a port-free target per

container is created for manually adding a port via relabeling.

Available meta labels:

__meta_kubernetes_namespace : The namespace of the pod object.

__meta_kubernetes_pod_name : The name of the pod object.

__meta_kubernetes_pod_ip : The pod IP of the pod object.

__meta_kubernetes_pod_label_<labelname> : Each label from the pod object, with any

unsupported characters converted to an underscore.

__meta_kubernetes_pod_labelpresent_<labelname> : true for each label from the pod object,

with any unsupported characters converted to an underscore.

__meta_kubernetes_pod_annotation_<annotationname> : Each annotation from the pod object.

__meta_kubernetes_pod_annotationpresent_<annotationname> : true for each annotation from

the pod object.

__meta_kubernetes_pod_container_init : true if the container is an InitContainer

(https://kubernetes.io/docs/concepts/workloads/pods/init-containers/)

__meta_kubernetes_pod_container_name : Name of the container the target address points to.

__meta_kubernetes_pod_container_id : ID of the container the target address points to. The ID is

in the form <type>://<container_id> .

__meta_kubernetes_pod_container_image : The image the container is using.

__meta_kubernetes_pod_container_port_name : Name of the container port.

__meta_kubernetes_pod_container_port_number : Number of the container port.

__meta_kubernetes_pod_container_port_protocol : Protocol of the container port.

__meta_kubernetes_pod_ready : Set to true or false for the pod's ready state.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 48/91

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

__meta_kubernetes_pod_phase : Set to Pending , Running , Succeeded , Failed or Unknown in the

lifecycle (https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase).

__meta_kubernetes_pod_node_name : The name of the node the pod is scheduled onto.

__meta_kubernetes_pod_host_ip : The current host IP of the pod object.

__meta_kubernetes_pod_uid : The UID of the pod object.

__meta_kubernetes_pod_controller_kind : Object kind of the pod controller.

__meta_kubernetes_pod_controller_name : Name of the pod controller.

endpoints

The endpoints role discovers targets from listed endpoints of a service. For each endpoint address

one target is discovered per port. If the endpoint is backed by a pod, all additional container ports of

the pod, not bound to an endpoint port, are discovered as targets as well.

Available meta labels:

__meta_kubernetes_namespace : The namespace of the endpoints object.

__meta_kubernetes_endpoints_name : The names of the endpoints object.

__meta_kubernetes_endpoints_label_<labelname> : Each label from the endpoints object, with

any unsupported characters converted to an underscore.

__meta_kubernetes_endpoints_labelpresent_<labelname> : true for each label from the

endpoints object, with any unsupported characters converted to an underscore.

__meta_kubernetes_endpoints_annotation_<annotationname> : Each annotation from the

endpoints object.

__meta_kubernetes_endpoints_annotationpresent_<annotationname> : true for each annotation

from the endpoints object.

For all targets discovered directly from the endpoints list (those not additionally inferred from

underlying pods), the following labels are attached:

__meta_kubernetes_endpoint_hostname : Hostname of the endpoint.

__meta_kubernetes_endpoint_node_name : Name of the node hosting the endpoint.

__meta_kubernetes_endpoint_ready : Set to true or false for the endpoint's ready state.

__meta_kubernetes_endpoint_port_name : Name of the endpoint port.

__meta_kubernetes_endpoint_port_protocol : Protocol of the endpoint port.

__meta_kubernetes_endpoint_address_target_kind : Kind of the endpoint address target.

__meta_kubernetes_endpoint_address_target_name : Name of the endpoint address target.

If the endpoints belong to a service, all labels of the role: service discovery are attached.

For all targets backed by a pod, all labels of the role: pod discovery are attached.

endpointslice

The endpointslice role discovers targets from existing endpointslices. For each endpoint address

referenced in the endpointslice object one target is discovered. If the endpoint is backed by a pod,

all additional container ports of the pod, not bound to an endpoint port, are discovered as targets as

well.

Available meta labels:

__meta_kubernetes_namespace : The namespace of the endpoints object.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 49/91

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase

__meta_kubernetes_endpointslice_name : The name of endpointslice object.

__meta_kubernetes_endpointslice_label_<labelname> : Each label from the endpointslice object,

with any unsupported characters converted to an underscore.

__meta_kubernetes_endpointslice_labelpresent_<labelname> : true for each label from the

endpointslice object, with any unsupported characters converted to an underscore.

__meta_kubernetes_endpointslice_annotation_<annotationname> : Each annotation from the

endpointslice object.

__meta_kubernetes_endpointslice_annotationpresent_<annotationname> : true for each

annotation from the endpointslice object.

For all targets discovered directly from the endpointslice list (those not additionally inferred

from underlying pods), the following labels are attached:

__meta_kubernetes_endpointslice_address_target_kind : Kind of the referenced object.

__meta_kubernetes_endpointslice_address_target_name : Name of referenced object.

__meta_kubernetes_endpointslice_address_type : The ip protocol family of the address of

the target.

__meta_kubernetes_endpointslice_endpoint_conditions_ready : Set to true or false for

the referenced endpoint's ready state.

__meta_kubernetes_endpointslice_endpoint_conditions_serving : Set to true or false for

the referenced endpoint's serving state.

__meta_kubernetes_endpointslice_endpoint_conditions_terminating : Set to true or

false for the referenced endpoint's terminating state.

__meta_kubernetes_endpointslice_endpoint_topology_kubernetes_io_hostname : Name of

the node hosting the referenced endpoint.

__meta_kubernetes_endpointslice_endpoint_topology_present_kubernetes_io_hostname :

Flag that shows if the referenced object has a kubernetes.io/hostname annotation.

__meta_kubernetes_endpointslice_endpoint_hostname : Hostname of the referenced

endpoint.

__meta_kubernetes_endpointslice_endpoint_node_name : Name of the Node hosting the

referenced endpoint.

__meta_kubernetes_endpointslice_endpoint_zone : Zone the referenced endpoint exists in

(only available when using the discovery.k8s.io/v1 API group).

__meta_kubernetes_endpointslice_port : Port of the referenced endpoint.

__meta_kubernetes_endpointslice_port_name : Named port of the referenced endpoint.

__meta_kubernetes_endpointslice_port_protocol : Protocol of the referenced endpoint.

If the endpoints belong to a service, all labels of the role: service discovery are attached.

For all targets backed by a pod, all labels of the role: pod discovery are attached.

ingress

The ingress role discovers a target for each path of each ingress. This is generally useful for

blackbox monitoring of an ingress. The address will be set to the host specified in the ingress spec.

Available meta labels:

__meta_kubernetes_namespace : The namespace of the ingress object.

__meta_kubernetes_ingress_name : The name of the ingress object.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 50/91

__meta_kubernetes_ingress_label_<labelname> : Each label from the ingress object, with any

unsupported characters converted to an underscore.

__meta_kubernetes_ingress_labelpresent_<labelname> : true for each label from the ingress

object, with any unsupported characters converted to an underscore.

__meta_kubernetes_ingress_annotation_<annotationname> : Each annotation from the ingress

object.

__meta_kubernetes_ingress_annotationpresent_<annotationname> : true for each annotation

from the ingress object.

__meta_kubernetes_ingress_class_name : Class name from ingress spec, if present.

__meta_kubernetes_ingress_scheme : Protocol scheme of ingress, https if TLS config is set.

Defaults to http .

__meta_kubernetes_ingress_path : Path from ingress spec. Defaults to / .

See below for the configuration options for Kubernetes discovery:

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 51/91

The information to access the Kubernetes API.

The API server addresses. If left empty, Prometheus is assumed to run inside
of the cluster and will discover API servers automatically and use the pod's
CA certificate and bearer token file at /var/run/secrets/kubernetes.io/serviceaccount/.
[api_server: <host>]

The Kubernetes role of entities that should be discovered.
One of endpoints, endpointslice, service, pod, node, or ingress.
role: <string>

Optional path to a kubeconfig file.
Note that api_server and kube_config are mutually exclusive.
[kubeconfig_file: <filename>]

Optional authentication information used to authenticate to the API server.
Note that `basic_auth` and `authorization` options are mutually exclusive.
password and password_file are mutually exclusive.

Optional HTTP basic authentication information.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Optional `Authorization` header configuration.
authorization:
 # Sets the authentication type.
 [type: <string> | default: Bearer]
 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials to the credentials read from the configured file.
 # It is mutually exclusive with `credentials`.
 [credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:
 [<oauth2>]

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

Configure whether HTTP requests follow HTTP 3xx redirects.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 52/91

[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

TLS configuration.
tls_config:
 [<tls_config>]

Optional namespace discovery. If omitted, all namespaces are used.
namespaces:
 own_namespace: <boolean>
 names:
 [- <string>]

Optional label and field selectors to limit the discovery process to a subset of available resources
See https://kubernetes.io/docs/concepts/overview/working-with-objects/field-selectors/
and https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/ to learn more about th
filters that can be used. The endpoints role supports pod, service and endpoints selectors.
The pod role supports node selectors when configured with `attach_metadata: {node: true}`.
Other roles only support selectors matching the role itself (e.g. node role can only contain node se

Note: When making decision about using field/label selector make sure that this
is the best approach - it will prevent Prometheus from reusing single list/watch
for all scrape configs. This might result in a bigger load on the Kubernetes API,
because per each selector combination there will be additional LIST/WATCH. On the other hand,
if you just want to monitor small subset of pods in large cluster it's recommended to use selectors.
Decision, if selectors should be used or not depends on the particular situation.
[selectors:
 [- role: <string>
 [label: <string>]
 [field: <string>]]]

Optional metadata to attach to discovered targets. If omitted, no additional metadata is attached.
attach_metadata:
Attaches node metadata to discovered targets. Valid for roles: pod, endpoints, endpointslice.
When set to true, Prometheus must have permissions to get Nodes.
 [node: <boolean> | default = false]

See this example Prometheus configuration file

(https://github.com/prometheus/prometheus/blob/release-

2.54/documentation/examples/prometheus-kubernetes.yml) for a detailed example of configuring

Prometheus for Kubernetes.

You may wish to check out the 3rd party Prometheus Operator (https://github.com/prometheus-

operator/prometheus-operator), which automates the Prometheus setup on top of Kubernetes.

<kuma_sd_config>

Kuma SD configurations allow retrieving scrape target from the Kuma (https://kuma.io) control

plane.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 53/91

https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-kubernetes.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-kubernetes.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-kubernetes.yml
https://github.com/prometheus-operator/prometheus-operator
https://github.com/prometheus-operator/prometheus-operator
https://github.com/prometheus-operator/prometheus-operator
https://kuma.io/
https://kuma.io/

This SD discovers "monitoring assignments" based on Kuma Dataplane Proxies

(https://kuma.io/docs/latest/documentation/dps-and-data-model), via the MADS v1 (Monitoring

Assignment Discovery Service) xDS API, and will create a target for each proxy inside a Prometheus-

enabled mesh.

The following meta labels are available for each target:

__meta_kuma_mesh : the name of the proxy's Mesh

__meta_kuma_dataplane : the name of the proxy

__meta_kuma_service : the name of the proxy's associated Service

__meta_kuma_label_<tagname> : each tag of the proxy

See below for the configuration options for Kuma MonitoringAssignment discovery:

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 54/91

https://kuma.io/docs/latest/documentation/dps-and-data-model
https://kuma.io/docs/latest/documentation/dps-and-data-model

Address of the Kuma Control Plane's MADS xDS server.
server: <string>

Client id is used by Kuma Control Plane to compute Monitoring Assignment for specific Prometheus bac
This is useful when migrating between multiple Prometheus backends, or having separate backend for e
When not specified, system hostname/fqdn will be used if available, if not `prometheus` will be used
[client_id: <string>]

The time to wait between polling update requests.
[refresh_interval: <duration> | default = 30s]

The time after which the monitoring assignments are refreshed.
[fetch_timeout: <duration> | default = 2m]

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

TLS configuration.
tls_config:
 [<tls_config>]

Authentication information used to authenticate to the Docker daemon.
Note that `basic_auth` and `authorization` options are
mutually exclusive.
password and password_file are mutually exclusive.

Optional HTTP basic authentication information.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Optional the `Authorization` header configuration.
authorization:
 # Sets the authentication type.
 [type: <string> | default: Bearer]
 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials with the credentials read from the configured file.
 # It is mutually exclusive with `credentials`.
 [credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 55/91

oauth2:
 [<oauth2>]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

The relabeling phase is the preferred and more powerful way to filter proxies and user-defined tags.

<lightsail_sd_config>

Lightsail SD configurations allow retrieving scrape targets from AWS Lightsail

(https://aws.amazon.com/lightsail/) instances. The private IP address is used by default, but may be

changed to the public IP address with relabeling.

The following meta labels are available on targets during relabeling:

__meta_lightsail_availability_zone : the availability zone in which the instance is running

__meta_lightsail_blueprint_id : the Lightsail blueprint ID

__meta_lightsail_bundle_id : the Lightsail bundle ID

__meta_lightsail_instance_name : the name of the Lightsail instance

__meta_lightsail_instance_state : the state of the Lightsail instance

__meta_lightsail_instance_support_code : the support code of the Lightsail instance

__meta_lightsail_ipv6_addresses : comma separated list of IPv6 addresses assigned to the

instance's network interfaces, if present

__meta_lightsail_private_ip : the private IP address of the instance

__meta_lightsail_public_ip : the public IP address of the instance, if available

__meta_lightsail_region : the region of the instance

__meta_lightsail_tag_<tagkey> : each tag value of the instance

See below for the configuration options for Lightsail discovery:

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 56/91

https://aws.amazon.com/lightsail/
https://aws.amazon.com/lightsail/

The information to access the Lightsail API.

The AWS region. If blank, the region from the instance metadata is used.
[region: <string>]

Custom endpoint to be used.
[endpoint: <string>]

The AWS API keys. If blank, the environment variables `AWS_ACCESS_KEY_ID`
and `AWS_SECRET_ACCESS_KEY` are used.
[access_key: <string>]
[secret_key: <secret>]
Named AWS profile used to connect to the API.
[profile: <string>]

AWS Role ARN, an alternative to using AWS API keys.
[role_arn: <string>]

Refresh interval to re-read the instance list.
[refresh_interval: <duration> | default = 60s]

The port to scrape metrics from. If using the public IP address, this must
instead be specified in the relabeling rule.
[port: <int> | default = 80]

Authentication information used to authenticate to the Lightsail API.
Note that `basic_auth`, `authorization` and `oauth2` options are
mutually exclusive.
`password` and `password_file` are mutually exclusive.

Optional HTTP basic authentication information, currently not supported by AWS.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Optional `Authorization` header configuration, currently not supported by AWS.
authorization:
 # Sets the authentication type.
 [type: <string> | default: Bearer]
 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials to the credentials read from the configured file.
 # It is mutuall exclusive with `credentials`.
 [credentials_file: <filename>]

Optional OAuth 2.0 configuration, currently not supported by AWS.
oauth2:
 [<oauth2>]

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 57/91

that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

TLS configuration.
tls_config:
 [<tls_config>]

<linode_sd_config>

Linode SD configurations allow retrieving scrape targets from Linode's (https://www.linode.com/)

Linode APIv4. This service discovery uses the public IPv4 address by default, by that can be changed

with relabeling, as demonstrated in the Prometheus linode-sd configuration file

(https://github.com/prometheus/prometheus/blob/release-

2.54/documentation/examples/prometheus-linode.yml).

The following meta labels are available on targets during relabeling:

__meta_linode_instance_id : the id of the linode instance

__meta_linode_instance_label : the label of the linode instance

__meta_linode_image : the slug of the linode instance's image

__meta_linode_private_ipv4 : the private IPv4 of the linode instance

__meta_linode_public_ipv4 : the public IPv4 of the linode instance

__meta_linode_public_ipv6 : the public IPv6 of the linode instance

__meta_linode_private_ipv4_rdns : the reverse DNS for the first private IPv4 of the linode

instance

__meta_linode_public_ipv4_rdns : the reverse DNS for the first public IPv4 of the linode

instance

__meta_linode_public_ipv6_rdns : the reverse DNS for the first public IPv6 of the linode

instance

__meta_linode_region : the region of the linode instance

__meta_linode_type : the type of the linode instance

__meta_linode_status : the status of the linode instance

__meta_linode_tags : a list of tags of the linode instance joined by the tag separator

__meta_linode_group : the display group a linode instance is a member of

__meta_linode_gpus : the number of GPU's of the linode instance

__meta_linode_hypervisor : the virtualization software powering the linode instance

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 58/91

https://www.linode.com/
https://www.linode.com/
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-linode.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-linode.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-linode.yml

__meta_linode_backups : the backup service status of the linode instance

__meta_linode_specs_disk_bytes : the amount of storage space the linode instance has access

to

__meta_linode_specs_memory_bytes : the amount of RAM the linode instance has access to

__meta_linode_specs_vcpus : the number of VCPUS this linode has access to

__meta_linode_specs_transfer_bytes : the amount of network transfer the linode instance is

allotted each month

__meta_linode_extra_ips : a list of all extra IPv4 addresses assigned to the linode instance

joined by the tag separator

__meta_linode_ipv6_ranges : a list of IPv6 ranges with mask assigned to the linode instance

joined by the tag separator

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 59/91

Authentication information used to authenticate to the API server.
Note that `basic_auth` and `authorization` options are
mutually exclusive.
password and password_file are mutually exclusive.
Note: Linode APIv4 Token must be created with scopes: 'linodes:read_only', 'ips:read_only', and 'eve

Optional HTTP basic authentication information, not currently supported by Linode APIv4.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Optional the `Authorization` header configuration.
authorization:
 # Sets the authentication type.
 [type: <string> | default: Bearer]
 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials with the credentials read from the configured file.
 # It is mutually exclusive with `credentials`.
 [credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:
 [<oauth2>]

Optional region to filter on.
[region: <string>]

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

TLS configuration.
tls_config:
 [<tls_config>]

The port to scrape metrics from.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 60/91

[port: <int> | default = 80]

The string by which Linode Instance tags are joined into the tag label.
[tag_separator: <string> | default = ,]

The time after which the linode instances are refreshed.
[refresh_interval: <duration> | default = 60s]

<marathon_sd_config>

Marathon SD configurations allow retrieving scrape targets using the Marathon

(https://mesosphere.github.io/marathon/) REST API. Prometheus will periodically check the REST

endpoint for currently running tasks and create a target group for every app that has at least one

healthy task.

The following meta labels are available on targets during relabeling:

__meta_marathon_app : the name of the app (with slashes replaced by dashes)

__meta_marathon_image : the name of the Docker image used (if available)

__meta_marathon_task : the ID of the Mesos task

__meta_marathon_app_label_<labelname> : any Marathon labels attached to the app, with any

unsupported characters converted to an underscore

__meta_marathon_port_definition_label_<labelname> : the port definition labels, with any

unsupported characters converted to an underscore

__meta_marathon_port_mapping_label_<labelname> : the port mapping labels, with any

unsupported characters converted to an underscore

__meta_marathon_port_index : the port index number (e.g. 1 for PORT1)

See below for the configuration options for Marathon discovery:

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 61/91

https://mesosphere.github.io/marathon/
https://mesosphere.github.io/marathon/

List of URLs to be used to contact Marathon servers.
You need to provide at least one server URL.
servers:
 - <string>

Polling interval
[refresh_interval: <duration> | default = 30s]

Optional authentication information for token-based authentication
https://docs.mesosphere.com/1.11/security/ent/iam-api/#passing-an-authentication-token
It is mutually exclusive with `auth_token_file` and other authentication mechanisms.
[auth_token: <secret>]

Optional authentication information for token-based authentication
https://docs.mesosphere.com/1.11/security/ent/iam-api/#passing-an-authentication-token
It is mutually exclusive with `auth_token` and other authentication mechanisms.
[auth_token_file: <filename>]

Sets the `Authorization` header on every request with the
configured username and password.
This is mutually exclusive with other authentication mechanisms.
password and password_file are mutually exclusive.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Optional `Authorization` header configuration.
NOTE: The current version of DC/OS marathon (v1.11.0) does not support
standard `Authentication` header, use `auth_token` or `auth_token_file`
instead.
authorization:
 # Sets the authentication type.
 [type: <string> | default: Bearer]
 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials to the credentials read from the configured file.
 # It is mutually exclusive with `credentials`.
 [credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:
 [<oauth2>]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

TLS configuration for connecting to marathon servers
tls_config:

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 62/91

 [<tls_config>]

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

By default every app listed in Marathon will be scraped by Prometheus. If not all of your services

provide Prometheus metrics, you can use a Marathon label and Prometheus relabeling to control

which instances will actually be scraped. See the Prometheus marathon-sd configuration file

(https://github.com/prometheus/prometheus/blob/release-

2.54/documentation/examples/prometheus-marathon.yml) for a practical example on how to set up

your Marathon app and your Prometheus configuration.

By default, all apps will show up as a single job in Prometheus (the one specified in the configuration

file), which can also be changed using relabeling.

<nerve_sd_config>

Nerve SD configurations allow retrieving scrape targets from AirBnB's Nerve

(https://github.com/airbnb/nerve) which are stored in Zookeeper (https://zookeeper.apache.org/).

The following meta labels are available on targets during relabeling:

__meta_nerve_path : the full path to the endpoint node in Zookeeper

__meta_nerve_endpoint_host : the host of the endpoint

__meta_nerve_endpoint_port : the port of the endpoint

__meta_nerve_endpoint_name : the name of the endpoint

The Zookeeper servers.
servers:
 - <host>
Paths can point to a single service, or the root of a tree of services.
paths:
 - <string>
[timeout: <duration> | default = 10s]

<nomad_sd_config>

Nomad SD configurations allow retrieving scrape targets from Nomad's

(https://www.nomadproject.io/) Service API.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 63/91

https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-marathon.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-marathon.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-marathon.yml
https://github.com/airbnb/nerve
https://github.com/airbnb/nerve
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://www.nomadproject.io/
https://www.nomadproject.io/

The following meta labels are available on targets during relabeling:

__meta_nomad_address : the service address of the target

__meta_nomad_dc : the datacenter name for the target

__meta_nomad_namespace : the namespace of the target

__meta_nomad_node_id : the node name defined for the target

__meta_nomad_service : the name of the service the target belongs to

__meta_nomad_service_address : the service address of the target

__meta_nomad_service_id : the service ID of the target

__meta_nomad_service_port : the service port of the target

__meta_nomad_tags : the list of tags of the target joined by the tag separator

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 64/91

The information to access the Nomad API. It is to be defined
as the Nomad documentation requires.
[allow_stale: <boolean> | default = true]
[namespace: <string> | default = default]
[refresh_interval: <duration> | default = 60s]
[region: <string> | default = global]
[server: <host>]
[tag_separator: <string> | default = ,]

Authentication information used to authenticate to the nomad server.
Note that `basic_auth`, `authorization` and `oauth2` options are
mutually exclusive.
`password` and `password_file` are mutually exclusive.

Optional HTTP basic authentication information.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Optional `Authorization` header configuration.
authorization:
 # Sets the authentication type.
 [type: <string> | default: Bearer]
 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials to the credentials read from the configured file.
 # It is mutually exclusive with `credentials`.
 [credentials_file: <filename>]

Optional OAuth 2.0 configuration.
oauth2:
 [<oauth2>]

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

TLS configuration.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 65/91

tls_config:
 [<tls_config>]

<serverset_sd_config>

Serverset SD configurations allow retrieving scrape targets from Serversets

(https://github.com/twitter/finagle/tree/develop/finagle-serversets) which are stored in Zookeeper

(https://zookeeper.apache.org/). Serversets are commonly used by Finagle

(https://twitter.github.io/finagle/) and Aurora (https://aurora.apache.org/).

The following meta labels are available on targets during relabeling:

__meta_serverset_path : the full path to the serverset member node in Zookeeper

__meta_serverset_endpoint_host : the host of the default endpoint

__meta_serverset_endpoint_port : the port of the default endpoint

__meta_serverset_endpoint_host_<endpoint> : the host of the given endpoint

__meta_serverset_endpoint_port_<endpoint> : the port of the given endpoint

__meta_serverset_shard : the shard number of the member

__meta_serverset_status : the status of the member

The Zookeeper servers.
servers:
 - <host>
Paths can point to a single serverset, or the root of a tree of serversets.
paths:
 - <string>
[timeout: <duration> | default = 10s]

Serverset data must be in the JSON format, the Thrift format is not currently supported.

<triton_sd_config>

Triton (https://github.com/joyent/triton) SD configurations allow retrieving scrape targets from

Container Monitor (https://github.com/joyent/rfd/blob/master/rfd/0027/README.md) discovery

endpoints.

One of the following <triton_role> types can be configured to discover targets:

container

The container role discovers one target per "virtual machine" owned by the account . These are

SmartOS zones or lx/KVM/bhyve branded zones.

The following meta labels are available on targets during relabeling:

__meta_triton_groups : the list of groups belonging to the target joined by a comma separator

__meta_triton_machine_alias : the alias of the target container

__meta_triton_machine_brand : the brand of the target container

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 66/91

https://github.com/twitter/finagle/tree/develop/finagle-serversets
https://github.com/twitter/finagle/tree/develop/finagle-serversets
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://twitter.github.io/finagle/
https://twitter.github.io/finagle/
https://aurora.apache.org/
https://aurora.apache.org/
https://github.com/joyent/triton
https://github.com/joyent/triton
https://github.com/joyent/rfd/blob/master/rfd/0027/README.md
https://github.com/joyent/rfd/blob/master/rfd/0027/README.md

__meta_triton_machine_id : the UUID of the target container

__meta_triton_machine_image : the target container's image type

__meta_triton_server_id : the server UUID the target container is running on

cn

The cn role discovers one target for per compute node (also known as "server" or "global zone")

making up the Triton infrastructure. The account must be a Triton operator and is currently

required to own at least one container .

The following meta labels are available on targets during relabeling:

__meta_triton_machine_alias : the hostname of the target (requires triton-cmon 1.7.0 or

newer)

__meta_triton_machine_id : the UUID of the target

See below for the configuration options for Triton discovery:

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 67/91

The information to access the Triton discovery API.

The account to use for discovering new targets.
account: <string>

The type of targets to discover, can be set to:
* "container" to discover virtual machines (SmartOS zones, lx/KVM/bhyve branded zones) running on Tr
* "cn" to discover compute nodes (servers/global zones) making up the Triton infrastructure
[role : <string> | default = "container"]

The DNS suffix which should be applied to target.
dns_suffix: <string>

The Triton discovery endpoint (e.g. 'cmon.us-east-3b.triton.zone'). This is
often the same value as dns_suffix.
endpoint: <string>

A list of groups for which targets are retrieved, only supported when `role` == `container`.
If omitted all containers owned by the requesting account are scraped.
groups:
 [- <string> ...]

The port to use for discovery and metric scraping.
[port: <int> | default = 9163]

The interval which should be used for refreshing targets.
[refresh_interval: <duration> | default = 60s]

The Triton discovery API version.
[version: <int> | default = 1]

TLS configuration.
tls_config:
 [<tls_config>]

<eureka_sd_config>

Eureka SD configurations allow retrieving scrape targets using the Eureka

(https://github.com/Netflix/eureka) REST API. Prometheus will periodically check the REST endpoint

and create a target for every app instance.

The following meta labels are available on targets during relabeling:

__meta_eureka_app_name : the name of the app

__meta_eureka_app_instance_id : the ID of the app instance

__meta_eureka_app_instance_hostname : the hostname of the instance

__meta_eureka_app_instance_homepage_url : the homepage url of the app instance

__meta_eureka_app_instance_statuspage_url : the status page url of the app instance

__meta_eureka_app_instance_healthcheck_url : the health check url of the app instance

__meta_eureka_app_instance_ip_addr : the IP address of the app instance

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 68/91

https://github.com/Netflix/eureka
https://github.com/Netflix/eureka

__meta_eureka_app_instance_vip_address : the VIP address of the app instance

__meta_eureka_app_instance_secure_vip_address : the secure VIP address of the app instance

__meta_eureka_app_instance_status : the status of the app instance

__meta_eureka_app_instance_port : the port of the app instance

__meta_eureka_app_instance_port_enabled : the port enabled of the app instance

__meta_eureka_app_instance_secure_port : the secure port address of the app instance

__meta_eureka_app_instance_secure_port_enabled : the secure port of the app instance

__meta_eureka_app_instance_country_id : the country ID of the app instance

__meta_eureka_app_instance_metadata_<metadataname> : app instance metadata

__meta_eureka_app_instance_datacenterinfo_name : the datacenter name of the app instance

__meta_eureka_app_instance_datacenterinfo_<metadataname> : the datacenter metadata

See below for the configuration options for Eureka discovery:

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 69/91

The URL to connect to the Eureka server.
server: <string>

Sets the `Authorization` header on every request with the
configured username and password.
password and password_file are mutually exclusive.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Optional `Authorization` header configuration.
authorization:
 # Sets the authentication type.
 [type: <string> | default: Bearer]
 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials to the credentials read from the configured file.
 # It is mutually exclusive with `credentials`.
 [credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:
 [<oauth2>]

Configures the scrape request's TLS settings.
tls_config:
 [<tls_config>]

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

Refresh interval to re-read the app instance list.
[refresh_interval: <duration> | default = 30s]

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 70/91

See the Prometheus eureka-sd configuration file

(https://github.com/prometheus/prometheus/blob/release-

2.54/documentation/examples/prometheus-eureka.yml) for a practical example on how to set up

your Eureka app and your Prometheus configuration.

<scaleway_sd_config>

Scaleway SD configurations allow retrieving scrape targets from Scaleway instances

(https://www.scaleway.com/en/virtual-instances/) and baremetal services

(https://www.scaleway.com/en/bare-metal-servers/).

The following meta labels are available on targets during relabeling:

Instance role

__meta_scaleway_instance_boot_type : the boot type of the server

__meta_scaleway_instance_hostname : the hostname of the server

__meta_scaleway_instance_id : the ID of the server

__meta_scaleway_instance_image_arch : the arch of the server image

__meta_scaleway_instance_image_id : the ID of the server image

__meta_scaleway_instance_image_name : the name of the server image

__meta_scaleway_instance_location_cluster_id : the cluster ID of the server location

__meta_scaleway_instance_location_hypervisor_id : the hypervisor ID of the server location

__meta_scaleway_instance_location_node_id : the node ID of the server location

__meta_scaleway_instance_name : name of the server

__meta_scaleway_instance_organization_id : the organization of the server

__meta_scaleway_instance_private_ipv4 : the private IPv4 address of the server

__meta_scaleway_instance_project_id : project id of the server

__meta_scaleway_instance_public_ipv4 : the public IPv4 address of the server

__meta_scaleway_instance_public_ipv6 : the public IPv6 address of the server

__meta_scaleway_instance_region : the region of the server

__meta_scaleway_instance_security_group_id : the ID of the security group of the server

__meta_scaleway_instance_security_group_name : the name of the security group of the server

__meta_scaleway_instance_status : status of the server

__meta_scaleway_instance_tags : the list of tags of the server joined by the tag separator

__meta_scaleway_instance_type : commercial type of the server

__meta_scaleway_instance_zone : the zone of the server (ex: fr-par-1 , complete list here

(https://developers.scaleway.com/en/products/instance/api/#introduction))

This role uses the first address it finds in the following order: private IPv4, public IPv4, public IPv6.

This can be changed with relabeling, as demonstrated in the Prometheus scaleway-sd configuration

file (https://github.com/prometheus/prometheus/blob/release-

2.54/documentation/examples/prometheus-scaleway.yml). Should an instance have no address

before relabeling, it will not be added to the target list and you will not be able to relabel it.

Baremetal role

__meta_scaleway_baremetal_id : the ID of the server

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 71/91

https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-eureka.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-eureka.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-eureka.yml
https://www.scaleway.com/en/virtual-instances/
https://www.scaleway.com/en/virtual-instances/
https://www.scaleway.com/en/bare-metal-servers/
https://www.scaleway.com/en/bare-metal-servers/
https://developers.scaleway.com/en/products/instance/api/#introduction
https://developers.scaleway.com/en/products/instance/api/#introduction
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-scaleway.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-scaleway.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-scaleway.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-scaleway.yml

__meta_scaleway_baremetal_public_ipv4 : the public IPv4 address of the server

__meta_scaleway_baremetal_public_ipv6 : the public IPv6 address of the server

__meta_scaleway_baremetal_name : the name of the server

__meta_scaleway_baremetal_os_name : the name of the operating system of the server

__meta_scaleway_baremetal_os_version : the version of the operating system of the server

__meta_scaleway_baremetal_project_id : the project ID of the server

__meta_scaleway_baremetal_status : the status of the server

__meta_scaleway_baremetal_tags : the list of tags of the server joined by the tag separator

__meta_scaleway_baremetal_type : the commercial type of the server

__meta_scaleway_baremetal_zone : the zone of the server (ex: fr-par-1 , complete list here

(https://developers.scaleway.com/en/products/instance/api/#introduction))

This role uses the public IPv4 address by default. This can be changed with relabeling, as

demonstrated in the Prometheus scaleway-sd configuration file

(https://github.com/prometheus/prometheus/blob/release-

2.54/documentation/examples/prometheus-scaleway.yml).

See below for the configuration options for Scaleway discovery:

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 72/91

https://developers.scaleway.com/en/products/instance/api/#introduction
https://developers.scaleway.com/en/products/instance/api/#introduction
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-scaleway.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-scaleway.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-scaleway.yml

Access key to use. https://console.scaleway.com/project/credentials
access_key: <string>

Secret key to use when listing targets. https://console.scaleway.com/project/credentials
It is mutually exclusive with `secret_key_file`.
[secret_key: <secret>]

Sets the secret key with the credentials read from the configured file.
It is mutually exclusive with `secret_key`.
[secret_key_file: <filename>]

Project ID of the targets.
project_id: <string>

Role of the targets to retrieve. Must be `instance` or `baremetal`.
role: <string>

The port to scrape metrics from.
[port: <int> | default = 80]

API URL to use when doing the server listing requests.
[api_url: <string> | default = "https://api.scaleway.com"]

Zone is the availability zone of your targets (e.g. fr-par-1).
[zone: <string> | default = fr-par-1]

NameFilter specify a name filter (works as a LIKE) to apply on the server listing request.
[name_filter: <string>]

TagsFilter specify a tag filter (a server needs to have all defined tags to be listed) to apply on t
tags_filter:
[- <string>]

Refresh interval to re-read the targets list.
[refresh_interval: <duration> | default = 60s]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 73/91

TLS configuration.
tls_config:
 [<tls_config>]

<uyuni_sd_config>

Uyuni SD configurations allow retrieving scrape targets from managed systems via Uyuni

(https://www.uyuni-project.org/) API.

The following meta labels are available on targets during relabeling:

__meta_uyuni_endpoint_name : the name of the application endpoint

__meta_uyuni_exporter : the exporter exposing metrics for the target

__meta_uyuni_groups : the system groups of the target

__meta_uyuni_metrics_path : metrics path for the target

__meta_uyuni_minion_hostname : hostname of the Uyuni client

__meta_uyuni_primary_fqdn : primary FQDN of the Uyuni client

__meta_uyuni_proxy_module : the module name if Exporter Exporter proxy is configured for the

target

__meta_uyuni_scheme : the protocol scheme used for requests

__meta_uyuni_system_id : the system ID of the client

See below for the configuration options for Uyuni discovery:

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 74/91

https://www.uyuni-project.org/
https://www.uyuni-project.org/

The URL to connect to the Uyuni server.
server: <string>

Credentials are used to authenticate the requests to Uyuni API.
username: <string>
password: <secret>

The entitlement string to filter eligible systems.
[entitlement: <string> | default = monitoring_entitled]

The string by which Uyuni group names are joined into the groups label.
[separator: <string> | default = ,]

Refresh interval to re-read the managed targets list.
[refresh_interval: <duration> | default = 60s]

Optional HTTP basic authentication information, currently not supported by Uyuni.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Optional `Authorization` header configuration, currently not supported by Uyuni.
authorization:
 # Sets the authentication type.
 [type: <string> | default: Bearer]
 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials to the credentials read from the configured file.
 # It is mutually exclusive with `credentials`.
 [credentials_file: <filename>]

Optional OAuth 2.0 configuration, currently not supported by Uyuni.
Cannot be used at the same time as basic_auth or authorization.
oauth2:
 [<oauth2>]

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 75/91

[enable_http2: <boolean> | default: true]

TLS configuration.
tls_config:
 [<tls_config>]

See the Prometheus uyuni-sd configuration file

(https://github.com/prometheus/prometheus/blob/release-

2.54/documentation/examples/prometheus-uyuni.yml) for a practical example on how to set up

Uyuni Prometheus configuration.

<vultr_sd_config>

Vultr SD configurations allow retrieving scrape targets from Vultr (https://www.vultr.com/).

This service discovery uses the main IPv4 address by default, which that be changed with relabeling,

as demonstrated in the Prometheus vultr-sd configuration file

(https://github.com/prometheus/prometheus/blob/release-

2.54/documentation/examples/prometheus-vultr.yml).

The following meta labels are available on targets during relabeling:

__meta_vultr_instance_id : A unique ID for the vultr Instance.

__meta_vultr_instance_label : The user-supplied label for this instance.

__meta_vultr_instance_os : The Operating System name.

__meta_vultr_instance_os_id : The Operating System id used by this instance.

__meta_vultr_instance_region : The Region id where the Instance is located.

__meta_vultr_instance_plan : A unique ID for the Plan.

__meta_vultr_instance_main_ip : The main IPv4 address.

__meta_vultr_instance_internal_ip : The private IP address.

__meta_vultr_instance_main_ipv6 : The main IPv6 address.

__meta_vultr_instance_features : List of features that are available to the instance.

__meta_vultr_instance_tags : List of tags associated with the instance.

__meta_vultr_instance_hostname : The hostname for this instance.

__meta_vultr_instance_server_status : The server health status.

__meta_vultr_instance_vcpu_count : Number of vCPUs.

__meta_vultr_instance_ram_mb : The amount of RAM in MB.

__meta_vultr_instance_disk_gb : The size of the disk in GB.

__meta_vultr_instance_allowed_bandwidth_gb : Monthly bandwidth quota in GB.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 76/91

https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-uyuni.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-uyuni.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-uyuni.yml
https://www.vultr.com/
https://www.vultr.com/
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-vultr.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-vultr.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/prometheus-vultr.yml

Authentication information used to authenticate to the API server.
Note that `basic_auth` and `authorization` options are
mutually exclusive.
password and password_file are mutually exclusive.

Optional HTTP basic authentication information, not currently supported by Vultr.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Optional `Authorization` header configuration.
authorization:
 # Sets the authentication type.
 [type: <string> | default: Bearer]
 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials to the credentials read from the configured file.
 # It is mutually exclusive with `credentials`.
 [credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:
 [<oauth2>]

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

TLS configuration.
tls_config:
 [<tls_config>]

The port to scrape metrics from.
[port: <int> | default = 80]

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 77/91

The time after which the instances are refreshed.
[refresh_interval: <duration> | default = 60s]

<static_config>

A static_config allows specifying a list of targets and a common label set for them. It is the

canonical way to specify static targets in a scrape configuration.

The targets specified by the static config.
targets:
 [- '<host>']

Labels assigned to all metrics scraped from the targets.
labels:
 [<labelname>: <labelvalue> ...]

<relabel_config>

Relabeling is a powerful tool to dynamically rewrite the label set of a target before it gets scraped.

Multiple relabeling steps can be configured per scrape configuration. They are applied to the label

set of each target in order of their appearance in the configuration file.

Initially, aside from the configured per-target labels, a target's job label is set to the job_name value

of the respective scrape configuration. The __address__ label is set to the <host>:<port> address of

the target. After relabeling, the instance label is set to the value of __address__ by default if it was

not set during relabeling. The __scheme__ and __metrics_path__ labels are set to the scheme and

metrics path of the target respectively. The __param_<name> label is set to the value of the first

passed URL parameter called <name> .

The __scrape_interval__ and __scrape_timeout__ labels are set to the target's interval and timeout.

Additional labels prefixed with __meta_ may be available during the relabeling phase. They are set

by the service discovery mechanism that provided the target and vary between mechanisms.

Labels starting with __ will be removed from the label set after target relabeling is completed.

If a relabeling step needs to store a label value only temporarily (as the input to a subsequent

relabeling step), use the __tmp label name prefix. This prefix is guaranteed to never be used by

Prometheus itself.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 78/91

The source labels select values from existing labels. Their content is concatenated
using the configured separator and matched against the configured regular expression
for the replace, keep, and drop actions.
[source_labels: '[' <labelname> [, ...] ']']

Separator placed between concatenated source label values.
[separator: <string> | default = ;]

Label to which the resulting value is written in a replace action.
It is mandatory for replace actions. Regex capture groups are available.
[target_label: <labelname>]

Regular expression against which the extracted value is matched.
[regex: <regex> | default = (.*)]

Modulus to take of the hash of the source label values.
[modulus: <int>]

Replacement value against which a regex replace is performed if the
regular expression matches. Regex capture groups are available.
[replacement: <string> | default = $1]

Action to perform based on regex matching.
[action: <relabel_action> | default = replace]

<regex> is any valid RE2 regular expression (https://github.com/google/re2/wiki/Syntax). It is

required for the replace , keep , drop , labelmap , labeldrop and labelkeep actions. The regex is

anchored on both ends. To un-anchor the regex, use .*<regex>.* .

<relabel_action> determines the relabeling action to take:

replace : Match regex against the concatenated source_labels . Then, set target_label to

replacement , with match group references (${1} , ${2} , ...) in replacement substituted by their

value. If regex does not match, no replacement takes place.

lowercase : Maps the concatenated source_labels to their lower case.

uppercase : Maps the concatenated source_labels to their upper case.

keep : Drop targets for which regex does not match the concatenated source_labels .

drop : Drop targets for which regex matches the concatenated source_labels .

keepequal : Drop targets for which the concatenated source_labels do not match

target_label .

dropequal : Drop targets for which the concatenated source_labels do match target_label .

hashmod : Set target_label to the modulus of a hash of the concatenated source_labels .

labelmap : Match regex against all source label names, not just those specified in

source_labels . Then copy the values of the matching labels to label names given by

replacement with match group references (${1} , ${2} , ...) in replacement substituted by their

value.

labeldrop : Match regex against all label names. Any label that matches will be removed from

the set of labels.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 79/91

https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax

labelkeep : Match regex against all label names. Any label that does not match will be

removed from the set of labels.

Care must be taken with labeldrop and labelkeep to ensure that metrics are still uniquely labeled

once the labels are removed.

<metric_relabel_configs>

Metric relabeling is applied to samples as the last step before ingestion. It has the same

configuration format and actions as target relabeling. Metric relabeling does not apply to

automatically generated timeseries such as up .

One use for this is to exclude time series that are too expensive to ingest.

<alert_relabel_configs>

Alert relabeling is applied to alerts before they are sent to the Alertmanager. It has the same

configuration format and actions as target relabeling. Alert relabeling is applied after external labels.

One use for this is ensuring a HA pair of Prometheus servers with different external labels send

identical alerts.

<alertmanager_config>

An alertmanager_config section specifies Alertmanager instances the Prometheus server sends

alerts to. It also provides parameters to configure how to communicate with these Alertmanagers.

Alertmanagers may be statically configured via the static_configs parameter or dynamically

discovered using one of the supported service-discovery mechanisms.

Additionally, relabel_configs allow selecting Alertmanagers from discovered entities and provide

advanced modifications to the used API path, which is exposed through the __alerts_path__ label.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 80/91

Per-target Alertmanager timeout when pushing alerts.
[timeout: <duration> | default = 10s]

The api version of Alertmanager.
[api_version: <string> | default = v2]

Prefix for the HTTP path alerts are pushed to.
[path_prefix: <path> | default = /]

Configures the protocol scheme used for requests.
[scheme: <scheme> | default = http]

Sets the `Authorization` header on every request with the
configured username and password.
password and password_file are mutually exclusive.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Optional `Authorization` header configuration.
authorization:
 # Sets the authentication type.
 [type: <string> | default: Bearer]
 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials to the credentials read from the configured file.
 # It is mutually exclusive with `credentials`.
 [credentials_file: <filename>]

Optionally configures AWS's Signature Verification 4 signing process to
sign requests. Cannot be set at the same time as basic_auth, authorization, or oauth2.
To use the default credentials from the AWS SDK, use `sigv4: {}`.
sigv4:
 # The AWS region. If blank, the region from the default credentials chain
 # is used.
 [region: <string>]

 # The AWS API keys. If blank, the environment variables `AWS_ACCESS_KEY_ID`
 # and `AWS_SECRET_ACCESS_KEY` are used.
 [access_key: <string>]
 [secret_key: <secret>]

 # Named AWS profile used to authenticate.
 [profile: <string>]

 # AWS Role ARN, an alternative to using AWS API keys.
 [role_arn: <string>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:
 [<oauth2>]

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 81/91

Configures the scrape request's TLS settings.
tls_config:
 [<tls_config>]

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

List of Azure service discovery configurations.
azure_sd_configs:
 [- <azure_sd_config> ...]

List of Consul service discovery configurations.
consul_sd_configs:
 [- <consul_sd_config> ...]

List of DNS service discovery configurations.
dns_sd_configs:
 [- <dns_sd_config> ...]

List of EC2 service discovery configurations.
ec2_sd_configs:
 [- <ec2_sd_config> ...]

List of Eureka service discovery configurations.
eureka_sd_configs:
 [- <eureka_sd_config> ...]

List of file service discovery configurations.
file_sd_configs:
 [- <file_sd_config> ...]

List of DigitalOcean service discovery configurations.
digitalocean_sd_configs:
 [- <digitalocean_sd_config> ...]

List of Docker service discovery configurations.
docker_sd_configs:
 [- <docker_sd_config> ...]

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 82/91

List of Docker Swarm service discovery configurations.
dockerswarm_sd_configs:
 [- <dockerswarm_sd_config> ...]

List of GCE service discovery configurations.
gce_sd_configs:
 [- <gce_sd_config> ...]

List of Hetzner service discovery configurations.
hetzner_sd_configs:
 [- <hetzner_sd_config> ...]

List of HTTP service discovery configurations.
http_sd_configs:
 [- <http_sd_config> ...]

 # List of IONOS service discovery configurations.
ionos_sd_configs:
 [- <ionos_sd_config> ...]

List of Kubernetes service discovery configurations.
kubernetes_sd_configs:
 [- <kubernetes_sd_config> ...]

List of Lightsail service discovery configurations.
lightsail_sd_configs:
 [- <lightsail_sd_config> ...]

List of Linode service discovery configurations.
linode_sd_configs:
 [- <linode_sd_config> ...]

List of Marathon service discovery configurations.
marathon_sd_configs:
 [- <marathon_sd_config> ...]

List of AirBnB's Nerve service discovery configurations.
nerve_sd_configs:
 [- <nerve_sd_config> ...]

List of Nomad service discovery configurations.
nomad_sd_configs:
 [- <nomad_sd_config> ...]

List of OpenStack service discovery configurations.
openstack_sd_configs:
 [- <openstack_sd_config> ...]

List of OVHcloud service discovery configurations.
ovhcloud_sd_configs:
 [- <ovhcloud_sd_config> ...]

List of PuppetDB service discovery configurations.
puppetdb_sd_configs:
 [- <puppetdb_sd_config> ...]

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 83/91

List of Scaleway service discovery configurations.
scaleway_sd_configs:
 [- <scaleway_sd_config> ...]

List of Zookeeper Serverset service discovery configurations.
serverset_sd_configs:
 [- <serverset_sd_config> ...]

List of Triton service discovery configurations.
triton_sd_configs:
 [- <triton_sd_config> ...]

List of Uyuni service discovery configurations.
uyuni_sd_configs:
 [- <uyuni_sd_config> ...]

List of Vultr service discovery configurations.
vultr_sd_configs:
 [- <vultr_sd_config> ...]

List of labeled statically configured Alertmanagers.
static_configs:
 [- <static_config> ...]

List of Alertmanager relabel configurations.
relabel_configs:
 [- <relabel_config> ...]

List of alert relabel configurations.
alert_relabel_configs:
 [- <relabel_config> ...]

<remote_write>

write_relabel_configs is relabeling applied to samples before sending them to the remote

endpoint. Write relabeling is applied after external labels. This could be used to limit which samples

are sent.

There is a small demo (https://github.com/prometheus/prometheus/blob/release-

2.54/documentation/examples/remote_storage) of how to use this functionality.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 84/91

https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/remote_storage
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/remote_storage
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/remote_storage

The URL of the endpoint to send samples to.
url: <string>

protobuf message to use when writing to the remote write endpoint.
#
* The `prometheus.WriteRequest` represents the message introduced in Remote Write 1.0, which
will be deprecated eventually.
* The `io.prometheus.write.v2.Request` was introduced in Remote Write 2.0 and replaces the former,
by improving efficiency and sending metadata, created timestamp and native histograms by default.
#
Before changing this value, consult with your remote storage provider (or test) what message it supp
Read more on https://prometheus.io/docs/specs/remote_write_spec_2_0/#io-prometheus-write-v2-request
[protobuf_message: <prometheus.WriteRequest | io.prometheus.write.v2.Request> | default = prometheus.

Timeout for requests to the remote write endpoint.
[remote_timeout: <duration> | default = 30s]

Custom HTTP headers to be sent along with each remote write request.
Be aware that headers that are set by Prometheus itself can't be overwritten.
headers:
 [<string>: <string> ...]

List of remote write relabel configurations.
write_relabel_configs:
 [- <relabel_config> ...]

Name of the remote write config, which if specified must be unique among remote write configs.
The name will be used in metrics and logging in place of a generated value to help users distinguish
remote write configs.
[name: <string>]

Enables sending of exemplars over remote write. Note that exemplar storage itself must be enabled fo
[send_exemplars: <boolean> | default = false]

Enables sending of native histograms, also known as sparse histograms, over remote write.
For the `io.prometheus.write.v2.Request` message, this option is noop (always true).
[send_native_histograms: <boolean> | default = false]

Sets the `Authorization` header on every remote write request with the
configured username and password.
password and password_file are mutually exclusive.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Optional `Authorization` header configuration.
authorization:
 # Sets the authentication type.
 [type: <string> | default = Bearer]
 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials to the credentials read from the configured file.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 85/91

 # It is mutually exclusive with `credentials`.
 [credentials_file: <filename>]

Optionally configures AWS's Signature Verification 4 signing process to
sign requests. Cannot be set at the same time as basic_auth, authorization, oauth2, or azuread.
To use the default credentials from the AWS SDK, use `sigv4: {}`.
sigv4:
 # The AWS region. If blank, the region from the default credentials chain
 # is used.
 [region: <string>]

 # The AWS API keys. If blank, the environment variables `AWS_ACCESS_KEY_ID`
 # and `AWS_SECRET_ACCESS_KEY` are used.
 [access_key: <string>]
 [secret_key: <secret>]

 # Named AWS profile used to authenticate.
 [profile: <string>]

 # AWS Role ARN, an alternative to using AWS API keys.
 [role_arn: <string>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth, authorization, sigv4, or azuread.
oauth2:
 [<oauth2>]

Optional AzureAD configuration.
Cannot be used at the same time as basic_auth, authorization, oauth2, or sigv4.
azuread:
 # The Azure Cloud. Options are 'AzurePublic', 'AzureChina', or 'AzureGovernment'.
 [cloud: <string> | default = AzurePublic]

 # Azure User-assigned Managed identity.
 [managed_identity:
 [client_id: <string>]]

 # Azure OAuth.
 [oauth:
 [client_id: <string>]
 [client_secret: <string>]
 [tenant_id: <string>]]

 # Azure SDK auth.
 # See https://learn.microsoft.com/en-us/azure/developer/go/azure-sdk-authentication
 [sdk:
 [tenant_id: <string>]]

Configures the remote write request's TLS settings.
tls_config:
 [<tls_config>]

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 86/91

that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default = false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default = true]

Configures the queue used to write to remote storage.
queue_config:
 # Number of samples to buffer per shard before we block reading of more
 # samples from the WAL. It is recommended to have enough capacity in each
 # shard to buffer several requests to keep throughput up while processing
 # occasional slow remote requests.
 [capacity: <int> | default = 10000]
 # Maximum number of shards, i.e. amount of concurrency.
 [max_shards: <int> | default = 50]
 # Minimum number of shards, i.e. amount of concurrency.
 [min_shards: <int> | default = 1]
 # Maximum number of samples per send.
 [max_samples_per_send: <int> | default = 2000]
 # Maximum time a sample will wait for a send. The sample might wait less
 # if the buffer is full. Further time might pass due to potential retries.
 [batch_send_deadline: <duration> | default = 5s]
 # Initial retry delay. Gets doubled for every retry.
 [min_backoff: <duration> | default = 30ms]
 # Maximum retry delay.
 [max_backoff: <duration> | default = 5s]
 # Retry upon receiving a 429 status code from the remote-write storage.
 # This is experimental and might change in the future.
 [retry_on_http_429: <boolean> | default = false]
 # If set, any sample that is older than sample_age_limit
 # will not be sent to the remote storage. The default value is 0s,
 # which means that all samples are sent.
 [sample_age_limit: <duration> | default = 0s]

Configures the sending of series metadata to remote storage
if the `prometheus.WriteRequest` message was chosen. When
`io.prometheus.write.v2.Request` is used, metadata is always sent.
#
Metadata configuration is subject to change at any point
or be removed in future releases.
metadata_config:
 # Whether metric metadata is sent to remote storage or not.
 [send: <boolean> | default = true]
 # How frequently metric metadata is sent to remote storage.
 [send_interval: <duration> | default = 1m]

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 87/91

 # Maximum number of samples per send.
 [max_samples_per_send: <int> | default = 500]

There is a list of integrations (/docs/operating/integrations/#remote-endpoints-and-storage) with

this feature.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 88/91

https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage

<remote_read>

The URL of the endpoint to query from.
url: <string>

Name of the remote read config, which if specified must be unique among remote read configs.
The name will be used in metrics and logging in place of a generated value to help users distinguish
remote read configs.
[name: <string>]

An optional list of equality matchers which have to be
present in a selector to query the remote read endpoint.
required_matchers:
 [<labelname>: <labelvalue> ...]

Timeout for requests to the remote read endpoint.
[remote_timeout: <duration> | default = 1m]

Custom HTTP headers to be sent along with each remote read request.
Be aware that headers that are set by Prometheus itself can't be overwritten.
headers:
 [<string>: <string> ...]

Whether reads should be made for queries for time ranges that
the local storage should have complete data for.
[read_recent: <boolean> | default = false]

Sets the `Authorization` header on every remote read request with the
configured username and password.
password and password_file are mutually exclusive.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Optional `Authorization` header configuration.
authorization:
 # Sets the authentication type.
 [type: <string> | default: Bearer]
 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials to the credentials read from the configured file.
 # It is mutually exclusive with `credentials`.
 [credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:
 [<oauth2>]

Configures the remote read request's TLS settings.
tls_config:
 [<tls_config>]

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 89/91

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_PROXY, https_proxy,
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2.
[enable_http2: <boolean> | default: true]

Whether to use the external labels as selectors for the remote read endpoint.
[filter_external_labels: <boolean> | default = true]

There is a list of integrations (/docs/operating/integrations/#remote-endpoints-and-storage) with

this feature.

<tsdb>

tsdb lets you configure the runtime-reloadable configuration settings of the TSDB.

NOTE: Out-of-order ingestion is an experimental feature, but you do not need any additional

flag to enable it. Setting out_of_order_time_window to a positive duration enables it.

Configures how old an out-of-order/out-of-bounds sample can be w.r.t. the TSDB max time.
An out-of-order/out-of-bounds sample is ingested into the TSDB as long as the timestamp
of the sample is >= TSDB.MaxTime-out_of_order_time_window.
#
When out_of_order_time_window is >0, the errors out-of-order and out-of-bounds are
combined into a single error called 'too-old'; a sample is either (a) ingestible
into the TSDB, i.e. it is an in-order sample or an out-of-order/out-of-bounds sample
that is within the out-of-order window, or (b) too-old, i.e. not in-order
and before the out-of-order window.
#
When out_of_order_time_window is greater than 0, it also affects experimental agent. It allows
the agent's WAL to accept out-of-order samples that fall within the specified time window relative
to the timestamp of the last appended sample for the same series.
[out_of_order_time_window: <duration> | default = 0s]

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 90/91

https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list of

trademarks of The Linux Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-usage) page.

<exemplars>

Note that exemplar storage is still considered experimental and must be enabled via --enable-

feature=exemplar-storage .

Configures the maximum size of the circular buffer used to store exemplars for all series. Resizable
[max_exemplars: <int> | default = 100000]

<tracing_config>

tracing_config configures exporting traces from Prometheus to a tracing backend via the OTLP

protocol. Tracing is currently an experimental feature and could change in the future.

Client used to export the traces. Options are 'http' or 'grpc'.
[client_type: <string> | default = grpc]

Endpoint to send the traces to. Should be provided in format <host>:<port>.
[endpoint: <string>]

Sets the probability a given trace will be sampled. Must be a float from 0 through 1.
[sampling_fraction: <float> | default = 0]

If disabled, the client will use a secure connection.
[insecure: <boolean> | default = false]

Key-value pairs to be used as headers associated with gRPC or HTTP requests.
headers:
 [<string>: <string> ...]

Compression key for supported compression types. Supported compression: gzip.
[compression: <string>]

Maximum time the exporter will wait for each batch export.
[timeout: <duration> | default = 10s]

TLS configuration.
tls_config:
 [<tls_config>]

 This documentation is open-source (https://github.com/prometheus/docs#contributing-

changes). Please help improve it by filing issues or pull requests.

10/09/24, 19:16 Configuration | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/configuration/ 91/91

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Configuration (/docs/prometheus/latest/configuration/configuration/)

Recording rules (/docs/prometheus/latest/configuration/recording_rules/)

Alerting rules (/docs/prometheus/latest/configuration/alerting_rules/)

Template examples (/docs/prometheus/latest/configuration/template_examples/)

Template reference (/docs/prometheus/latest/configuration/template_reference/)

Unit Testing for Rules (/docs/prometheus/latest/configuration/unit_testing_rules/)

HTTPS and authentication (/docs/prometheus/latest/configuration/https/)

Querying

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

10/09/24, 19:16 Recording rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/ 1/7

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/template_examples/
https://prometheus.io/docs/prometheus/latest/configuration/template_reference/
https://prometheus.io/docs/prometheus/latest/configuration/unit_testing_rules/
https://prometheus.io/docs/prometheus/latest/configuration/https/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/

Configuring rules

Syntax-checking rules

Recording rules

<rule_group>

<rule>

DEFINING RECORDING RULES

Configuring rules

Prometheus supports two types of rules which

may be configured and then evaluated at

regular intervals: recording rules and alerting

rules (../alerting_rules/). To include rules in

Prometheus, create a file containing the

necessary rule statements and have Prometheus load the file via the

rule_files field in the Prometheus configuration (../configuration/). Rule files

use YAML.

The rule files can be reloaded at runtime by sending SIGHUP to the Prometheus

process. The changes are only applied if all rule files are well-formatted.

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:16 Recording rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/ 2/7

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/feature_flags/

Note about native histograms (experimental feature): Native histogram are always
recorded as gauge histograms (for now). Most cases will create gauge histograms
naturally, e.g. after rate() .

Syntax-checking rules

To quickly check whether a rule file is syntactically correct without starting a

Prometheus server, you can use Prometheus's promtool command-line utility

tool:

promtool check rules /path/to/example.rules.yml

The promtool binary is part of the prometheus archive offered on the project's

download page (/download/).

When the file is syntactically valid, the checker prints a textual representation of

the parsed rules to standard output and then exits with a 0 return status.

If there are any syntax errors or invalid input arguments, it prints an error

message to standard error and exits with a 1 return status.

Recording rules

Recording rules allow you to precompute frequently needed or computationally

expensive expressions and save their result as a new set of time series.

Querying the precomputed result will then often be much faster than executing

the original expression every time it is needed. This is especially useful for

dashboards, which need to query the same expression repeatedly every time

they refresh.

Recording and alerting rules exist in a rule group. Rules within a group are run

sequentially at a regular interval, with the same evaluation time. The names of

recording rules must be valid metric names

(/docs/concepts/data_model/#metric-names-and-labels). The names of alerting

rules must be valid label values (/docs/concepts/data_model/#metric-names-

and-labels).

10/09/24, 19:16 Recording rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/ 3/7

https://prometheus.io/download/
https://prometheus.io/download/
https://prometheus.io/docs/concepts/data_model/#metric-names-and-labels
https://prometheus.io/docs/concepts/data_model/#metric-names-and-labels
https://prometheus.io/docs/concepts/data_model/#metric-names-and-labels
https://prometheus.io/docs/concepts/data_model/#metric-names-and-labels
https://prometheus.io/docs/concepts/data_model/#metric-names-and-labels

The syntax of a rule file is:

groups:
 [- <rule_group>]

A simple example rules file would be:

groups:
 - name: example
 rules:
 - record: code:prometheus_http_requests_total:sum
 expr: sum by (code) (prometheus_http_requests_total)

<rule_group>

The name of the group. Must be unique within a file.
name: <string>

How often rules in the group are evaluated.
[interval: <duration> | default = global.evaluation_interval]

Limit the number of alerts an alerting rule and series a recording
rule can produce. 0 is no limit.
[limit: <int> | default = 0]

Offset the rule evaluation timestamp of this particular group by the specified
[query_offset: <duration> | default = global.rule_query_offset]

rules:
 [- <rule> ...]

<rule>

The syntax for recording rules is:

10/09/24, 19:16 Recording rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/ 4/7

The name of the time series to output to. Must be a valid metric name.
record: <string>

The PromQL expression to evaluate. Every evaluation cycle this is
evaluated at the current time, and the result recorded as a new set of
time series with the metric name as given by 'record'.
expr: <string>

Labels to add or overwrite before storing the result.
labels:
 [<labelname>: <labelvalue>]

The syntax for alerting rules is:

The name of the alert. Must be a valid label value.
alert: <string>

The PromQL expression to evaluate. Every evaluation cycle this is
evaluated at the current time, and all resultant time series become
pending/firing alerts.
expr: <string>

Alerts are considered firing once they have been returned for this long.
Alerts which have not yet fired for long enough are considered pending.
[for: <duration> | default = 0s]

How long an alert will continue firing after the condition that triggered it
has cleared.
[keep_firing_for: <duration> | default = 0s]

Labels to add or overwrite for each alert.
labels:
 [<labelname>: <tmpl_string>]

Annotations to add to each alert.
annotations:
 [<labelname>: <tmpl_string>]

See also the best practices for naming metrics created by recording rules

(/docs/practices/rules/#recording-rules).

10/09/24, 19:16 Recording rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/ 5/7

https://prometheus.io/docs/practices/rules/#recording-rules
https://prometheus.io/docs/practices/rules/#recording-rules

LIMITING ALERTS AND SERIES

A limit for alerts produced by alerting rules and series produced recording rules

can be configured per-group. When the limit is exceeded, all series produced by

the rule are discarded, and if it's an alerting rule, all alerts for the rule, active,

pending, or inactive, are cleared as well. The event will be recorded as an error

in the evaluation, and as such no stale markers are written.

RULE QUERY OFFSET

This is useful to ensure the underlying metrics have been received and stored

in Prometheus. Metric availability delays are more likely to occur when

Prometheus is running as a remote write target due to the nature of distributed

systems, but can also occur when there's anomalies with scraping and/or short

evaluation intervals.

FAILED RULE EVALUATIONS DUE TO SLOW
EVALUATION

If a rule group hasn't finished evaluating before its next evaluation is supposed

to start (as defined by the evaluation_interval), the next evaluation will be

skipped. Subsequent evaluations of the rule group will continue to be skipped

until the initial evaluation either completes or times out. When this happens,

there will be a gap in the metric produced by the recording rule. The

rule_group_iterations_missed_total metric will be incremented for each

missed iteration of the rule group.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:16 Recording rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/ 6/7

https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

10/09/24, 19:16 Recording rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/ 7/7

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Configuration (/docs/prometheus/latest/configuration/configuration/)

Recording rules (/docs/prometheus/latest/configuration/recording_rules/)

Alerting rules (/docs/prometheus/latest/configuration/alerting_rules/)

Template examples (/docs/prometheus/latest/configuration/template_examples/)

Template reference (/docs/prometheus/latest/configuration/template_reference/)

Unit Testing for Rules (/docs/prometheus/latest/configuration/unit_testing_rules/)

HTTPS and authentication (/docs/prometheus/latest/configuration/https/)

Querying

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

10/09/24, 19:16 Alerting rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/ 1/5

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/template_examples/
https://prometheus.io/docs/prometheus/latest/configuration/template_reference/
https://prometheus.io/docs/prometheus/latest/configuration/unit_testing_rules/
https://prometheus.io/docs/prometheus/latest/configuration/https/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/

Defining alerting rules

Inspecting alerts during

runtime

Sending alert

notifications

ALERTING RULES

Alerting rules allow you to define alert

conditions based on Prometheus expression

language expressions and to send

notifications about firing alerts to an external

service. Whenever the alert expression results

in one or more vector elements at a given

point in time, the alert counts as active for

these elements' label sets.

Defining alerting rules

Alerting rules are configured in Prometheus in the same way as recording rules

(../recording_rules/).

An example rules file with an alert would be:

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:16 Alerting rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/ 2/5

https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://prometheus.io/docs/prometheus/latest/feature_flags/

groups:
- name: example
 rules:
 - alert: HighRequestLatency
 expr: job:request_latency_seconds:mean5m{job="myjob"} > 0.5
 for: 10m
 labels:
 severity: page
 annotations:
 summary: High request latency

The optional for clause causes Prometheus to wait for a certain duration

between first encountering a new expression output vector element and

counting an alert as firing for this element. In this case, Prometheus will check

that the alert continues to be active during each evaluation for 10 minutes

before firing the alert. Elements that are active, but not firing yet, are in the

pending state. Alerting rules without the for clause will become active on the

first evaluation.

The labels clause allows specifying a set of additional labels to be attached to

the alert. Any existing conflicting labels will be overwritten. The label values can

be templated.

The annotations clause specifies a set of informational labels that can be used

to store longer additional information such as alert descriptions or runbook

links. The annotation values can be templated.

Templating

Label and annotation values can be templated using console templates

(/docs/visualization/consoles). The $labels variable holds the label key/value

pairs of an alert instance. The configured external labels can be accessed via

the $externalLabels variable. The $value variable holds the evaluated value of

an alert instance.

10/09/24, 19:16 Alerting rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/ 3/5

https://prometheus.io/docs/visualization/consoles
https://prometheus.io/docs/visualization/consoles

To insert a firing element's label values:
{{ $labels.<labelname> }}
To insert the numeric expression value of the firing element:
{{ $value }}

Examples:

groups:
- name: example
 rules:

 # Alert for any instance that is unreachable for >5 minutes.
 - alert: InstanceDown
 expr: up == 0
 for: 5m
 labels:
 severity: page
 annotations:
 summary: "Instance {{ $labels.instance }} down"
 description: "{{ $labels.instance }} of job {{ $labels.job }} has been down

 # Alert for any instance that has a median request latency >1s.
 - alert: APIHighRequestLatency
 expr: api_http_request_latencies_second{quantile="0.5"} > 1
 for: 10m
 annotations:
 summary: "High request latency on {{ $labels.instance }}"
 description: "{{ $labels.instance }} has a median request latency above 1s

Inspecting alerts during runtime

To manually inspect which alerts are active (pending or firing), navigate to the

"Alerts" tab of your Prometheus instance. This will show you the exact label sets

for which each defined alert is currently active.

For pending and firing alerts, Prometheus also stores synthetic time series of

the form ALERTS{alertname="<alert name>", alertstate="<pending or

firing>", <additional alert labels>} . The sample value is set to 1 as long as

10/09/24, 19:16 Alerting rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/ 4/5

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

the alert is in the indicated active (pending or firing) state, and the series is

marked stale when this is no longer the case.

Sending alert notifications

Prometheus's alerting rules are good at figuring what is broken right now, but

they are not a fully-fledged notification solution. Another layer is needed to add

summarization, notification rate limiting, silencing and alert dependencies on

top of the simple alert definitions. In Prometheus's ecosystem, the

Alertmanager (/docs/alerting/alertmanager/) takes on this role. Thus,

Prometheus may be configured to periodically send information about alert

states to an Alertmanager instance, which then takes care of dispatching the

right notifications.

Prometheus can be configured (../configuration/) to automatically discover

available Alertmanager instances through its service discovery integrations.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:16 Alerting rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/ 5/5

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Configuration (/docs/prometheus/latest/configuration/configuration/)

Recording rules (/docs/prometheus/latest/configuration/recording_rules/)

Alerting rules (/docs/prometheus/latest/configuration/alerting_rules/)

Template examples

(/docs/prometheus/latest/configuration/template_examples/)

Template reference (/docs/prometheus/latest/configuration/template_reference/)

Unit Testing for Rules (/docs/prometheus/latest/configuration/unit_testing_rules/)

HTTPS and authentication (/docs/prometheus/latest/configuration/https/)

Querying

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

Migration (/docs/prometheus/latest/migration/)

10/09/24, 19:17 Template examples | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/template_examples/ 1/5

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/template_examples/
https://prometheus.io/docs/prometheus/latest/configuration/template_reference/
https://prometheus.io/docs/prometheus/latest/configuration/unit_testing_rules/
https://prometheus.io/docs/prometheus/latest/configuration/https/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/

Simple alert field

templates

Simple iteration

Display one value

Using console URL

parameters

Advanced iteration

Defining reusable

templates

TEMPLATE EXAMPLES

Prometheus supports templating in the

annotations and labels of alerts, as well as in

served console pages. Templates have the

ability to run queries against the local

database, iterate over data, use conditionals,

format data, etc. The Prometheus templating

language is based on the Go templating

(https://golang.org/pkg/text/template/)

system.

API Stability (/docs/prometheus/latest/stability/)

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:17 Template examples | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/template_examples/ 2/5

https://golang.org/pkg/text/template/
https://golang.org/pkg/text/template/
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/feature_flags/

Simple alert field templates

alert: InstanceDown
expr: up == 0
for: 5m
labels:
 severity: page
annotations:
 summary: "Instance {{$labels.instance}} down"
 description: "{{$labels.instance}} of job {{$labels.job}} has been down for mor

Alert field templates will be executed during every rule iteration for each alert

that fires, so keep any queries and templates lightweight. If you have a need for

more complicated templates for alerts, it is recommended to link to a console

instead.

Simple iteration

This displays a list of instances, and whether they are up:

{{ range query "up" }}
 {{ .Labels.instance }} {{ .Value }}
{{ end }}

The special . variable contains the value of the current sample for each loop

iteration.

Display one value

{{ with query "some_metric{instance='someinstance'}" }}
 {{ . | first | value | humanize }}
{{ end }}

Go and Go's templating language are both strongly typed, so one must check

that samples were returned to avoid an execution error. For example this could

happen if a scrape or rule evaluation has not run yet, or a host was down.

10/09/24, 19:17 Template examples | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/template_examples/ 3/5

The included prom_query_drilldown template handles this, allows for

formatting of results, and linking to the expression browser

(/docs/visualization/browser/).

Using console URL parameters

{{ with printf "node_memory_MemTotal{job='node',instance='%s'}" .Params.instance
 {{ . | first | value | humanize1024 }}B
{{ end }}

If accessed as console.html?instance=hostname , .Params.instance will evaluate

to hostname .

Advanced iteration

<table>
{{ range printf "node_network_receive_bytes{job='node',instance='%s',device!='lo
 <tr><th colspan=2>{{ .Labels.device }}</th></tr>
 <tr>
 <td>Received</td>
 <td>{{ with printf "rate(node_network_receive_bytes{job='node',instance='%s',
 </tr>
 <tr>
 <td>Transmitted</td>
 <td>{{ with printf "rate(node_network_transmit_bytes{job='node',instance='%s
 </tr>{{ end }}
</table>

Here we iterate over all network devices and display the network traffic for

each.

As the range action does not specify a variable, .Params.instance is not

available inside the loop as . is now the loop variable.

10/09/24, 19:17 Template examples | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/template_examples/ 4/5

https://prometheus.io/docs/visualization/browser/
https://prometheus.io/docs/visualization/browser/

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

Defining reusable templates

Prometheus supports defining templates that can be reused. This is particularly

powerful when combined with console library (../template_reference/#console-

templates) support, allowing sharing of templates across consoles.

{{/* Define the template */}}
{{define "myTemplate"}}
 do something
{{end}}

{{/* Use the template */}}
{{template "myTemplate"}}

Templates are limited to one argument. The args function can be used to wrap

multiple arguments.

{{define "myMultiArgTemplate"}}
 First argument: {{.arg0}}
 Second argument: {{.arg1}}
{{end}}
{{template "myMultiArgTemplate" (args 1 2)}}

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:17 Template examples | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/template_examples/ 5/5

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://prometheus.io/docs/prometheus/latest/configuration/template_reference/#console-templates
https://prometheus.io/docs/prometheus/latest/configuration/template_reference/#console-templates
https://prometheus.io/docs/prometheus/latest/configuration/template_reference/#console-templates
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Configuration (/docs/prometheus/latest/configuration/configuration/)

Recording rules (/docs/prometheus/latest/configuration/recording_rules/)

Alerting rules (/docs/prometheus/latest/configuration/alerting_rules/)

Template examples (/docs/prometheus/latest/configuration/template_examples/)

Template reference (/docs/prometheus/latest/configuration/template_reference/)

Unit Testing for Rules (/docs/prometheus/latest/configuration/unit_testing_rules/)

HTTPS and authentication (/docs/prometheus/latest/configuration/https/)

Querying

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

10/09/24, 19:17 Template reference | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/template_reference/ 1/6

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/template_examples/
https://prometheus.io/docs/prometheus/latest/configuration/template_reference/
https://prometheus.io/docs/prometheus/latest/configuration/unit_testing_rules/
https://prometheus.io/docs/prometheus/latest/configuration/https/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/feature_flags/

Data Structures

Functions

Queries

Numbers

Strings

Others

Template type differences

Alert field templates

Console templates

TEMPLATE REFERENCE

Prometheus supports templating in the annotations and

labels of alerts, as well as in served console pages.

Templates have the ability to run queries against the local

database, iterate over data, use conditionals, format data,

etc. The Prometheus templating language is based on the

Go templating (https://golang.org/pkg/text/template/)

system.

Data Structures

The primary data structure for dealing with time series

data is the sample, defined as:

type sample struct {
 Labels map[string]string
 Value interface{}
}

The metric name of the sample is encoded in a special __name__ label in the Labels map.

[]sample means a list of samples.

interface{} in Go is similar to a void pointer in C.

Functions

In addition to the default functions (https://golang.org/pkg/text/template/#hdr-Functions) provided

by Go templating, Prometheus provides functions for easier processing of query results in templates.

If functions are used in a pipeline, the pipeline value is passed as the last argument.

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:17 Template reference | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/template_reference/ 2/6

https://golang.org/pkg/text/template/
https://golang.org/pkg/text/template/
https://golang.org/pkg/text/template/#hdr-Functions
https://golang.org/pkg/text/template/#hdr-Functions

Queries

Name Arguments Returns Notes

query query string []sample Queries the database, does not support returning

range vectors.

first []sample sample Equivalent to index a 0

label label, sample string Equivalent to index sample.Labels label

value sample interface{} Equivalent to sample.Value

sortByLabel label,

[]samples

[]sample Sorts the samples by the given label. Is stable.

first , label and value are intended to make query results easily usable in pipelines.

Numbers

Name Arguments Returns Notes

humanize number or

string

string Converts a number to a more readable format,

using metric prefixes

(https://en.wikipedia.org/wiki/Metric_prefix).

humanize1024 number or

string

string Like humanize , but uses 1024 as the base

rather than 1000.

humanizeDuration number or

string

string Converts a duration in seconds to a more

readable format.

humanizePercentage number or

string

string Converts a ratio value to a fraction of 100.

humanizeTimestamp number or

string

string Converts a Unix timestamp in seconds to a

more readable format.

toTime number or

string

*time.Time Converts a Unix timestamp in seconds to a

time.Time.

Humanizing functions are intended to produce reasonable output for consumption by humans, and

are not guaranteed to return the same results between Prometheus versions.

Strings

Name Arguments Returns Notes

title string string strings.Title (https://golang.org/pkg/strings/#Title),

capitalises first character of each word.

10/09/24, 19:17 Template reference | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/template_reference/ 3/6

https://en.wikipedia.org/wiki/Metric_prefix
https://en.wikipedia.org/wiki/Metric_prefix
https://golang.org/pkg/strings/#Title
https://golang.org/pkg/strings/#Title

Name Arguments Returns Notes

toUpper string string strings.ToUpper

(https://golang.org/pkg/strings/#ToUpper), converts all

characters to upper case.

toLower string string strings.ToLower

(https://golang.org/pkg/strings/#ToLower), converts all

characters to lower case.

stripPort string string net.SplitHostPort (https://pkg.go.dev/net#SplitHostPort),

splits string into host and port, then returns only host.

match pattern, text boolean regexp.MatchString

(https://golang.org/pkg/regexp/#MatchString) Tests for a

unanchored regexp match.

reReplaceAll pattern,

replacement,

text

string Regexp.ReplaceAllString

(https://golang.org/pkg/regexp/#Regexp.ReplaceAllString)

Regexp substitution, unanchored.

graphLink expr string Returns path to graph view in the expression browser

(/docs/visualization/browser/) for the expression.

tableLink expr string Returns path to tabular ("Table") view in the expression

browser (/docs/visualization/browser/) for the

expression.

parseDuration string float Parses a duration string such as "1h" into the number of

seconds it represents.

stripDomain string string Removes the domain part of a FQDN. Leaves port

untouched.

Others

Name Arguments Returns Notes

args []interface{} map[string]interface{} This converts a list of objects to a map with

keys arg0, arg1 etc. This is intended to allow

multiple arguments to be passed to

templates.

tmpl string,

[]interface{}

nothing Like the built-in template , but allows non-

literals as the template name. Note that the

result is assumed to be safe, and will not be

auto-escaped. Only available in consoles.

10/09/24, 19:17 Template reference | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/template_reference/ 4/6

https://golang.org/pkg/strings/#ToUpper
https://golang.org/pkg/strings/#ToUpper
https://golang.org/pkg/strings/#ToLower
https://golang.org/pkg/strings/#ToLower
https://pkg.go.dev/net#SplitHostPort
https://pkg.go.dev/net#SplitHostPort
https://golang.org/pkg/regexp/#MatchString
https://golang.org/pkg/regexp/#MatchString
https://golang.org/pkg/regexp/#Regexp.ReplaceAllString
https://golang.org/pkg/regexp/#Regexp.ReplaceAllString
https://prometheus.io/docs/visualization/browser/
https://prometheus.io/docs/visualization/browser/
https://prometheus.io/docs/visualization/browser/
https://prometheus.io/docs/visualization/browser/
https://prometheus.io/docs/visualization/browser/

Name Arguments Returns Notes

safeHtml string string Marks string as HTML not requiring auto-

escaping.

externalURL none string The external URL under which Prometheus

is externally reachable.

pathPrefix none string The external URL path

(https://pkg.go.dev/net/url#URL) for use in

console templates.

Template type differences

Each of the types of templates provide different information that can be used to parameterize

templates, and have a few other differences.

Alert field templates

.Value , .Labels , .ExternalLabels , and .ExternalURL contain the alert value, the alert labels, the

globally configured external labels, and the external URL (configured with --web.external-url)

respectively. They are also exposed as the $value , $labels , $externalLabels , and $externalURL

variables for convenience.

Console templates

Consoles are exposed on /consoles/ , and sourced from the directory pointed to by the -

web.console.templates flag.

Console templates are rendered with html/template (https://golang.org/pkg/html/template/), which

provides auto-escaping. To bypass the auto-escaping use the safe* functions.,

URL parameters are available as a map in .Params . To access multiple URL parameters by the same

name, .RawParams is a map of the list values for each parameter. The URL path is available in .Path ,

excluding the /consoles/ prefix. The globally configured external labels are available as

.ExternalLabels . There are also convenience variables for all four: $rawParams , $params , $path , and

$externalLabels .

Consoles also have access to all the templates defined with {{define "templateName"}}...{{end}}

found in *.lib files in the directory pointed to by the -web.console.libraries flag. As this is a

shared namespace, take care to avoid clashes with other users. Template names beginning with

prom , _prom , and __ are reserved for use by Prometheus, as are the functions listed above.

 This documentation is open-source (https://github.com/prometheus/docs#contributing-

changes). Please help improve it by filing issues or pull requests.

10/09/24, 19:17 Template reference | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/template_reference/ 5/6

https://pkg.go.dev/net/url#URL
https://pkg.go.dev/net/url#URL
https://golang.org/pkg/html/template/
https://golang.org/pkg/html/template/
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list of

trademarks of The Linux Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-usage) page.

10/09/24, 19:17 Template reference | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/template_reference/ 6/6

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Configuration (/docs/prometheus/latest/configuration/configuration/)

Recording rules (/docs/prometheus/latest/configuration/recording_rules/)

Alerting rules (/docs/prometheus/latest/configuration/alerting_rules/)

Template examples (/docs/prometheus/latest/configuration/template_examples/)

Template reference (/docs/prometheus/latest/configuration/template_reference/)

Unit Testing for Rules

(/docs/prometheus/latest/configuration/unit_testing_rules/)

HTTPS and authentication (/docs/prometheus/latest/configuration/https/)

Querying

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

Migration (/docs/prometheus/latest/migration/)

10/09/24, 19:17 Unit Testing for Rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/unit_testing_rules/ 1/11

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/template_examples/
https://prometheus.io/docs/prometheus/latest/configuration/template_reference/
https://prometheus.io/docs/prometheus/latest/configuration/unit_testing_rules/
https://prometheus.io/docs/prometheus/latest/configuration/https/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/

Test file format

<test_group>

<series>

<alert_test_case>

<alert>

<promql_test_case>

<sample>

Example

test.yml

alerts.yml

UNIT TESTING FOR RULES

You can use promtool to test your rules.

For a single test file.
./promtool test rules test.yml

If you have multiple test files, say test1.y
./promtool test rules test1.yml test2.yml test

API Stability (/docs/prometheus/latest/stability/)

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:17 Unit Testing for Rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/unit_testing_rules/ 2/11

https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/feature_flags/

Test file format

This is a list of rule files to consider for testing. Globs are supported.
rule_files:
 [- <file_name>]

[evaluation_interval: <duration> | default = 1m]

The order in which group names are listed below will be the order of evaluation
rule groups (at a given evaluation time). The order is guaranteed only for the
All the groups need not be mentioned below.
group_eval_order:
 [- <group_name>]

All the tests are listed here.
tests:
 [- <test_group>]

10/09/24, 19:17 Unit Testing for Rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/unit_testing_rules/ 3/11

<test_group>

Series data
[interval: <duration> | default = evaluation_interval]
input_series:
 [- <series>]

Name of the test group
[name: <string>]

Unit tests for the above data.

Unit tests for alerting rules. We consider the alerting rules from the input fi
alert_rule_test:
 [- <alert_test_case>]

Unit tests for PromQL expressions.
promql_expr_test:
 [- <promql_test_case>]

External labels accessible to the alert template.
external_labels:
 [<labelname>: <string> ...]

External URL accessible to the alert template.
Usually set using --web.external-url.
 [external_url: <string>]

10/09/24, 19:17 Unit Testing for Rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/unit_testing_rules/ 4/11

<series>

This follows the usual series notation '<metric name>{<label name>=<label value
Examples:
series_name{label1="value1", label2="value2"}
go_goroutines{job="prometheus", instance="localhost:9090"}
series: <string>

This uses expanding notation.
Expanding notation:
'a+bxn' becomes 'a a+b a+(2*b) a+(3*b) … a+(n*b)'
Read this as series starts at a, then n further samples incrementing by b.
'a-bxn' becomes 'a a-b a-(2*b) a-(3*b) … a-(n*b)'
Read this as series starts at a, then n further samples decrementing by b (
'axn' becomes 'a a a … a' (a n+1 times) - it's a shorthand for 'a+0xn'
There are special values to indicate missing and stale samples:
'_' represents a missing sample from scrape
'stale' indicates a stale sample
Examples:
1. '-2+4x3' becomes '-2 2 6 10' - series starts at -2, then 3 further sampl
2. ' 1-2x4' becomes '1 -1 -3 -5 -7' - series starts at 1, then 4 further sa
3. ' 1x4' becomes '1 1 1 1 1' - shorthand for '1+0x4', series starts at 1,
4. ' 1 _x3 stale' becomes '1 _ _ _ stale' - the missing sample cannot incre
#
Native histogram notation:
Native histograms can be used instead of floating point numbers using the f
{{schema:1 sum:-0.3 count:3.1 z_bucket:7.1 z_bucket_w:0.05 buckets:[5.1 10
Native histograms support the same expanding notation as floating point num
All properties are optional and default to 0. The order is not important. T
- schema (int):
Currently valid schema numbers are -4 <= n <= 8. They are all for
base-2 bucket schemas, where 1 is a bucket boundary in each case, and
then each power of two is divided into 2^n logarithmic buckets. Or
in other words, each bucket boundary is the previous boundary times
2^(2^-n).
- sum (float):
The sum of all observations, including the zero bucket.
- count (non-negative float):
The number of observations, including those that are NaN and including
- z_bucket (non-negative float):
The sum of all observations in the zero bucket.
- z_bucket_w (non-negative float):
The width of the zero bucket.

10/09/24, 19:17 Unit Testing for Rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/unit_testing_rules/ 5/11

If z_bucket_w > 0, the zero bucket contains all observations -z_bucket_
Otherwise, the zero bucket only contains observations that are exactly
- buckets (list of non-negative floats):
Observation counts in positive buckets. Each represents an absolute cou
- offset (int):
The starting index of the first entry in the positive buckets.
- n_buckets (list of non-negative floats):
Observation counts in negative buckets. Each represents an absolute cou
- n_offset (int):
The starting index of the first entry in the negative buckets.
values: <string>

<alert_test_case>

Prometheus allows you to have same alertname for different alerting rules.

Hence in this unit testing, you have to list the union of all the firing alerts for the

alertname under a single <alert_test_case> .

The time elapsed from time=0s when the alerts have to be checked.
eval_time: <duration>

Name of the alert to be tested.
alertname: <string>

List of expected alerts which are firing under the given alertname at
given evaluation time. If you want to test if an alerting rule should
not be firing, then you can mention the above fields and leave 'exp_alerts' emp
exp_alerts:
 [- <alert>]

10/09/24, 19:17 Unit Testing for Rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/unit_testing_rules/ 6/11

<alert>

These are the expanded labels and annotations of the expected alert.
Note: labels also include the labels of the sample associated with the
alert (same as what you see in `/alerts`, without series `__name__` and `alertn
exp_labels:
 [<labelname>: <string>]
exp_annotations:
 [<labelname>: <string>]

<promql_test_case>

Expression to evaluate
expr: <string>

The time elapsed from time=0s when the expression has to be evaluated.
eval_time: <duration>

Expected samples at the given evaluation time.
exp_samples:
 [- <sample>]

<sample>

Labels of the sample in usual series notation '<metric name>{<label name>=<labe
Examples:
series_name{label1="value1", label2="value2"}
go_goroutines{job="prometheus", instance="localhost:9090"}
labels: <string>

The expected value of the PromQL expression.
value: <number>

10/09/24, 19:17 Unit Testing for Rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/unit_testing_rules/ 7/11

Example

This is an example input file for unit testing which passes the test. test.yml is

the test file which follows the syntax above and alerts.yml contains the

alerting rules.

With alerts.yml in the same directory, run ./promtool test rules test.yml .

10/09/24, 19:17 Unit Testing for Rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/unit_testing_rules/ 8/11

test.yml

This is the main input for unit testing.
Only this file is passed as command line argument.

rule_files:
 - alerts.yml

evaluation_interval: 1m

tests:
 # Test 1.
 - interval: 1m
 # Series data.
 input_series:
 - series: 'up{job="prometheus", instance="localhost:9090"}'
 values: '0 0 0 0 0 0 0 0 0 0 0 0 0 0 0'
 - series: 'up{job="node_exporter", instance="localhost:9100"}'
 values: '1+0x6 0 0 0 0 0 0 0 0' # 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
 - series: 'go_goroutines{job="prometheus", instance="localhost:9090"}'
 values: '10+10x2 30+20x5' # 10 20 30 30 50 70 90 110 130
 - series: 'go_goroutines{job="node_exporter", instance="localhost:9100"
 values: '10+10x7 10+30x4' # 10 20 30 40 50 60 70 80 10 40 70 100 130

 # Unit test for alerting rules.
 alert_rule_test:
 # Unit test 1.
 - eval_time: 10m
 alertname: InstanceDown
 exp_alerts:
 # Alert 1.
 - exp_labels:
 severity: page
 instance: localhost:9090
 job: prometheus
 exp_annotations:
 summary: "Instance localhost:9090 down"
 description: "localhost:9090 of job prometheus has been dow
 # Unit tests for promql expressions.
 promql_expr_test:
 # Unit test 1.
 - expr: go_goroutines > 5
 eval_time: 4m

10/09/24, 19:17 Unit Testing for Rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/unit_testing_rules/ 9/11

 exp_samples:
 # Sample 1.
 - labels: 'go_goroutines{job="prometheus",instance="localhost:909
 value: 50
 # Sample 2.
 - labels: 'go_goroutines{job="node_exporter",instance="localhost
 value: 50

alerts.yml

This is the rules file.

groups:
- name: example
 rules:

 - alert: InstanceDown
 expr: up == 0
 for: 5m
 labels:
 severity: page
 annotations:
 summary: "Instance {{ $labels.instance }} down"
 description: "{{ $labels.instance }} of job {{ $labels.job }} has been do

 - alert: AnotherInstanceDown
 expr: up == 0
 for: 10m
 labels:
 severity: page
 annotations:
 summary: "Instance {{ $labels.instance }} down"
 description: "{{ $labels.instance }} of job {{ $labels.job }} has been do

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:17 Unit Testing for Rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/unit_testing_rules/ 10/11

https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

10/09/24, 19:17 Unit Testing for Rules | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/unit_testing_rules/ 11/11

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Configuration (/docs/prometheus/latest/configuration/configuration/)

Recording rules (/docs/prometheus/latest/configuration/recording_rules/)

Alerting rules (/docs/prometheus/latest/configuration/alerting_rules/)

Template examples (/docs/prometheus/latest/configuration/template_examples/)

Template reference (/docs/prometheus/latest/configuration/template_reference/)

Unit Testing for Rules (/docs/prometheus/latest/configuration/unit_testing_rules/)

HTTPS and authentication (/docs/prometheus/latest/configuration/https/)

Querying

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

10/09/24, 19:17 HTTPS and authentication | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/https/ 1/6

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/template_examples/
https://prometheus.io/docs/prometheus/latest/configuration/template_reference/
https://prometheus.io/docs/prometheus/latest/configuration/unit_testing_rules/
https://prometheus.io/docs/prometheus/latest/configuration/https/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/

HTTPS AND AUTHENTICATION

Prometheus supports basic authentication and TLS. This is experimental and

might change in the future.

To specify which web configuration file to load, use the --web.config.file flag.

The file is written in YAML format (https://en.wikipedia.org/wiki/YAML), defined

by the scheme described below. Brackets indicate that a parameter is optional.

For non-list parameters the value is set to the specified default.

The file is read upon every http request, such as any change in the

configuration and the certificates is picked up immediately.

Generic placeholders are defined as follows:

<boolean> : a boolean that can take the values true or false

<filename> : a valid path in the current working directory

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:17 HTTPS and authentication | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/https/ 2/6

https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/YAML
https://prometheus.io/docs/prometheus/latest/feature_flags/

<secret> : a regular string that is a secret, such as a password

<string> : a regular string

A valid example file can be found here

(https://github.com/prometheus/prometheus/blob/release-

2.54/documentation/examples/web-config.yml).

10/09/24, 19:17 HTTPS and authentication | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/https/ 3/6

https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/web-config.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/web-config.yml
https://github.com/prometheus/prometheus/blob/release-2.54/documentation/examples/web-config.yml

tls_server_config:
 # Certificate and key files for server to use to authenticate to client.
 cert_file: <filename>
 key_file: <filename>

 # Server policy for client authentication. Maps to ClientAuth Policies.
 # For more detail on clientAuth options:
 # https://golang.org/pkg/crypto/tls/#ClientAuthType
 #
 # NOTE: If you want to enable client authentication, you need to use
 # RequireAndVerifyClientCert. Other values are insecure.
 [client_auth_type: <string> | default = "NoClientCert"]

 # CA certificate for client certificate authentication to the server.
 [client_ca_file: <filename>]

 # Verify that the client certificate has a Subject Alternate Name (SAN)
 # which is an exact match to an entry in this list, else terminate the
 # connection. SAN match can be one or multiple of the following: DNS,
 # IP, e-mail, or URI address from https://pkg.go.dev/crypto/x509#Certificate.
 [client_allowed_sans:
 [- <string>]]

 # Minimum TLS version that is acceptable.
 [min_version: <string> | default = "TLS12"]

 # Maximum TLS version that is acceptable.
 [max_version: <string> | default = "TLS13"]

 # List of supported cipher suites for TLS versions up to TLS 1.2. If empty,
 # Go default cipher suites are used. Available cipher suites are documented
 # in the go documentation:
 # https://golang.org/pkg/crypto/tls/#pkg-constants
 #
 # Note that only the cipher returned by the following function are supported:
 # https://pkg.go.dev/crypto/tls#CipherSuites
 [cipher_suites:
 [- <string>]]

 # prefer_server_cipher_suites controls whether the server selects the
 # client's most preferred ciphersuite, or the server's most preferred
 # ciphersuite. If true then the server's preference, as expressed in
 # the order of elements in cipher_suites, is used.

10/09/24, 19:17 HTTPS and authentication | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/https/ 4/6

 [prefer_server_cipher_suites: <boolean> | default = true]

 # Elliptic curves that will be used in an ECDHE handshake, in preference
 # order. Available curves are documented in the go documentation:
 # https://golang.org/pkg/crypto/tls/#CurveID
 [curve_preferences:
 [- <string>]]

http_server_config:
 # Enable HTTP/2 support. Note that HTTP/2 is only supported with TLS.
 # This can not be changed on the fly.
 [http2: <boolean> | default = true]
 # List of headers that can be added to HTTP responses.
 [headers:
 # Set the Content-Security-Policy header to HTTP responses.
 # Unset if blank.
 [Content-Security-Policy: <string>]
 # Set the X-Frame-Options header to HTTP responses.
 # Unset if blank. Accepted values are deny and sameorigin.
 # https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
 [X-Frame-Options: <string>]
 # Set the X-Content-Type-Options header to HTTP responses.
 # Unset if blank. Accepted value is nosniff.
 # https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Op
 [X-Content-Type-Options: <string>]
 # Set the X-XSS-Protection header to all responses.
 # Unset if blank.
 # https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
 [X-XSS-Protection: <string>]
 # Set the Strict-Transport-Security header to HTTP responses.
 # Unset if blank.
 # Please make sure that you use this with care as this header might force
 # browsers to load Prometheus and the other applications hosted on the same
 # domain and subdomains over HTTPS.
 # https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-
 [Strict-Transport-Security: <string>]]

Usernames and hashed passwords that have full access to the web
server via basic authentication. If empty, no basic authentication is
required. Passwords are hashed with bcrypt.
basic_auth_users:
 [<string>: <secret> ...]

10/09/24, 19:17 HTTPS and authentication | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/https/ 5/6

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:17 HTTPS and authentication | Prometheus

https://prometheus.io/docs/prometheus/latest/configuration/https/ 6/6

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Querying

Basics (/docs/prometheus/latest/querying/basics/)

Operators (/docs/prometheus/latest/querying/operators/)

Functions (/docs/prometheus/latest/querying/functions/)

Examples (/docs/prometheus/latest/querying/examples/)

HTTP API (/docs/prometheus/latest/querying/api/)

Remote Read API (/docs/prometheus/latest/querying/remote_read_api/)

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

10/09/24, 19:18 Querying basics | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/basics/ 1/14

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/operators/
https://prometheus.io/docs/prometheus/latest/querying/functions/
https://prometheus.io/docs/prometheus/latest/querying/examples/
https://prometheus.io/docs/prometheus/latest/querying/api/
https://prometheus.io/docs/prometheus/latest/querying/remote_read_api/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/

Examples

Expression language

data types

Literals

String literals

Float literals

Time series selectors

Instant vector

selectors

Range Vector

Selectors

Time Durations

Offset modifier

@ modifier

QUERYING PROMETHEUS

Prometheus provides a functional query

language called PromQL (Prometheus Query

Language) that lets the user select and

aggregate time series data in real time. The

result of an expression can either be shown as

a graph, viewed as tabular data in

Prometheus's expression browser, or

consumed by external systems via the HTTP

API (../api/).

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:18 Querying basics | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/basics/ 2/14

https://prometheus.io/docs/prometheus/latest/querying/api/
https://prometheus.io/docs/prometheus/latest/querying/api/
https://prometheus.io/docs/prometheus/latest/querying/api/
https://prometheus.io/docs/prometheus/latest/feature_flags/

Subquery

Operators

Functions

Comments

Gotchas

Staleness

Avoiding slow

queries and

overloads

Examples

This document is a Prometheus basic

language reference. For learning, it may be

easier to start with a couple of examples

(../examples/).

Expression language data
types

In Prometheus's expression language, an

expression or sub-expression can evaluate to one of four types:

Instant vector - a set of time series containing a single sample for each

time series, all sharing the same timestamp

Range vector - a set of time series containing a range of data points over

time for each time series

Scalar - a simple numeric floating point value

String - a simple string value; currently unused

Depending on the use-case (e.g. when graphing vs. displaying the output of an

expression), only some of these types are legal as the result of a user-specified

expression. For example, an expression that returns an instant vector is the

only type which can be graphed.

Notes about the experimental native histograms:

Ingesting native histograms has to be enabled via a feature flag

(../../../feature_flags/#native-histograms).

Once native histograms have been ingested into the TSDB (and even after

disabling the feature flag again), both instant vectors and range vectors

may now contain samples that aren't simple floating point numbers (float

samples) but complete histograms (histogram samples). A vector may

contain a mix of float samples and histogram samples.

10/09/24, 19:18 Querying basics | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/basics/ 3/14

https://prometheus.io/docs/prometheus/latest/querying/examples/
https://prometheus.io/docs/prometheus/latest/querying/examples/
https://prometheus.io/docs/prometheus/feature_flags/#native-histograms
https://prometheus.io/docs/prometheus/feature_flags/#native-histograms

Literals

String literals

String literals are designated by single quotes, double quotes or backticks.

PromQL follows the same escaping rules as Go

(https://golang.org/ref/spec#String_literals). For string literals in single or

double quotes, a backslash begins an escape sequence, which may be followed

by a , b , f , n , r , t , v or \ . Specific characters can be provided using octal

(\nnn) or hexadecimal (\xnn , \unnnn and \Unnnnnnnn) notations.

Conversely, escape characters are not parsed in string literals designated by

backticks. It is important to note that, unlike Go, Prometheus does not discard

newlines inside backticks.

Example:

"this is a string"
'these are unescaped: \n \\ \t'
`these are not unescaped: \n ' " \t`

Float literals

Scalar float values can be written as literal integer or floating-point numbers in

the format (whitespace only included for better readability):

[-+]?(
 [0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?
 | 0[xX][0-9a-fA-F]+
 | [nN][aA][nN]
 | [iI][nN][fF]
)

Examples:

10/09/24, 19:18 Querying basics | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/basics/ 4/14

https://golang.org/ref/spec#String_literals
https://golang.org/ref/spec#String_literals

23
-2.43
3.4e-9
0x8f
-Inf
NaN

As of version 2.54, float literals can also be represented using the syntax of time

durations, where the time duration is converted into a float value

corresponding to the number of seconds the time duration represents. This is

an experimental feature and might still change.

Examples:

1s # Equivalent to 1.0
2m # Equivalent to 120.0
1ms # Equivalent to 0.001

Time series selectors

Time series selectors are responsible for selecting the times series and raw or

inferred sample timestamps and values.

Time series selectors are not to be confused with higher level concept of instant

and range queries that can execute the time series selectors. A higher level

instant query would evaluate the given selector at one point in time, however

the range query would evaluate the selector at multiple different times in

between a minimum and maximum timestamp at regular steps.

Instant vector selectors

Instant vector selectors allow the selection of a set of time series and a single

sample value for each at a given timestamp (point in time). In the simplest

form, only a metric name is specified, which results in an instant vector

containing elements for all time series that have this metric name.

10/09/24, 19:18 Querying basics | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/basics/ 5/14

This example selects all time series that have the http_requests_total metric

name:

http_requests_total

It is possible to filter these time series further by appending a comma-

separated list of label matchers in curly braces ({}).

This example selects only those time series with the http_requests_total

metric name that also have the job label set to prometheus and their group

label set to canary :

http_requests_total{job="prometheus",group="canary"}

It is also possible to negatively match a label value, or to match label values

against regular expressions. The following label matching operators exist:

= : Select labels that are exactly equal to the provided string.

!= : Select labels that are not equal to the provided string.

=~ : Select labels that regex-match the provided string.

!~ : Select labels that do not regex-match the provided string.

Regex matches are fully anchored. A match of env=~"foo" is treated as

env=~"^foo$" .

For example, this selects all http_requests_total time series for staging ,

testing , and development environments and HTTP methods other than GET .

http_requests_total{environment=~"staging|testing|development",method!="GET"}

Label matchers that match empty label values also select all time series that do

not have the specific label set at all. It is possible to have multiple matchers for

the same label name.

For example, given the dataset:

10/09/24, 19:18 Querying basics | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/basics/ 6/14

http_requests_total
http_requests_total{replica="rep-a"}
http_requests_total{replica="rep-b"}
http_requests_total{environment="development"}

The query http_requests_total{environment=""} would match and return:

http_requests_total
http_requests_total{replica="rep-a"}
http_requests_total{replica="rep-b"}

and would exclude:

http_requests_total{environment="development"}

Multiple matchers can be used for the same label name; they all must pass for

a result to be returned.

The query:

http_requests_total{replica!="rep-a",replica=~"rep.*"}

Would then match:

http_requests_total{replica="rep-b"}

Vector selectors must either specify a name or at least one label matcher that

does not match the empty string. The following expression is illegal:

{job=~".*"} # Bad!

In contrast, these expressions are valid as they both have a selector that does

not match empty label values.

10/09/24, 19:18 Querying basics | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/basics/ 7/14

{job=~".+"} # Good!
{job=~".*",method="get"} # Good!

Label matchers can also be applied to metric names by matching against the

internal __name__ label. For example, the expression http_requests_total is

equivalent to {__name__="http_requests_total"} . Matchers other than = (!= ,

=~ , !~) may also be used. The following expression selects all metrics that

have a name starting with job: :

{__name__=~"job:.*"}

The metric name must not be one of the keywords bool , on , ignoring ,

group_left and group_right . The following expression is illegal:

on{} # Bad!

A workaround for this restriction is to use the __name__ label:

{__name__="on"} # Good!

All regular expressions in Prometheus use RE2 syntax

(https://github.com/google/re2/wiki/Syntax).

Range Vector Selectors

Range vector literals work like instant vector literals, except that they select a

range of samples back from the current instant. Syntactically, a time duration is

appended in square brackets ([]) at the end of a vector selector to specify how

far back in time values should be fetched for each resulting range vector

element. The range is a closed interval, i.e. samples with timestamps coinciding

with either boundary of the range are still included in the selection.

10/09/24, 19:18 Querying basics | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/basics/ 8/14

https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax

In this example, we select all the values we have recorded within the last 5

minutes for all time series that have the metric name http_requests_total and

a job label set to prometheus :

http_requests_total{job="prometheus"}[5m]

Time Durations

Time durations are specified as a number, followed immediately by one of the

following units:

ms - milliseconds

s - seconds

m - minutes

h - hours

d - days - assuming a day always has 24h

w - weeks - assuming a week always has 7d

y - years - assuming a year always has 365d

 For days in a year, the leap day is ignored, and conversely, for a minute, a leap

second is ignored.

Time durations can be combined by concatenation. Units must be ordered

from the longest to the shortest. A given unit must only appear once in a time

duration.

Here are some examples of valid time durations:

5h
1h30m
5m
10s

As of version 2.54, time durations can also be represented using the syntax of

float literals, implying the number of seconds of the time duration. This is an

experimental feature and might still change.

1

1

10/09/24, 19:18 Querying basics | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/basics/ 9/14

Examples:

1.0 # Equivalent to 1s
0.001 # Equivalent to 1ms
120 # Equivalent to 2m

Offset modifier

The offset modifier allows changing the time offset for individual instant and

range vectors in a query.

For example, the following expression returns the value of

http_requests_total 5 minutes in the past relative to the current query

evaluation time:

http_requests_total offset 5m

Note that the offset modifier always needs to follow the selector immediately,

i.e. the following would be correct:

sum(http_requests_total{method="GET"} offset 5m) // GOOD.

While the following would be incorrect:

sum(http_requests_total{method="GET"}) offset 5m // INVALID.

The same works for range vectors. This returns the 5-minute rate

(.././functions/#rate) that http_requests_total had a week ago:

rate(http_requests_total[5m] offset 1w)

When querying for samples in the past, a negative offset will enable temporal

comparisons forward in time:

10/09/24, 19:18 Querying basics | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/basics/ 10/14

https://prometheus.io/docs/prometheus/latest/querying/functions/#rate
https://prometheus.io/docs/prometheus/latest/querying/functions/#rate

rate(http_requests_total[5m] offset -1w)

Note that this allows a query to look ahead of its evaluation time.

@ modifier

The @ modifier allows changing the evaluation time for individual instant and

range vectors in a query. The time supplied to the @ modifier is a unix

timestamp and described with a float literal.

For example, the following expression returns the value of

http_requests_total at 2021-01-04T07:40:00+00:00 :

http_requests_total @ 1609746000

Note that the @ modifier always needs to follow the selector immediately, i.e.

the following would be correct:

sum(http_requests_total{method="GET"} @ 1609746000) // GOOD.

While the following would be incorrect:

sum(http_requests_total{method="GET"}) @ 1609746000 // INVALID.

The same works for range vectors. This returns the 5-minute rate that

http_requests_total had at 2021-01-04T07:40:00+00:00 :

rate(http_requests_total[5m] @ 1609746000)

The @ modifier supports all representations of numeric literals described

above. It works with the offset modifier where the offset is applied relative to

the @ modifier time. The results are the same irrespective of the order of the

modifiers.

10/09/24, 19:18 Querying basics | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/basics/ 11/14

For example, these two queries will produce the same result:

offset after @
http_requests_total @ 1609746000 offset 5m
offset before @
http_requests_total offset 5m @ 1609746000

Additionally, start() and end() can also be used as values for the @ modifier

as special values.

For a range query, they resolve to the start and end of the range query

respectively and remain the same for all steps.

For an instant query, start() and end() both resolve to the evaluation time.

http_requests_total @ start()
rate(http_requests_total[5m] @ end())

Note that the @ modifier allows a query to look ahead of its evaluation time.

Subquery

Subquery allows you to run an instant query for a given range and resolution.

The result of a subquery is a range vector.

Syntax: <instant_query> '[' <range> ':' [<resolution>] ']' [@

<float_literal>] [offset <duration>]

<resolution> is optional. Default is the global evaluation interval.

Operators

Prometheus supports many binary and aggregation operators. These are

described in detail in the expression language operators (../operators/) page.

10/09/24, 19:18 Querying basics | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/basics/ 12/14

https://prometheus.io/docs/prometheus/latest/querying/operators/
https://prometheus.io/docs/prometheus/latest/querying/operators/

Functions

Prometheus supports several functions to operate on data. These are

described in detail in the expression language functions (../functions/) page.

Comments

PromQL supports line comments that start with # . Example:

 # This is a comment

Gotchas

Staleness

The timestamps at which to sample data, during a query, are selected

independently of the actual present time series data. This is mainly to support

cases like aggregation (sum , avg , and so on), where multiple aggregated time

series do not precisely align in time. Because of their independence,

Prometheus needs to assign a value at those timestamps for each relevant time

series. It does so by taking the newest sample before this timestamp within the

lookback period. The lookback period is 5 minutes by default.

If a target scrape or rule evaluation no longer returns a sample for a time series

that was previously present, this time series will be marked as stale. If a target

is removed, the previously retrieved time series will be marked as stale soon

after removal.

If a query is evaluated at a sampling timestamp after a time series is marked as

stale, then no value is returned for that time series. If new samples are

subsequently ingested for that time series, they will be returned as expected.

A time series will go stale when it is no longer exported, or the target no longer

exists. Such time series will disappear from graphs at the times of their latest

collected sample, and they will not be returned in queries after they are marked

stale.

10/09/24, 19:18 Querying basics | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/basics/ 13/14

https://prometheus.io/docs/prometheus/latest/querying/functions/
https://prometheus.io/docs/prometheus/latest/querying/functions/

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

Some exporters, which put their own timestamps on samples, get a different

behaviour: series that stop being exported take the last value for (by default) 5

minutes before disappearing. The track_timestamps_staleness setting can

change this.

Avoiding slow queries and overloads

If a query needs to operate on a substantial amount of data, graphing it might

time out or overload the server or browser. Thus, when constructing queries

over unknown data, always start building the query in the tabular view of

Prometheus's expression browser until the result set seems reasonable

(hundreds, not thousands, of time series at most). Only when you have filtered

or aggregated your data sufficiently, switch to graph mode. If the expression

still takes too long to graph ad-hoc, pre-record it via a recording rule

(../../configuration/recording_rules/#recording-rules).

This is especially relevant for Prometheus's query language, where a bare

metric name selector like api_http_requests_total could expand to thousands

of time series with different labels. Also, keep in mind that expressions that

aggregate over many time series will generate load on the server even if the

output is only a small number of time series. This is similar to how it would be

slow to sum all values of a column in a relational database, even if the output

value is only a single number.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:18 Querying basics | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/basics/ 14/14

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/#recording-rules
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/#recording-rules
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Querying

Basics (/docs/prometheus/latest/querying/basics/)

Operators (/docs/prometheus/latest/querying/operators/)

Functions (/docs/prometheus/latest/querying/functions/)

Examples (/docs/prometheus/latest/querying/examples/)

HTTP API (/docs/prometheus/latest/querying/api/)

Remote Read API (/docs/prometheus/latest/querying/remote_read_api/)

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

10/09/24, 19:18 Operators | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/operators/ 1/13

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/operators/
https://prometheus.io/docs/prometheus/latest/querying/functions/
https://prometheus.io/docs/prometheus/latest/querying/examples/
https://prometheus.io/docs/prometheus/latest/querying/api/
https://prometheus.io/docs/prometheus/latest/querying/remote_read_api/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/

Binary operators

Arithmetic binary

operators

Trigonometric binary

operators

Comparison binary

operators

Logical/set binary

operators

Vector matching

Vector matching

keywords

Group modifiers

OPERATORS

Binary operators

Prometheus's query language supports basic

logical and arithmetic operators. For

operations between two instant vectors, the

matching behavior can be modified.

Arithmetic binary operators

The following binary arithmetic operators exist

in Prometheus:

+ (addition)

- (subtraction)

* (multiplication)

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:18 Operators | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/operators/ 2/13

https://prometheus.io/docs/prometheus/latest/feature_flags/

One-to-one vector

matches

Many-to-one and

one-to-many vector

matches

Aggregation operators

Binary operator

precedence

Operators for native

histograms

/ (division)

% (modulo)

^ (power/exponentiation)

Binary arithmetic operators are defined

between scalar/scalar, vector/scalar, and

vector/vector value pairs.

Between two scalars, the behavior is

obvious: they evaluate to another scalar that is

the result of the operator applied to both

scalar operands.

Between an instant vector and a scalar, the operator is applied to the value

of every data sample in the vector. E.g. if a time series instant vector is

multiplied by 2, the result is another vector in which every sample value of the

original vector is multiplied by 2. The metric name is dropped.

Between two instant vectors, a binary arithmetic operator is applied to each

entry in the left-hand side vector and its matching element in the right-hand

vector. The result is propagated into the result vector with the grouping labels

becoming the output label set. The metric name is dropped. Entries for which

no matching entry in the right-hand vector can be found are not part of the

result.

Trigonometric binary operators

The following trigonometric binary operators, which work in radians, exist in

Prometheus:

atan2 (based on https://pkg.go.dev/math#Atan2

(https://pkg.go.dev/math#Atan2))

Trigonometric operators allow trigonometric functions to be executed on two

vectors using vector matching, which isn't available with normal functions. They

act in the same manner as arithmetic operators.

10/09/24, 19:18 Operators | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/operators/ 3/13

https://pkg.go.dev/math#Atan2
https://pkg.go.dev/math#Atan2

Comparison binary operators

The following binary comparison operators exist in Prometheus:

== (equal)

!= (not-equal)

> (greater-than)

< (less-than)

>= (greater-or-equal)

<= (less-or-equal)

Comparison operators are defined between scalar/scalar, vector/scalar, and

vector/vector value pairs. By default they filter. Their behavior can be modified

by providing bool after the operator, which will return 0 or 1 for the value

rather than filtering.

Between two scalars, the bool modifier must be provided and these

operators result in another scalar that is either 0 (false) or 1 (true),

depending on the comparison result.

Between an instant vector and a scalar, these operators are applied to the

value of every data sample in the vector, and vector elements between which

the comparison result is false get dropped from the result vector. If the bool

modifier is provided, vector elements that would be dropped instead have the

value 0 and vector elements that would be kept have the value 1 . The metric

name is dropped if the bool modifier is provided.

Between two instant vectors, these operators behave as a filter by default,

applied to matching entries. Vector elements for which the expression is not

true or which do not find a match on the other side of the expression get

dropped from the result, while the others are propagated into a result vector

with the grouping labels becoming the output label set. If the bool modifier is

provided, vector elements that would have been dropped instead have the

value 0 and vector elements that would be kept have the value 1 , with the

grouping labels again becoming the output label set. The metric name is

dropped if the bool modifier is provided.

10/09/24, 19:18 Operators | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/operators/ 4/13

Logical/set binary operators

These logical/set binary operators are only defined between instant vectors:

and (intersection)

or (union)

unless (complement)

vector1 and vector2 results in a vector consisting of the elements of vector1

for which there are elements in vector2 with exactly matching label sets. Other

elements are dropped. The metric name and values are carried over from the

left-hand side vector.

vector1 or vector2 results in a vector that contains all original elements (label

sets + values) of vector1 and additionally all elements of vector2 which do not

have matching label sets in vector1 .

vector1 unless vector2 results in a vector consisting of the elements of

vector1 for which there are no elements in vector2 with exactly matching

label sets. All matching elements in both vectors are dropped.

Vector matching

Operations between vectors attempt to find a matching element in the right-

hand side vector for each entry in the left-hand side. There are two basic types

of matching behavior: One-to-one and many-to-one/one-to-many.

Vector matching keywords

These vector matching keywords allow for matching between series with

different label sets providing:

on

ignoring

Label lists provided to matching keywords will determine how vectors are

combined. Examples can be found in One-to-one vector matches and in Many-

to-one and one-to-many vector matches

10/09/24, 19:18 Operators | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/operators/ 5/13

Group modifiers

These group modifiers enable many-to-one/one-to-many vector matching:

group_left

group_right

Label lists can be provided to the group modifier which contain labels from the

"one"-side to be included in the result metrics.

Many-to-one and one-to-many matching are advanced use cases that should be
carefully considered. Often a proper use of ignoring(<labels>) provides the

desired outcome.

Grouping modifiers can only be used for comparison and arithmetic. Operations as
and , unless and or operations match with all possible entries in the right vector
by default.

One-to-one vector matches

One-to-one finds a unique pair of entries from each side of the operation. In

the default case, that is an operation following the format vector1 <operator>

vector2 . Two entries match if they have the exact same set of labels and

corresponding values. The ignoring keyword allows ignoring certain labels

when matching, while the on keyword allows reducing the set of considered

labels to a provided list:

<vector expr> <bin-op> ignoring(<label list>) <vector expr>
<vector expr> <bin-op> on(<label list>) <vector expr>

Example input:

10/09/24, 19:18 Operators | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/operators/ 6/13

method_code:http_errors:rate5m{method="get", code="500"} 24
method_code:http_errors:rate5m{method="get", code="404"} 30
method_code:http_errors:rate5m{method="put", code="501"} 3
method_code:http_errors:rate5m{method="post", code="500"} 6
method_code:http_errors:rate5m{method="post", code="404"} 21

method:http_requests:rate5m{method="get"} 600
method:http_requests:rate5m{method="del"} 34
method:http_requests:rate5m{method="post"} 120

Example query:

method_code:http_errors:rate5m{code="500"} / ignoring(code) method:http_requests

This returns a result vector containing the fraction of HTTP requests with status

code of 500 for each method, as measured over the last 5 minutes. Without

ignoring(code) there would have been no match as the metrics do not share

the same set of labels. The entries with methods put and del have no match

and will not show up in the result:

{method="get"} 0.04 // 24 / 600
{method="post"} 0.05 // 6 / 120

Many-to-one and one-to-many vector matches

Many-to-one and one-to-many matchings refer to the case where each vector

element on the "one"-side can match with multiple elements on the "many"-

side. This has to be explicitly requested using the group_left or group_right

modifiers, where left/right determines which vector has the higher cardinality.

<vector expr> <bin-op> ignoring(<label list>) group_left(<label list>) <vector ex
<vector expr> <bin-op> ignoring(<label list>) group_right(<label list>) <vector e
<vector expr> <bin-op> on(<label list>) group_left(<label list>) <vector expr>
<vector expr> <bin-op> on(<label list>) group_right(<label list>) <vector expr>

10/09/24, 19:18 Operators | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/operators/ 7/13

The label list provided with the group modifier contains additional labels from

the "one"-side to be included in the result metrics. For on a label can only

appear in one of the lists. Every time series of the result vector must be

uniquely identifiable.

Example query:

method_code:http_errors:rate5m / ignoring(code) group_left method:http_requests:r

In this case the left vector contains more than one entry per method label value.

Thus, we indicate this using group_left . The elements from the right side are

now matched with multiple elements with the same method label on the left:

{method="get", code="500"} 0.04 // 24 / 600
{method="get", code="404"} 0.05 // 30 / 600
{method="post", code="500"} 0.05 // 6 / 120
{method="post", code="404"} 0.175 // 21 / 120

Aggregation operators

Prometheus supports the following built-in aggregation operators that can be

used to aggregate the elements of a single instant vector, resulting in a new

vector of fewer elements with aggregated values:

sum (calculate sum over dimensions)

min (select minimum over dimensions)

max (select maximum over dimensions)

avg (calculate the average over dimensions)

group (all values in the resulting vector are 1)

stddev (calculate population standard deviation over dimensions)

stdvar (calculate population standard variance over dimensions)

count (count number of elements in the vector)

count_values (count number of elements with the same value)

bottomk (smallest k elements by sample value)

topk (largest k elements by sample value)

10/09/24, 19:18 Operators | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/operators/ 8/13

quantile (calculate φ-quantile (0 ≤ φ ≤ 1) over dimensions)

limitk (sample n elements)

limit_ratio (sample elements with approximately 𝑟 ratio if 𝑟 > 0 , and

the complement of such samples if 𝑟 = -(1.0 - 𝑟))

These operators can either be used to aggregate over all label dimensions or

preserve distinct dimensions by including a without or by clause. These

clauses may be used before or after the expression.

<aggr-op> [without|by (<label list>)] ([parameter,] <vector expression>)

or

<aggr-op>([parameter,] <vector expression>) [without|by (<label list>)]

label list is a list of unquoted labels that may include a trailing comma, i.e.

both (label1, label2) and (label1, label2,) are valid syntax.

without removes the listed labels from the result vector, while all other labels

are preserved in the output. by does the opposite and drops labels that are

not listed in the by clause, even if their label values are identical between all

elements of the vector.

parameter is only required for count_values , quantile , topk , bottomk ,

limitk and limit_ratio .

count_values outputs one time series per unique sample value. Each series has

an additional label. The name of that label is given by the aggregation

parameter, and the label value is the unique sample value. The value of each

time series is the number of times that sample value was present.

topk and bottomk are different from other aggregators in that a subset of the

input samples, including the original labels, are returned in the result vector.

by and without are only used to bucket the input vector.

10/09/24, 19:18 Operators | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/operators/ 9/13

limitk and limit_ratio also return a subset of the input samples, including

the original labels in the result vector, these are experimental operators that

must be enabled with --enable-feature=promql-experimental-functions .

quantile calculates the φ-quantile, the value that ranks at number φ*N among

the N metric values of the dimensions aggregated over. φ is provided as the

aggregation parameter. For example, quantile(0.5, ...) calculates the

median, quantile(0.95, ...) the 95th percentile. For φ = NaN , NaN is

returned. For φ < 0, -Inf is returned. For φ > 1, +Inf is returned.

Example:

If the metric http_requests_total had time series that fan out by application ,

instance , and group labels, we could calculate the total number of seen HTTP

requests per application and group over all instances via:

sum without (instance) (http_requests_total)

Which is equivalent to:

 sum by (application, group) (http_requests_total)

If we are just interested in the total of HTTP requests we have seen in all

applications, we could simply write:

sum(http_requests_total)

To count the number of binaries running each build version we could write:

count_values("version", build_version)

To get the 5 largest HTTP requests counts across all instances we could write:

topk(5, http_requests_total)

10/09/24, 19:18 Operators | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/operators/ 10/13

To sample 10 timeseries, for example to inspect labels and their values, we

could write:

limitk(10, http_requests_total)

To deterministically sample approximately 10% of timeseries we could write:

limit_ratio(0.1, http_requests_total)

Given that limit_ratio() implements a deterministic sampling algorithm

(based on labels' hash), you can get the complement of the above samples, i.e.

approximately 90%, but precisely those not returned by limit_ratio(0.1, ...)

with:

limit_ratio(-0.9, http_requests_total)

You can also use this feature to e.g. verify that avg() is a representative

aggregation for your samples' values, by checking that the difference between

averaging two samples' subsets is "small" when compared to the standard

deviation.

abs(
 avg(limit_ratio(0.5, http_requests_total))
 -
 avg(limit_ratio(-0.5, http_requests_total))
) <= bool stddev(http_requests_total)

Binary operator precedence

The following list shows the precedence of binary operators in Prometheus,

from highest to lowest.

1. ^

2. * , / , % , atan2

3. + , -

10/09/24, 19:18 Operators | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/operators/ 11/13

4. == , != , <= , < , >= , >

5. and , unless

6. or

Operators on the same precedence level are left-associative. For example, 2 *

3 % 2 is equivalent to (2 * 3) % 2 . However ^ is right associative, so 2 ^ 3 ^

2 is equivalent to 2 ^ (3 ^ 2) .

Operators for native histograms

Native histograms are an experimental feature. Ingesting native histograms has

to be enabled via a feature flag (../../../feature_flags/#native-histograms). Once

native histograms have been ingested, they can be queried (even after the

feature flag has been disabled again). However, the operator support for native

histograms is still very limited.

Logical/set binary operators work as expected even if histogram samples are

involved. They only check for the existence of a vector element and don't

change their behavior depending on the sample type of an element (float or

histogram). The count aggregation operator works similarly.

The binary + and - operators between two native histograms and the sum

and avg aggregation operators to aggregate native histograms are fully

supported. Even if the histograms involved have different bucket layouts, the

buckets are automatically converted appropriately so that the operation can be

performed. (With the currently supported bucket schemas, that's always

possible.) If either operator has to aggregate a mix of histogram samples and

float samples, the corresponding vector element is removed from the output

vector entirely.

The binary * operator works between a native histogram and a float in any

order, while the binary / operator can be used between a native histogram

and a float in that exact order.

All other operators (and unmentioned cases for the above operators) do not

behave in a meaningful way. They either treat the histogram sample as if it

were a float sample of value 0, or (in case of arithmetic operations between a

10/09/24, 19:18 Operators | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/operators/ 12/13

https://prometheus.io/docs/prometheus/feature_flags/#native-histograms
https://prometheus.io/docs/prometheus/feature_flags/#native-histograms

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

scalar and a vector) they leave the histogram sample unchanged. This behavior

will change to a meaningful one before native histograms are a stable feature.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:18 Operators | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/operators/ 13/13

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Querying

Basics (/docs/prometheus/latest/querying/basics/)

Operators (/docs/prometheus/latest/querying/operators/)

Functions (/docs/prometheus/latest/querying/functions/)

Examples (/docs/prometheus/latest/querying/examples/)

HTTP API (/docs/prometheus/latest/querying/api/)

Remote Read API (/docs/prometheus/latest/querying/remote_read_api/)

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 1/23

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/operators/
https://prometheus.io/docs/prometheus/latest/querying/functions/
https://prometheus.io/docs/prometheus/latest/querying/examples/
https://prometheus.io/docs/prometheus/latest/querying/api/
https://prometheus.io/docs/prometheus/latest/querying/remote_read_api/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/

abs()

absent()

absent_over_time()

ceil()

changes()

clamp()

clamp_max()

clamp_min()

day_of_month()

day_of_week()

day_of_year()

days_in_month()

delta()

deriv()

FUNCTIONS

Some functions have default arguments, e.g.

year(v=vector(time()) instant-vector) . This

means that there is one argument v which is

an instant vector, which if not provided it will

default to the value of the expression

vector(time()) .

Notes about the experimental native histograms:

Ingesting native histograms has to be

enabled via a feature flag

(../../feature_flags/#native-histograms).

As long as no native histograms have

been ingested into the TSDB, all

functions will behave as usual.

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 2/23

https://prometheus.io/docs/prometheus/latest/feature_flags/#native-histograms
https://prometheus.io/docs/prometheus/latest/feature_flags/#native-histograms
https://prometheus.io/docs/prometheus/latest/feature_flags/

exp()

floor()

histogram_avg()

histogram_count() and

histogram_sum()

histogram_fraction()

histogram_quantile()

histogram_stddev()

and

histogram_stdvar()

holt_winters()

hour()

idelta()

increase()

irate()

label_join()

label_replace()

ln()

log2()

log10()

minute()

month()

predict_linear()

rate()

resets()

round()

scalar()

sgn()

sort()

sort_desc()

sort_by_label()

sort_by_label_desc()

sqrt()

time()

timestamp()

vector()

Functions that do not explicitly mention

native histograms in their

documentation (see below) will ignore

histogram samples.

Functions that do already act on native

histograms might still change their

behavior in the future.

If a function requires the same bucket

layout between multiple native

histograms it acts on, it will automatically

convert them appropriately. (With the

currently supported bucket schemas,

that's always possible.)

abs()

abs(v instant-vector) returns the input

vector with all sample values converted to

their absolute value.

absent()

absent(v instant-vector) returns an empty

vector if the vector passed to it has any

elements (floats or native histograms) and a 1-

element vector with the value 1 if the vector

passed to it has no elements.

This is useful for alerting on when no time

series exist for a given metric name and label

combination.

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 3/23

year()

<aggregation>_over_time()

Trigonometric Functions

absent(nonexistent{job="myjob"})
=> {job="myjob"}

absent(nonexistent{job="myjob",instance=~".*"}
=> {job="myjob"}

absent(sum(nonexistent{job="myjob"}))
=> {}

In the first two examples, absent() tries to be smart about deriving labels of

the 1-element output vector from the input vector.

absent_over_time()

absent_over_time(v range-vector) returns an empty vector if the range vector

passed to it has any elements (floats or native histograms) and a 1-element

vector with the value 1 if the range vector passed to it has no elements.

This is useful for alerting on when no time series exist for a given metric name

and label combination for a certain amount of time.

absent_over_time(nonexistent{job="myjob"}[1h])
=> {job="myjob"}

absent_over_time(nonexistent{job="myjob",instance=~".*"}[1h])
=> {job="myjob"}

absent_over_time(sum(nonexistent{job="myjob"})[1h:])
=> {}

In the first two examples, absent_over_time() tries to be smart about deriving

labels of the 1-element output vector from the input vector.

ceil()

ceil(v instant-vector) rounds the sample values of all elements in v up to

the nearest integer value greater than or equal to v.

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 4/23

ceil(+Inf) = +Inf

ceil(±0) = ±0

ceil(1.49) = 2.0

ceil(1.78) = 2.0

changes()

For each input time series, changes(v range-vector) returns the number of

times its value has changed within the provided time range as an instant vector.

clamp()

clamp(v instant-vector, min scalar, max scalar) clamps the sample values

of all elements in v to have a lower limit of min and an upper limit of max .

Special cases:

Return an empty vector if min > max

Return NaN if min or max is NaN

clamp_max()

clamp_max(v instant-vector, max scalar) clamps the sample values of all

elements in v to have an upper limit of max .

clamp_min()

clamp_min(v instant-vector, min scalar) clamps the sample values of all

elements in v to have a lower limit of min .

day_of_month()

day_of_month(v=vector(time()) instant-vector) returns the day of the month

for each of the given times in UTC. Returned values are from 1 to 31.

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 5/23

day_of_week()

day_of_week(v=vector(time()) instant-vector) returns the day of the week for

each of the given times in UTC. Returned values are from 0 to 6, where 0 means

Sunday etc.

day_of_year()

day_of_year(v=vector(time()) instant-vector) returns the day of the year for

each of the given times in UTC. Returned values are from 1 to 365 for non-leap

years, and 1 to 366 in leap years.

days_in_month()

days_in_month(v=vector(time()) instant-vector) returns number of days in

the month for each of the given times in UTC. Returned values are from 28 to

31.

delta()

delta(v range-vector) calculates the difference between the first and last

value of each time series element in a range vector v , returning an instant

vector with the given deltas and equivalent labels. The delta is extrapolated to

cover the full time range as specified in the range vector selector, so that it is

possible to get a non-integer result even if the sample values are all integers.

The following example expression returns the difference in CPU temperature

between now and 2 hours ago:

delta(cpu_temp_celsius{host="zeus"}[2h])

delta acts on native histograms by calculating a new histogram where each

component (sum and count of observations, buckets) is the difference between

the respective component in the first and last native histogram in v . However,

each element in v that contains a mix of float and native histogram samples

within the range, will be missing from the result vector.

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 6/23

delta should only be used with gauges and native histograms where the

components behave like gauges (so-called gauge histograms).

deriv()

deriv(v range-vector) calculates the per-second derivative of the time series

in a range vector v , using simple linear regression

(https://en.wikipedia.org/wiki/Simple_linear_regression). The range vector must

have at least two samples in order to perform the calculation. When +Inf or -

Inf are found in the range vector, the slope and offset value calculated will be

NaN .

deriv should only be used with gauges.

exp()

exp(v instant-vector) calculates the exponential function for all elements in

v . Special cases are:

Exp(+Inf) = +Inf

Exp(NaN) = NaN

floor()

floor(v instant-vector) rounds the sample values of all elements in v down

to the nearest integer value smaller than or equal to v.

floor(+Inf) = +Inf

floor(±0) = ±0

floor(1.49) = 1.0

floor(1.78) = 1.0

histogram_avg()

This function only acts on native histograms, which are an experimental feature. The
behavior of this function may change in future versions of Prometheus, including its
removal from PromQL.

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 7/23

https://en.wikipedia.org/wiki/Simple_linear_regression
https://en.wikipedia.org/wiki/Simple_linear_regression

histogram_avg(v instant-vector) returns the arithmetic average of observed

values stored in a native histogram. Samples that are not native histograms are

ignored and do not show up in the returned vector.

Use histogram_avg as demonstrated below to compute the average request

duration over a 5-minute window from a native histogram:

histogram_avg(rate(http_request_duration_seconds[5m]))

Which is equivalent to the following query:

 histogram_sum(rate(http_request_duration_seconds[5m]))
/
 histogram_count(rate(http_request_duration_seconds[5m]))

histogram_count() and histogram_sum()

Both functions only act on native histograms, which are an experimental feature.
The behavior of these functions may change in future versions of Prometheus,
including their removal from PromQL.

histogram_count(v instant-vector) returns the count of observations stored in

a native histogram. Samples that are not native histograms are ignored and do

not show up in the returned vector.

Similarly, histogram_sum(v instant-vector) returns the sum of observations

stored in a native histogram.

Use histogram_count in the following way to calculate a rate of observations (in

this case corresponding to “requests per second”) from a native histogram:

histogram_count(rate(http_request_duration_seconds[10m]))

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 8/23

histogram_fraction()

This function only acts on native histograms, which are an experimental feature. The
behavior of this function may change in future versions of Prometheus, including its
removal from PromQL.

For a native histogram, histogram_fraction(lower scalar, upper scalar, v

instant-vector) returns the estimated fraction of observations between the

provided lower and upper values. Samples that are not native histograms are

ignored and do not show up in the returned vector.

For example, the following expression calculates the fraction of HTTP requests

over the last hour that took 200ms or less:

histogram_fraction(0, 0.2, rate(http_request_duration_seconds[1h]))

The error of the estimation depends on the resolution of the underlying native

histogram and how closely the provided boundaries are aligned with the bucket

boundaries in the histogram.

+Inf and -Inf are valid boundary values. For example, if the histogram in the

expression above included negative observations (which shouldn't be the case

for request durations), the appropriate lower boundary to include all

observations less than or equal 0.2 would be -Inf rather than 0 .

Whether the provided boundaries are inclusive or exclusive is only relevant if

the provided boundaries are precisely aligned with bucket boundaries in the

underlying native histogram. In this case, the behavior depends on the schema

definition of the histogram. The currently supported schemas all feature

inclusive upper boundaries and exclusive lower boundaries for positive values

(and vice versa for negative values). Without a precise alignment of boundaries,

the function uses linear interpolation to estimate the fraction. With the

resulting uncertainty, it becomes irrelevant if the boundaries are inclusive or

exclusive.

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 9/23

histogram_quantile()

histogram_quantile(φ scalar, b instant-vector) calculates the φ-quantile (0 ≤

φ ≤ 1) from a classic histogram (/docs/concepts/metric_types/#histogram) or

from a native histogram. (See histograms and summaries

(/docs/practices/histograms) for a detailed explanation of φ-quantiles and the

usage of the (classic) histogram metric type in general.)

Note that native histograms are an experimental feature. The behavior of this
function when dealing with native histograms may change in future versions of
Prometheus.

The float samples in b are considered the counts of observations in each

bucket of one or more classic histograms. Each float sample must have a label

le where the label value denotes the inclusive upper bound of the bucket.

(Float samples without such a label are silently ignored.) The other labels and

the metric name are used to identify the buckets belonging to each classic

histogram. The histogram metric type

(/docs/concepts/metric_types/#histogram) automatically provides time series

with the _bucket suffix and the appropriate labels.

The native histogram samples in b are treated each individually as a separate

histogram to calculate the quantile from.

As long as no naming collisions arise, b may contain a mix of classic and native

histograms.

Use the rate() function to specify the time window for the quantile

calculation.

Example: A histogram metric is called http_request_duration_seconds (and

therefore the metric name for the buckets of a classic histogram is

http_request_duration_seconds_bucket). To calculate the 90th percentile of

request durations over the last 10m, use the following expression in case

http_request_duration_seconds is a classic histogram:

histogram_quantile(0.9, rate(http_request_duration_seconds_bucket[10m]))

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 10/23

https://prometheus.io/docs/concepts/metric_types/#histogram
https://prometheus.io/docs/concepts/metric_types/#histogram
https://prometheus.io/docs/practices/histograms
https://prometheus.io/docs/practices/histograms
https://prometheus.io/docs/concepts/metric_types/#histogram
https://prometheus.io/docs/concepts/metric_types/#histogram

For a native histogram, use the following expression instead:

histogram_quantile(0.9, rate(http_request_duration_seconds[10m]))

The quantile is calculated for each label combination in

http_request_duration_seconds . To aggregate, use the sum() aggregator

around the rate() function. Since the le label is required by

histogram_quantile() to deal with classic histograms, it has to be included in

the by clause. The following expression aggregates the 90th percentile by job

for classic histograms:

histogram_quantile(0.9, sum by (job, le) (rate(http_request_duration_seconds_buck

When aggregating native histograms, the expression simplifies to:

histogram_quantile(0.9, sum by (job) (rate(http_request_duration_seconds[10m])))

To aggregate all classic histograms, specify only the le label:

histogram_quantile(0.9, sum by (le) (rate(http_request_duration_seconds_bucket[10

With native histograms, aggregating everything works as usual without any by

clause:

histogram_quantile(0.9, sum(rate(http_request_duration_seconds[10m])))

The histogram_quantile() function interpolates quantile values by assuming a

linear distribution within a bucket.

If b has 0 observations, NaN is returned. For φ < 0, -Inf is returned. For φ > 1,

+Inf is returned. For φ = NaN , NaN is returned.

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 11/23

The following is only relevant for classic histograms: If b contains fewer than

two buckets, NaN is returned. The highest bucket must have an upper bound of

+Inf . (Otherwise, NaN is returned.) If a quantile is located in the highest

bucket, the upper bound of the second highest bucket is returned. A lower limit

of the lowest bucket is assumed to be 0 if the upper bound of that bucket is

greater than 0. In that case, the usual linear interpolation is applied within that

bucket. Otherwise, the upper bound of the lowest bucket is returned for

quantiles located in the lowest bucket.

You can use histogram_quantile(0, v instant-vector) to get the estimated

minimum value stored in a histogram.

You can use histogram_quantile(1, v instant-vector) to get the estimated

maximum value stored in a histogram.

Buckets of classic histograms are cumulative. Therefore, the following should

always be the case:

The counts in the buckets are monotonically increasing (strictly non-

decreasing).

A lack of observations between the upper limits of two consecutive

buckets results in equal counts in those two buckets.

However, floating point precision issues (e.g. small discrepancies introduced by

computing of buckets with sum(rate(...))) or invalid data might violate these

assumptions. In that case, histogram_quantile would be unable to return

meaningful results. To mitigate the issue, histogram_quantile assumes that

tiny relative differences between consecutive buckets are happening because

of floating point precision errors and ignores them. (The threshold to ignore a

difference between two buckets is a trillionth (1e-12) of the sum of both

buckets.) Furthermore, if there are non-monotonic bucket counts even after

this adjustment, they are increased to the value of the previous buckets to

enforce monotonicity. The latter is evidence for an actual issue with the input

data and is therefore flagged with an informational annotation reading input

to histogram_quantile needed to be fixed for monotonicity . If you encounter

this annotation, you should find and remove the source of the invalid data.

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 12/23

histogram_stddev() and histogram_stdvar()

Both functions only act on native histograms, which are an experimental feature.
The behavior of these functions may change in future versions of Prometheus,
including their removal from PromQL.

histogram_stddev(v instant-vector) returns the estimated standard deviation

of observations in a native histogram, based on the geometric mean of the

buckets where the observations lie. Samples that are not native histograms are

ignored and do not show up in the returned vector.

Similarly, histogram_stdvar(v instant-vector) returns the estimated standard

variance of observations in a native histogram.

holt_winters()

holt_winters(v range-vector, sf scalar, tf scalar) produces a smoothed

value for time series based on the range in v . The lower the smoothing factor

sf , the more importance is given to old data. The higher the trend factor tf ,

the more trends in the data is considered. Both sf and tf must be between 0

and 1.

holt_winters should only be used with gauges.

hour()

hour(v=vector(time()) instant-vector) returns the hour of the day for each of

the given times in UTC. Returned values are from 0 to 23.

idelta()

idelta(v range-vector) calculates the difference between the last two samples

in the range vector v , returning an instant vector with the given deltas and

equivalent labels.

idelta should only be used with gauges.

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 13/23

increase()

increase(v range-vector) calculates the increase in the time series in the

range vector. Breaks in monotonicity (such as counter resets due to target

restarts) are automatically adjusted for. The increase is extrapolated to cover

the full time range as specified in the range vector selector, so that it is possible

to get a non-integer result even if a counter increases only by integer

increments.

The following example expression returns the number of HTTP requests as

measured over the last 5 minutes, per time series in the range vector:

increase(http_requests_total{job="api-server"}[5m])

increase acts on native histograms by calculating a new histogram where each

component (sum and count of observations, buckets) is the increase between

the respective component in the first and last native histogram in v . However,

each element in v that contains a mix of float and native histogram samples

within the range, will be missing from the result vector.

increase should only be used with counters and native histograms where the

components behave like counters. It is syntactic sugar for rate(v) multiplied

by the number of seconds under the specified time range window, and should

be used primarily for human readability. Use rate in recording rules so that

increases are tracked consistently on a per-second basis.

irate()

irate(v range-vector) calculates the per-second instant rate of increase of the

time series in the range vector. This is based on the last two data points. Breaks

in monotonicity (such as counter resets due to target restarts) are automatically

adjusted for.

The following example expression returns the per-second rate of HTTP

requests looking up to 5 minutes back for the two most recent data points, per

time series in the range vector:

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 14/23

irate(http_requests_total{job="api-server"}[5m])

irate should only be used when graphing volatile, fast-moving counters. Use

rate for alerts and slow-moving counters, as brief changes in the rate can

reset the FOR clause and graphs consisting entirely of rare spikes are hard to

read.

Note that when combining irate() with an aggregation operator

(../operators/#aggregation-operators) (e.g. sum()) or a function aggregating

over time (any function ending in _over_time), always take a irate() first, then

aggregate. Otherwise irate() cannot detect counter resets when your target

restarts.

label_join()

For each timeseries in v , label_join(v instant-vector, dst_label string,

separator string, src_label_1 string, src_label_2 string, ...) joins all the

values of all the src_labels using separator and returns the timeseries with

the label dst_label containing the joined value. There can be any number of

src_labels in this function.

label_join acts on float and histogram samples in the same way.

This example will return a vector with each time series having a foo label with

the value a,b,c added to it:

label_join(up{job="api-server",src1="a",src2="b",src3="c"}, "foo", ",", "src1", "

label_replace()

For each timeseries in v , label_replace(v instant-vector, dst_label string,

replacement string, src_label string, regex string) matches the regular

expression (https://github.com/google/re2/wiki/Syntax) regex against the value

of the label src_label . If it matches, the value of the label dst_label in the

returned timeseries will be the expansion of replacement , together with the

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 15/23

https://prometheus.io/docs/prometheus/latest/querying/operators/#aggregation-operators
https://prometheus.io/docs/prometheus/latest/querying/operators/#aggregation-operators
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax

original labels in the input. Capturing groups in the regular expression can be

referenced with $1 , $2 , etc. Named capturing groups in the regular expression

can be referenced with $name (where name is the capturing group name). If the

regular expression doesn't match then the timeseries is returned unchanged.

label_replace acts on float and histogram samples in the same way.

This example will return timeseries with the values a:c at label service and a

at label foo :

label_replace(up{job="api-server",service="a:c"}, "foo", "$1", "service", "(.*):

This second example has the same effect than the first example, and illustrates

use of named capturing groups: label_replace(up{job="api-

server",service="a:c"}, "foo", "$name", "service", "(?P<name>.*):(?

P<version>.*)")

ln()

ln(v instant-vector) calculates the natural logarithm for all elements in v .

Special cases are:

ln(+Inf) = +Inf

ln(0) = -Inf

ln(x < 0) = NaN

ln(NaN) = NaN

log2()

log2(v instant-vector) calculates the binary logarithm for all elements in v .

The special cases are equivalent to those in ln .

log10()

log10(v instant-vector) calculates the decimal logarithm for all elements in

v . The special cases are equivalent to those in ln .

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 16/23

minute()

minute(v=vector(time()) instant-vector) returns the minute of the hour for

each of the given times in UTC. Returned values are from 0 to 59.

month()

month(v=vector(time()) instant-vector) returns the month of the year for

each of the given times in UTC. Returned values are from 1 to 12, where 1

means January etc.

predict_linear()

predict_linear(v range-vector, t scalar) predicts the value of time series t

seconds from now, based on the range vector v , using simple linear regression

(https://en.wikipedia.org/wiki/Simple_linear_regression). The range vector must

have at least two samples in order to perform the calculation. When +Inf or -

Inf are found in the range vector, the slope and offset value calculated will be

NaN .

predict_linear should only be used with gauges.

rate()

rate(v range-vector) calculates the per-second average rate of increase of the

time series in the range vector. Breaks in monotonicity (such as counter resets

due to target restarts) are automatically adjusted for. Also, the calculation

extrapolates to the ends of the time range, allowing for missed scrapes or

imperfect alignment of scrape cycles with the range's time period.

The following example expression returns the per-second rate of HTTP

requests as measured over the last 5 minutes, per time series in the range

vector:

rate(http_requests_total{job="api-server"}[5m])

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 17/23

https://en.wikipedia.org/wiki/Simple_linear_regression
https://en.wikipedia.org/wiki/Simple_linear_regression

rate acts on native histograms by calculating a new histogram where each

component (sum and count of observations, buckets) is the rate of increase

between the respective component in the first and last native histogram in v .

However, each element in v that contains a mix of float and native histogram

samples within the range, will be missing from the result vector.

rate should only be used with counters and native histograms where the

components behave like counters. It is best suited for alerting, and for graphing

of slow-moving counters.

Note that when combining rate() with an aggregation operator (e.g. sum()) or

a function aggregating over time (any function ending in _over_time), always

take a rate() first, then aggregate. Otherwise rate() cannot detect counter

resets when your target restarts.

resets()

For each input time series, resets(v range-vector) returns the number of

counter resets within the provided time range as an instant vector. Any

decrease in the value between two consecutive float samples is interpreted as a

counter reset. A reset in a native histogram is detected in a more complex way:

Any decrease in any bucket, including the zero bucket, or in the count of

observation constitutes a counter reset, but also the disappearance of any

previously populated bucket, an increase in bucket resolution, or a decrease of

the zero-bucket width.

resets should only be used with counters and counter-like native histograms.

If the range vector contains a mix of float and histogram samples for the same

series, counter resets are detected separately and their numbers added up.

The change from a float to a histogram sample is not considered a counter

reset. Each float sample is compared to the next float sample, and each

histogram is comprared to the next histogram.

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 18/23

round()

round(v instant-vector, to_nearest=1 scalar) rounds the sample values of all

elements in v to the nearest integer. Ties are resolved by rounding up. The

optional to_nearest argument allows specifying the nearest multiple to which

the sample values should be rounded. This multiple may also be a fraction.

scalar()

Given a single-element input vector, scalar(v instant-vector) returns the

sample value of that single element as a scalar. If the input vector does not

have exactly one element, scalar will return NaN .

sgn()

sgn(v instant-vector) returns a vector with all sample values converted to

their sign, defined as this: 1 if v is positive, -1 if v is negative and 0 if v is equal to

zero.

sort()

sort(v instant-vector) returns vector elements sorted by their sample values,

in ascending order. Native histograms are sorted by their sum of observations.

Please note that sort only affects the results of instant queries, as range query

results always have a fixed output ordering.

sort_desc()

Same as sort , but sorts in descending order.

Like sort , sort_desc only affects the results of instant queries, as range query

results always have a fixed output ordering.

sort_by_label()

This function has to be enabled via the feature flag (../feature_flags/) --

enable-feature=promql-experimental-functions .

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 19/23

https://prometheus.io/docs/prometheus/latest/querying/feature_flags/
https://prometheus.io/docs/prometheus/latest/querying/feature_flags/

sort_by_label(v instant-vector, label string, ...) returns vector elements

sorted by their label values and sample value in case of label values being

equal, in ascending order.

Please note that the sort by label functions only affect the results of instant

queries, as range query results always have a fixed output ordering.

This function uses natural sort order

(https://en.wikipedia.org/wiki/Natural_sort_order).

sort_by_label_desc()

This function has to be enabled via the feature flag (../feature_flags/) --

enable-feature=promql-experimental-functions .

Same as sort_by_label , but sorts in descending order.

Please note that the sort by label functions only affect the results of instant

queries, as range query results always have a fixed output ordering.

This function uses natural sort order

(https://en.wikipedia.org/wiki/Natural_sort_order).

sqrt()

sqrt(v instant-vector) calculates the square root of all elements in v .

time()

time() returns the number of seconds since January 1, 1970 UTC. Note that

this does not actually return the current time, but the time at which the

expression is to be evaluated.

timestamp()

timestamp(v instant-vector) returns the timestamp of each of the samples of

the given vector as the number of seconds since January 1, 1970 UTC. It also

works with histogram samples.

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 20/23

https://en.wikipedia.org/wiki/Natural_sort_order
https://en.wikipedia.org/wiki/Natural_sort_order
https://prometheus.io/docs/prometheus/latest/querying/feature_flags/
https://prometheus.io/docs/prometheus/latest/querying/feature_flags/
https://en.wikipedia.org/wiki/Natural_sort_order
https://en.wikipedia.org/wiki/Natural_sort_order

vector()

vector(s scalar) returns the scalar s as a vector with no labels.

year()

year(v=vector(time()) instant-vector) returns the year for each of the given

times in UTC.

<aggregation>_over_time()

The following functions allow aggregating each series of a given range vector

over time and return an instant vector with per-series aggregation results:

avg_over_time(range-vector) : the average value of all points in the

specified interval.

min_over_time(range-vector) : the minimum value of all points in the

specified interval.

max_over_time(range-vector) : the maximum value of all points in the

specified interval.

sum_over_time(range-vector) : the sum of all values in the specified

interval.

count_over_time(range-vector) : the count of all values in the specified

interval.

quantile_over_time(scalar, range-vector) : the φ-quantile (0 ≤ φ ≤ 1) of

the values in the specified interval.

stddev_over_time(range-vector) : the population standard deviation of

the values in the specified interval.

stdvar_over_time(range-vector) : the population standard variance of the

values in the specified interval.

last_over_time(range-vector) : the most recent point value in the

specified interval.

present_over_time(range-vector) : the value 1 for any series in the

specified interval.

If the feature flag (../feature_flags/) --enable-feature=promql-experimental-

functions is set, the following additional functions are available:

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 21/23

https://prometheus.io/docs/prometheus/latest/querying/feature_flags/
https://prometheus.io/docs/prometheus/latest/querying/feature_flags/

mad_over_time(range-vector) : the median absolute deviation of all points

in the specified interval.

Note that all values in the specified interval have the same weight in the

aggregation even if the values are not equally spaced throughout the interval.

avg_over_time , sum_over_time , count_over_time , last_over_time , and

present_over_time handle native histograms as expected. All other functions

ignore histogram samples.

Trigonometric Functions

The trigonometric functions work in radians:

acos(v instant-vector) : calculates the arccosine of all elements in v

(special cases (https://pkg.go.dev/math#Acos)).

acosh(v instant-vector) : calculates the inverse hyperbolic cosine of all

elements in v (special cases (https://pkg.go.dev/math#Acosh)).

asin(v instant-vector) : calculates the arcsine of all elements in v

(special cases (https://pkg.go.dev/math#Asin)).

asinh(v instant-vector) : calculates the inverse hyperbolic sine of all

elements in v (special cases (https://pkg.go.dev/math#Asinh)).

atan(v instant-vector) : calculates the arctangent of all elements in v

(special cases (https://pkg.go.dev/math#Atan)).

atanh(v instant-vector) : calculates the inverse hyperbolic tangent of all

elements in v (special cases (https://pkg.go.dev/math#Atanh)).

cos(v instant-vector) : calculates the cosine of all elements in v (special

cases (https://pkg.go.dev/math#Cos)).

cosh(v instant-vector) : calculates the hyperbolic cosine of all elements

in v (special cases (https://pkg.go.dev/math#Cosh)).

sin(v instant-vector) : calculates the sine of all elements in v (special

cases (https://pkg.go.dev/math#Sin)).

sinh(v instant-vector) : calculates the hyperbolic sine of all elements in

v (special cases (https://pkg.go.dev/math#Sinh)).

tan(v instant-vector) : calculates the tangent of all elements in v

(special cases (https://pkg.go.dev/math#Tan)).

tanh(v instant-vector) : calculates the hyperbolic tangent of all elements

in v (special cases (https://pkg.go.dev/math#Tanh)).

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 22/23

https://pkg.go.dev/math#Acos
https://pkg.go.dev/math#Acos
https://pkg.go.dev/math#Acosh
https://pkg.go.dev/math#Acosh
https://pkg.go.dev/math#Asin
https://pkg.go.dev/math#Asin
https://pkg.go.dev/math#Asinh
https://pkg.go.dev/math#Asinh
https://pkg.go.dev/math#Atan
https://pkg.go.dev/math#Atan
https://pkg.go.dev/math#Atanh
https://pkg.go.dev/math#Atanh
https://pkg.go.dev/math#Cos
https://pkg.go.dev/math#Cos
https://pkg.go.dev/math#Cos
https://pkg.go.dev/math#Cosh
https://pkg.go.dev/math#Cosh
https://pkg.go.dev/math#Sin
https://pkg.go.dev/math#Sin
https://pkg.go.dev/math#Sin
https://pkg.go.dev/math#Sinh
https://pkg.go.dev/math#Sinh
https://pkg.go.dev/math#Tan
https://pkg.go.dev/math#Tan
https://pkg.go.dev/math#Tanh
https://pkg.go.dev/math#Tanh

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

The following are useful for converting between degrees and radians:

deg(v instant-vector) : converts radians to degrees for all elements in v .

pi() : returns pi.

rad(v instant-vector) : converts degrees to radians for all elements in v .

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:18 Query functions | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/functions/ 23/23

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Querying

Basics (/docs/prometheus/latest/querying/basics/)

Operators (/docs/prometheus/latest/querying/operators/)

Functions (/docs/prometheus/latest/querying/functions/)

Examples (/docs/prometheus/latest/querying/examples/)

HTTP API (/docs/prometheus/latest/querying/api/)

Remote Read API (/docs/prometheus/latest/querying/remote_read_api/)

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

10/09/24, 19:19 Querying examples | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/examples/ 1/6

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/operators/
https://prometheus.io/docs/prometheus/latest/querying/functions/
https://prometheus.io/docs/prometheus/latest/querying/examples/
https://prometheus.io/docs/prometheus/latest/querying/api/
https://prometheus.io/docs/prometheus/latest/querying/remote_read_api/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/

Simple time series

selection

Subquery

Using functions,

operators, etc.

QUERY EXAMPLES

Simple time series selection

Return all time series with the metric

http_requests_total :

http_requests_total

Return all time series with the metric http_requests_total and the given job

and handler labels:

http_requests_total{job="apiserver", handler="/api/comments"}

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:19 Querying examples | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/examples/ 2/6

https://prometheus.io/docs/prometheus/latest/feature_flags/

Return a whole range of time (in this case 5 minutes up to the query time) for

the same vector, making it a range vector (../basics/#range-vector-selectors):

http_requests_total{job="apiserver", handler="/api/comments"}[5m]

Note that an expression resulting in a range vector cannot be graphed directly,

but viewed in the tabular ("Console") view of the expression browser.

Using regular expressions, you could select time series only for jobs whose

name match a certain pattern, in this case, all jobs that end with server :

http_requests_total{job=~".*server"}

All regular expressions in Prometheus use RE2 syntax

(https://github.com/google/re2/wiki/Syntax).

To select all HTTP status codes except 4xx ones, you could run:

http_requests_total{status!~"4.."}

Subquery

Return the 5-minute rate (.././functions/#rate) of the http_requests_total

metric for the past 30 minutes, with a resolution of 1 minute.

rate(http_requests_total[5m])[30m:1m]

This is an example of a nested subquery. The subquery for the deriv function

uses the default resolution. Note that using subqueries unnecessarily is unwise.

max_over_time(deriv(rate(distance_covered_total[5s])[30s:5s])[10m:])

10/09/24, 19:19 Querying examples | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/examples/ 3/6

https://prometheus.io/docs/prometheus/latest/querying/basics/#range-vector-selectors
https://prometheus.io/docs/prometheus/latest/querying/basics/#range-vector-selectors
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://prometheus.io/docs/prometheus/latest/querying/functions/#rate
https://prometheus.io/docs/prometheus/latest/querying/functions/#rate

Using functions, operators, etc.

Return the per-second rate for all time series with the http_requests_total

metric name, as measured over the last 5 minutes:

rate(http_requests_total[5m])

Assuming that the http_requests_total time series all have the labels job

(fanout by job name) and instance (fanout by instance of the job), we might

want to sum over the rate of all instances, so we get fewer output time series,

but still preserve the job dimension:

sum by (job) (
 rate(http_requests_total[5m])
)

If we have two different metrics with the same dimensional labels, we can apply

binary operators to them and elements on both sides with the same label set

will get matched and propagated to the output. For example, this expression

returns the unused memory in MiB for every instance (on a fictional cluster

scheduler exposing these metrics about the instances it runs):

(instance_memory_limit_bytes - instance_memory_usage_bytes) / 1024 / 1024

The same expression, but summed by application, could be written like this:

sum by (app, proc) (
 instance_memory_limit_bytes - instance_memory_usage_bytes
) / 1024 / 1024

If the same fictional cluster scheduler exposed CPU usage metrics like the

following for every instance:

10/09/24, 19:19 Querying examples | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/examples/ 4/6

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

instance_cpu_time_ns{app="lion", proc="web", rev="34d0f99", env="prod", job="clus
instance_cpu_time_ns{app="elephant", proc="worker", rev="34d0f99", env="prod", jo
instance_cpu_time_ns{app="turtle", proc="api", rev="4d3a513", env="prod", job="cl
instance_cpu_time_ns{app="fox", proc="widget", rev="4d3a513", env="prod", job="cl
...

...we could get the top 3 CPU users grouped by application (app) and process

type (proc) like this:

topk(3, sum by (app, proc) (rate(instance_cpu_time_ns[5m])))

Assuming this metric contains one time series per running instance, you could

count the number of running instances per application like this:

count by (app) (instance_cpu_time_ns)

If we are exploring some metrics for their labels, to e.g. be able to aggregate

over some of them, we could use the following:

limitk(10, app_foo_metric_bar)

Alternatively, if we wanted the returned timeseries to be more evenly sampled,

we could use the following to get approximately 10% of them:

limit_ratio(0.1, app_foo_metric_bar)

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:19 Querying examples | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/examples/ 5/6

https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

10/09/24, 19:19 Querying examples | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/examples/ 6/6

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Querying

Basics (/docs/prometheus/latest/querying/basics/)

Operators (/docs/prometheus/latest/querying/operators/)

Functions (/docs/prometheus/latest/querying/functions/)

Examples (/docs/prometheus/latest/querying/examples/)

HTTP API (/docs/prometheus/latest/querying/api/)

Remote Read API (/docs/prometheus/latest/querying/remote_read_api/)

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 1/40

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/operators/
https://prometheus.io/docs/prometheus/latest/querying/functions/
https://prometheus.io/docs/prometheus/latest/querying/examples/
https://prometheus.io/docs/prometheus/latest/querying/api/
https://prometheus.io/docs/prometheus/latest/querying/remote_read_api/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/

Format overview

Expression queries

Instant queries

Range queries

Formatting query

expressions

Querying metadata

Finding series by

label matchers

Getting label names

Querying label

values

Querying exemplars

HTTP API

The current stable HTTP API is reachable

under /api/v1 on a Prometheus server. Any

non-breaking additions will be added under

that endpoint.

Format overview 

The API response format is JSON. Every

successful API request returns a 2xx status

code.

Invalid requests that reach the API handlers

return a JSON error object and one of the

following HTTP response codes:

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 2/40

https://prometheus.io/docs/prometheus/latest/feature_flags/

Expression query result

formats

Range vectors

Instant vectors

Scalars

Strings

Native histograms

Targets

Rules

Alerts

Querying target

metadata

Querying metric

metadata

Alertmanagers

Status

Config

Flags

Runtime Information

Build Information

TSDB Stats

WAL Replay Stats

TSDB Admin APIs

Snapshot

Delete Series

Clean Tombstones

Remote Write Receiver

OTLP Receiver

400 Bad Request when parameters are

missing or incorrect.

422 Unprocessable Entity when an

expression can't be executed (RFC4918

(https://tools.ietf.org/html/rfc4918#page-

78)).

503 Service Unavailable when queries

time out or abort.

Other non- 2xx codes may be returned for

errors occurring before the API endpoint is

reached.

An array of warnings may be returned if there

are errors that do not inhibit the request

execution. An additional array of info-level

annotations may be returned for potential

query issues that may or may not be false

positives. All of the data that was successfully

collected will be returned in the data field.

The JSON response envelope format is as

follows:

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 3/40

https://tools.ietf.org/html/rfc4918#page-78
https://tools.ietf.org/html/rfc4918#page-78
https://tools.ietf.org/html/rfc4918#page-78

{
 "status": "success" | "error",
 "data": <data>,

 // Only set if status is "error". The data field may still hold
 // additional data.
 "errorType": "<string>",
 "error": "<string>",

 // Only set if there were warnings while executing the request.
 // There will still be data in the data field.
 "warnings": ["<string>"],
 // Only set if there were info-level annnotations while executing the request.
 "infos": ["<string>"]
}

Generic placeholders are defined as follows:

<rfc3339 | unix_timestamp> : Input timestamps may be provided either in

RFC3339 (https://www.ietf.org/rfc/rfc3339.txt) format or as a Unix

timestamp in seconds, with optional decimal places for sub-second

precision. Output timestamps are always represented as Unix timestamps

in seconds.

<series_selector> : Prometheus time series selectors (../basics/#time-

series-selectors) like http_requests_total or

http_requests_total{method=~"(GET|POST)"} and need to be URL-

encoded.

<duration> : Prometheus duration strings (../basics/#time-durations). For

example, 5m refers to a duration of 5 minutes.

<bool> : boolean values (strings true and false).

Note: Names of query parameters that may be repeated end with [] .

Expression queries

Query language expressions may be evaluated at a single instant or over a

range of time. The sections below describe the API endpoints for each type of

expression query.

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 4/40

https://www.ietf.org/rfc/rfc3339.txt
https://www.ietf.org/rfc/rfc3339.txt
https://prometheus.io/docs/prometheus/latest/querying/basics/#time-series-selectors
https://prometheus.io/docs/prometheus/latest/querying/basics/#time-series-selectors
https://prometheus.io/docs/prometheus/latest/querying/basics/#time-series-selectors
https://prometheus.io/docs/prometheus/latest/querying/basics/#time-durations
https://prometheus.io/docs/prometheus/latest/querying/basics/#time-durations

Instant queries

The following endpoint evaluates an instant query at a single point in time:

GET /api/v1/query
POST /api/v1/query

URL query parameters:

query=<string> : Prometheus expression query string.

time=<rfc3339 | unix_timestamp> : Evaluation timestamp. Optional.

timeout=<duration> : Evaluation timeout. Optional. Defaults to and is

capped by the value of the -query.timeout flag.

The current server time is used if the time parameter is omitted.

You can URL-encode these parameters directly in the request body by using the

POST method and Content-Type: application/x-www-form-urlencoded header.

This is useful when specifying a large query that may breach server-side URL

character limits.

The data section of the query result has the following format:

{
 "resultType": "matrix" | "vector" | "scalar" | "string",
 "result": <value>
}

<value> refers to the query result data, which has varying formats depending

on the resultType . See the expression query result formats.

The following example evaluates the expression up at the time 2015-07-

01T20:10:51.781Z :

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 5/40

$ curl 'http://localhost:9090/api/v1/query?query=up&time=2015-07-01T20:10:51.781Z
{
 "status" : "success",
 "data" : {
 "resultType" : "vector",
 "result" : [
 {
 "metric" : {
 "__name__" : "up",
 "job" : "prometheus",
 "instance" : "localhost:9090"
 },
 "value": [1435781451.781, "1"]
 },
 {
 "metric" : {
 "__name__" : "up",
 "job" : "node",
 "instance" : "localhost:9100"
 },
 "value" : [1435781451.781, "0"]
 }
]
 }
}

Range queries

The following endpoint evaluates an expression query over a range of time:

GET /api/v1/query_range
POST /api/v1/query_range

URL query parameters:

query=<string> : Prometheus expression query string.

start=<rfc3339 | unix_timestamp> : Start timestamp, inclusive.

end=<rfc3339 | unix_timestamp> : End timestamp, inclusive.

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 6/40

step=<duration | float> : Query resolution step width in duration

format or float number of seconds.

timeout=<duration> : Evaluation timeout. Optional. Defaults to and is

capped by the value of the -query.timeout flag.

You can URL-encode these parameters directly in the request body by using the

POST method and Content-Type: application/x-www-form-urlencoded header.

This is useful when specifying a large query that may breach server-side URL

character limits.

The data section of the query result has the following format:

{
 "resultType": "matrix",
 "result": <value>
}

For the format of the <value> placeholder, see the range-vector result format.

The following example evaluates the expression up over a 30-second range

with a query resolution of 15 seconds.

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 7/40

$ curl 'http://localhost:9090/api/v1/query_range?query=up&start=2015-07-01T20:10
{
 "status" : "success",
 "data" : {
 "resultType" : "matrix",
 "result" : [
 {
 "metric" : {
 "__name__" : "up",
 "job" : "prometheus",
 "instance" : "localhost:9090"
 },
 "values" : [
 [1435781430.781, "1"],
 [1435781445.781, "1"],
 [1435781460.781, "1"]
]
 },
 {
 "metric" : {
 "__name__" : "up",
 "job" : "node",
 "instance" : "localhost:9091"
 },
 "values" : [
 [1435781430.781, "0"],
 [1435781445.781, "0"],
 [1435781460.781, "1"]
]
 }
]
 }
}

Formatting query expressions

The following endpoint formats a PromQL expression in a prettified way:

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 8/40

GET /api/v1/format_query
POST /api/v1/format_query

URL query parameters:

query=<string> : Prometheus expression query string.

You can URL-encode these parameters directly in the request body by using the

POST method and Content-Type: application/x-www-form-urlencoded header.

This is useful when specifying a large query that may breach server-side URL

character limits.

The data section of the query result is a string containing the formatted query

expression. Note that any comments are removed in the formatted string.

The following example formats the expression foo/bar :

$ curl 'http://localhost:9090/api/v1/format_query?query=foo/bar'
{
 "status" : "success",
 "data" : "foo / bar"
}

Querying metadata

Prometheus offers a set of API endpoints to query metadata about series and

their labels.

NOTE: These API endpoints may return metadata for series for which there

is no sample within the selected time range, and/or for series whose

samples have been marked as deleted via the deletion API endpoint. The

exact extent of additionally returned series metadata is an implementation

detail that may change in the future.

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 9/40

Finding series by label matchers

The following endpoint returns the list of time series that match a certain label

set.

GET /api/v1/series
POST /api/v1/series

URL query parameters:

match[]=<series_selector> : Repeated series selector argument that

selects the series to return. At least one match[] argument must be

provided.

start=<rfc3339 | unix_timestamp> : Start timestamp.

end=<rfc3339 | unix_timestamp> : End timestamp.

limit=<number> : Maximum number of returned series. Optional. 0 means

disabled.

You can URL-encode these parameters directly in the request body by using the

POST method and Content-Type: application/x-www-form-urlencoded header.

This is useful when specifying a large or dynamic number of series selectors

that may breach server-side URL character limits.

The data section of the query result consists of a list of objects that contain the

label name/value pairs which identify each series.

The following example returns all series that match either of the selectors up

or process_start_time_seconds{job="prometheus"} :

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 10/40

$ curl -g 'http://localhost:9090/api/v1/series?' --data-urlencode 'match[]=up' --
{
 "status" : "success",
 "data" : [
 {
 "__name__" : "up",
 "job" : "prometheus",
 "instance" : "localhost:9090"
 },
 {
 "__name__" : "up",
 "job" : "node",
 "instance" : "localhost:9091"
 },
 {
 "__name__" : "process_start_time_seconds",
 "job" : "prometheus",
 "instance" : "localhost:9090"
 }
]
}

Getting label names

The following endpoint returns a list of label names:

GET /api/v1/labels
POST /api/v1/labels

URL query parameters:

start=<rfc3339 | unix_timestamp> : Start timestamp. Optional.

end=<rfc3339 | unix_timestamp> : End timestamp. Optional.

match[]=<series_selector> : Repeated series selector argument that

selects the series from which to read the label names. Optional.

limit=<number> : Maximum number of returned series. Optional. 0 means

disabled.

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 11/40

The data section of the JSON response is a list of string label names.

Here is an example.

$ curl 'localhost:9090/api/v1/labels'
{
 "status": "success",
 "data": [
 "__name__",
 "call",
 "code",
 "config",
 "dialer_name",
 "endpoint",
 "event",
 "goversion",
 "handler",
 "instance",
 "interval",
 "job",
 "le",
 "listener_name",
 "name",
 "quantile",
 "reason",
 "role",
 "scrape_job",
 "slice",
 "version"
]
}

Querying label values

The following endpoint returns a list of label values for a provided label name:

GET /api/v1/label/<label_name>/values

URL query parameters:

start=<rfc3339 | unix_timestamp> : Start timestamp. Optional.

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 12/40

end=<rfc3339 | unix_timestamp> : End timestamp. Optional.

match[]=<series_selector> : Repeated series selector argument that

selects the series from which to read the label values. Optional.

limit=<number> : Maximum number of returned series. Optional. 0 means

disabled.

The data section of the JSON response is a list of string label values.

This example queries for all label values for the job label:

$ curl http://localhost:9090/api/v1/label/job/values
{
 "status" : "success",
 "data" : [
 "node",
 "prometheus"
]
}

Querying exemplars

This is experimental and might change in the future. The following endpoint

returns a list of exemplars for a valid PromQL query for a specific time range:

GET /api/v1/query_exemplars
POST /api/v1/query_exemplars

URL query parameters:

query=<string> : Prometheus expression query string.

start=<rfc3339 | unix_timestamp> : Start timestamp.

end=<rfc3339 | unix_timestamp> : End timestamp.

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 13/40

$ curl -g 'http://localhost:9090/api/v1/query_exemplars?query=test_exemplar_metri
{
 "status": "success",
 "data": [
 {
 "seriesLabels": {
 "__name__": "test_exemplar_metric_total",
 "instance": "localhost:8090",
 "job": "prometheus",
 "service": "bar"
 },
 "exemplars": [
 {
 "labels": {
 "trace_id": "EpTxMJ40fUus7aGY"
 },
 "value": "6",
 "timestamp": 1600096945.479
 }
]
 },
 {
 "seriesLabels": {
 "__name__": "test_exemplar_metric_total",
 "instance": "localhost:8090",
 "job": "prometheus",
 "service": "foo"
 },
 "exemplars": [
 {
 "labels": {
 "trace_id": "Olp9XHlq763ccsfa"
 },
 "value": "19",
 "timestamp": 1600096955.479
 },
 {
 "labels": {
 "trace_id": "hCtjygkIHwAN9vs4"
 },
 "value": "20",
 "timestamp": 1600096965.489
 }

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 14/40

]
 }
]
}

Expression query result formats

Expression queries may return the following response values in the result

property of the data section. <sample_value> placeholders are numeric

sample values. JSON does not support special float values such as NaN , Inf ,

and -Inf , so sample values are transferred as quoted JSON strings rather than

raw numbers.

The keys "histogram" and "histograms" only show up if the experimental

native histograms are present in the response. Their placeholder <histogram>

is explained in detail in its own section below.

Range vectors

Range vectors are returned as result type matrix . The corresponding result

property has the following format:

[
 {
 "metric": { "<label_name>": "<label_value>", ... },
 "values": [[<unix_time>, "<sample_value>"], ...],
 "histograms": [[<unix_time>, <histogram>], ...]
 },
 ...
]

Each series could have the "values" key, or the "histograms" key, or both. For

a given timestamp, there will only be one sample of either float or histogram

type.

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 15/40

Series are returned sorted by metric . Functions such as sort

(../functions/#sort) and sort_by_label (../functions/#sort_by_label) have no

effect for range vectors.

Instant vectors

Instant vectors are returned as result type vector . The corresponding result

property has the following format:

[
 {
 "metric": { "<label_name>": "<label_value>", ... },
 "value": [<unix_time>, "<sample_value>"],
 "histogram": [<unix_time>, <histogram>]
 },
 ...
]

Each series could have the "value" key, or the "histogram" key, but not both.

Series are not guaranteed to be returned in any particular order unless a

function such as sort (../functions/#sort) or sort_by_label

(../functions/#sort_by_label)` is used.

Scalars

Scalar results are returned as result type scalar . The corresponding result

property has the following format:

[<unix_time>, "<scalar_value>"]

Strings

String results are returned as result type string . The corresponding result

property has the following format:

[<unix_time>, "<string_value>"]

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 16/40

https://prometheus.io/docs/prometheus/latest/querying/functions/#sort
https://prometheus.io/docs/prometheus/latest/querying/functions/#sort
https://prometheus.io/docs/prometheus/latest/querying/functions/#sort_by_label
https://prometheus.io/docs/prometheus/latest/querying/functions/#sort
https://prometheus.io/docs/prometheus/latest/querying/functions/#sort_by_label
https://prometheus.io/docs/prometheus/latest/querying/functions/#sort_by_label

Native histograms

The <histogram> placeholder used above is formatted as follows.

Note that native histograms are an experimental feature, and the format below
might still change.

{
 "count": "<count_of_observations>",
 "sum": "<sum_of_observations>",
 "buckets": [[<boundary_rule>, "<left_boundary>", "<right_boundary>", "<count_
}

The <boundary_rule> placeholder is an integer between 0 and 3 with the

following meaning:

0: “open left” (left boundary is exclusive, right boundary in inclusive)

1: “open right” (left boundary is inclusive, right boundary in exclusive)

2: “open both” (both boundaries are exclusive)

3: “closed both” (both boundaries are inclusive)

Note that with the currently implemented bucket schemas, positive buckets are

“open left”, negative buckets are “open right”, and the zero bucket (with a

negative left boundary and a positive right boundary) is “closed both”.

Targets

The following endpoint returns an overview of the current state of the

Prometheus target discovery:

GET /api/v1/targets

Both the active and dropped targets are part of the response by default.

Dropped targets are subject to keep_dropped_targets limit, if set. labels

represents the label set after relabeling has occurred. discoveredLabels

represent the unmodified labels retrieved during service discovery before

relabeling has occurred.

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 17/40

$ curl http://localhost:9090/api/v1/targets
{
 "status": "success",
 "data": {
 "activeTargets": [
 {
 "discoveredLabels": {
 "__address__": "127.0.0.1:9090",
 "__metrics_path__": "/metrics",
 "__scheme__": "http",
 "job": "prometheus"
 },
 "labels": {
 "instance": "127.0.0.1:9090",
 "job": "prometheus"
 },
 "scrapePool": "prometheus",
 "scrapeUrl": "http://127.0.0.1:9090/metrics",
 "globalUrl": "http://example-prometheus:9090/metrics",
 "lastError": "",
 "lastScrape": "2017-01-17T15:07:44.723715405+01:00",
 "lastScrapeDuration": 0.050688943,
 "health": "up",
 "scrapeInterval": "1m",
 "scrapeTimeout": "10s"
 }
],
 "droppedTargets": [
 {
 "discoveredLabels": {
 "__address__": "127.0.0.1:9100",
 "__metrics_path__": "/metrics",
 "__scheme__": "http",
 "__scrape_interval__": "1m",
 "__scrape_timeout__": "10s",
 "job": "node"
 },
 }
]
 }
}

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 18/40

The state query parameter allows the caller to filter by active or dropped

targets, (e.g., state=active , state=dropped , state=any). Note that an empty

array is still returned for targets that are filtered out. Other values are ignored.

$ curl 'http://localhost:9090/api/v1/targets?state=active'
{
 "status": "success",
 "data": {
 "activeTargets": [
 {
 "discoveredLabels": {
 "__address__": "127.0.0.1:9090",
 "__metrics_path__": "/metrics",
 "__scheme__": "http",
 "job": "prometheus"
 },
 "labels": {
 "instance": "127.0.0.1:9090",
 "job": "prometheus"
 },
 "scrapePool": "prometheus",
 "scrapeUrl": "http://127.0.0.1:9090/metrics",
 "globalUrl": "http://example-prometheus:9090/metrics",
 "lastError": "",
 "lastScrape": "2017-01-17T15:07:44.723715405+01:00",
 "lastScrapeDuration": 50688943,
 "health": "up"
 }
],
 "droppedTargets": []
 }
}

The scrapePool query parameter allows the caller to filter by scrape pool

name.

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 19/40

$ curl 'http://localhost:9090/api/v1/targets?scrapePool=node_exporter'
{
 "status": "success",
 "data": {
 "activeTargets": [
 {
 "discoveredLabels": {
 "__address__": "127.0.0.1:9091",
 "__metrics_path__": "/metrics",
 "__scheme__": "http",
 "job": "node_exporter"
 },
 "labels": {
 "instance": "127.0.0.1:9091",
 "job": "node_exporter"
 },
 "scrapePool": "node_exporter",
 "scrapeUrl": "http://127.0.0.1:9091/metrics",
 "globalUrl": "http://example-prometheus:9091/metrics",
 "lastError": "",
 "lastScrape": "2017-01-17T15:07:44.723715405+01:00",
 "lastScrapeDuration": 50688943,
 "health": "up"
 }
],
 "droppedTargets": []
 }
}

Rules

The /rules API endpoint returns a list of alerting and recording rules that are

currently loaded. In addition it returns the currently active alerts fired by the

Prometheus instance of each alerting rule.

As the /rules endpoint is fairly new, it does not have the same stability

guarantees as the overarching API v1.

GET /api/v1/rules

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 20/40

URL query parameters:

type=alert|record : return only the alerting rules (e.g. type=alert) or the

recording rules (e.g. type=record). When the parameter is absent or

empty, no filtering is done.

rule_name[]=<string> : only return rules with the given rule name. If the

parameter is repeated, rules with any of the provided names are

returned. If we've filtered out all the rules of a group, the group is not

returned. When the parameter is absent or empty, no filtering is done.

rule_group[]=<string> : only return rules with the given rule group name.

If the parameter is repeated, rules with any of the provided rule group

names are returned. When the parameter is absent or empty, no filtering

is done.

file[]=<string> : only return rules with the given filepath. If the

parameter is repeated, rules with any of the provided filepaths are

returned. When the parameter is absent or empty, no filtering is done.

exclude_alerts=<bool> : only return rules, do not return active alerts.

match[]=<label_selector> : only return rules that have configured labels

that satisfy the label selectors. If the parameter is repeated, rules that

match any of the sets of label selectors are returned. Note that matching

is on the labels in the definition of each rule, not on the values after

template expansion (for alerting rules). Optional.

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 21/40

$ curl http://localhost:9090/api/v1/rules

{
 "data": {
 "groups": [
 {
 "rules": [
 {
 "alerts": [
 {
 "activeAt": "2018-07-04T20:27:12.60602144+02:00",
 "annotations": {
 "summary": "High request latency"
 },
 "labels": {
 "alertname": "HighRequestLatency",
 "severity": "page"
 },
 "state": "firing",
 "value": "1e+00"
 }
],
 "annotations": {
 "summary": "High request latency"
 },
 "duration": 600,
 "health": "ok",
 "labels": {
 "severity": "page"
 },
 "name": "HighRequestLatency",
 "query": "job:request_latency_seconds:mean5m{job=\"myjob\
 "type": "alerting"
 },
 {
 "health": "ok",
 "name": "job:http_inprogress_requests:sum",
 "query": "sum by (job) (http_inprogress_requests)",
 "type": "recording"
 }
],
 "file": "/rules.yaml",
 "interval": 60,

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 22/40

 "limit": 0,
 "name": "example"
 }
]
 },
 "status": "success"
}

Alerts

The /alerts endpoint returns a list of all active alerts.

As the /alerts endpoint is fairly new, it does not have the same stability

guarantees as the overarching API v1.

GET /api/v1/alerts

$ curl http://localhost:9090/api/v1/alerts

{
 "data": {
 "alerts": [
 {
 "activeAt": "2018-07-04T20:27:12.60602144+02:00",
 "annotations": {},
 "labels": {
 "alertname": "my-alert"
 },
 "state": "firing",
 "value": "1e+00"
 }
]
 },
 "status": "success"
}

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 23/40

Querying target metadata

The following endpoint returns metadata about metrics currently scraped from

targets. This is experimental and might change in the future.

GET /api/v1/targets/metadata

URL query parameters:

match_target=<label_selectors> : Label selectors that match targets by

their label sets. All targets are selected if left empty.

metric=<string> : A metric name to retrieve metadata for. All metric

metadata is retrieved if left empty.

limit=<number> : Maximum number of targets to match.

The data section of the query result consists of a list of objects that contain

metric metadata and the target label set.

The following example returns all metadata entries for the go_goroutines

metric from the first two targets with label job="prometheus" .

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 24/40

curl -G http://localhost:9091/api/v1/targets/metadata \
 --data-urlencode 'metric=go_goroutines' \
 --data-urlencode 'match_target={job="prometheus"}' \
 --data-urlencode 'limit=2'
{
 "status": "success",
 "data": [
 {
 "target": {
 "instance": "127.0.0.1:9090",
 "job": "prometheus"
 },
 "type": "gauge",
 "help": "Number of goroutines that currently exist.",
 "unit": ""
 },
 {
 "target": {
 "instance": "127.0.0.1:9091",
 "job": "prometheus"
 },
 "type": "gauge",
 "help": "Number of goroutines that currently exist.",
 "unit": ""
 }
]
}

The following example returns metadata for all metrics for all targets with label

instance="127.0.0.1:9090 .

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 25/40

curl -G http://localhost:9091/api/v1/targets/metadata \
 --data-urlencode 'match_target={instance="127.0.0.1:9090"}'
{
 "status": "success",
 "data": [
 // ...
 {
 "target": {
 "instance": "127.0.0.1:9090",
 "job": "prometheus"
 },
 "metric": "prometheus_treecache_zookeeper_failures_total",
 "type": "counter",
 "help": "The total number of ZooKeeper failures.",
 "unit": ""
 },
 {
 "target": {
 "instance": "127.0.0.1:9090",
 "job": "prometheus"
 },
 "metric": "prometheus_tsdb_reloads_total",
 "type": "counter",
 "help": "Number of times the database reloaded block data from disk.",
 "unit": ""
 },
 // ...
]
}

Querying metric metadata

It returns metadata about metrics currently scraped from targets. However, it

does not provide any target information. This is considered experimental and

might change in the future.

GET /api/v1/metadata

URL query parameters:

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 26/40

limit=<number> : Maximum number of metrics to return.

limit_per_metric=<number> : Maximum number of metadata to return per

metric.

metric=<string> : A metric name to filter metadata for. All metric

metadata is retrieved if left empty.

The data section of the query result consists of an object where each key is a

metric name and each value is a list of unique metadata objects, as exposed for

that metric name across all targets.

The following example returns two metrics. Note that the metric

http_requests_total has more than one object in the list. At least one target

has a value for HELP that do not match with the rest.

curl -G http://localhost:9090/api/v1/metadata?limit=2

{
 "status": "success",
 "data": {
 "cortex_ring_tokens": [
 {
 "type": "gauge",
 "help": "Number of tokens in the ring",
 "unit": ""
 }
],
 "http_requests_total": [
 {
 "type": "counter",
 "help": "Number of HTTP requests",
 "unit": ""
 },
 {
 "type": "counter",
 "help": "Amount of HTTP requests",
 "unit": ""
 }
]
 }
}

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 27/40

The following example returns only one metadata entry for each metric.

curl -G http://localhost:9090/api/v1/metadata?limit_per_metric=1

{
 "status": "success",
 "data": {
 "cortex_ring_tokens": [
 {
 "type": "gauge",
 "help": "Number of tokens in the ring",
 "unit": ""
 }
],
 "http_requests_total": [
 {
 "type": "counter",
 "help": "Number of HTTP requests",
 "unit": ""
 }
]
 }
}

The following example returns metadata only for the metric

http_requests_total .

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 28/40

curl -G http://localhost:9090/api/v1/metadata?metric=http_requests_total

{
 "status": "success",
 "data": {
 "http_requests_total": [
 {
 "type": "counter",
 "help": "Number of HTTP requests",
 "unit": ""
 },
 {
 "type": "counter",
 "help": "Amount of HTTP requests",
 "unit": ""
 }
]
 }
}

Alertmanagers

The following endpoint returns an overview of the current state of the

Prometheus alertmanager discovery:

GET /api/v1/alertmanagers

Both the active and dropped Alertmanagers are part of the response.

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 29/40

$ curl http://localhost:9090/api/v1/alertmanagers
{
 "status": "success",
 "data": {
 "activeAlertmanagers": [
 {
 "url": "http://127.0.0.1:9090/api/v1/alerts"
 }
],
 "droppedAlertmanagers": [
 {
 "url": "http://127.0.0.1:9093/api/v1/alerts"
 }
]
 }
}

Status

Following status endpoints expose current Prometheus configuration.

Config

The following endpoint returns currently loaded configuration file:

GET /api/v1/status/config

The config is returned as dumped YAML file. Due to limitation of the YAML

library, YAML comments are not included.

$ curl http://localhost:9090/api/v1/status/config
{
 "status": "success",
 "data": {
 "yaml": "<content of the loaded config file in YAML>",
 }
}

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 30/40

Flags

The following endpoint returns flag values that Prometheus was configured

with:

GET /api/v1/status/flags

All values are of the result type string .

$ curl http://localhost:9090/api/v1/status/flags
{
 "status": "success",
 "data": {
 "alertmanager.notification-queue-capacity": "10000",
 "alertmanager.timeout": "10s",
 "log.level": "info",
 "query.lookback-delta": "5m",
 "query.max-concurrency": "20",
 ...
 }
}

New in v2.2

Runtime Information

The following endpoint returns various runtime information properties about

the Prometheus server:

GET /api/v1/status/runtimeinfo

The returned values are of different types, depending on the nature of the

runtime property.

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 31/40

$ curl http://localhost:9090/api/v1/status/runtimeinfo
{
 "status": "success",
 "data": {
 "startTime": "2019-11-02T17:23:59.301361365+01:00",
 "CWD": "/",
 "reloadConfigSuccess": true,
 "lastConfigTime": "2019-11-02T17:23:59+01:00",
 "timeSeriesCount": 873,
 "corruptionCount": 0,
 "goroutineCount": 48,
 "GOMAXPROCS": 4,
 "GOGC": "",
 "GODEBUG": "",
 "storageRetention": "15d"
 }
}

NOTE: The exact returned runtime properties may change without notice

between Prometheus versions.

New in v2.14

Build Information

The following endpoint returns various build information properties about the

Prometheus server:

GET /api/v1/status/buildinfo

All values are of the result type string .

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 32/40

$ curl http://localhost:9090/api/v1/status/buildinfo
{
 "status": "success",
 "data": {
 "version": "2.13.1",
 "revision": "cb7cbad5f9a2823a622aaa668833ca04f50a0ea7",
 "branch": "master",
 "buildUser": "julius@desktop",
 "buildDate": "20191102-16:19:59",
 "goVersion": "go1.13.1"
 }
}

NOTE: The exact returned build properties may change without notice

between Prometheus versions.

New in v2.14

TSDB Stats

The following endpoint returns various cardinality statistics about the

Prometheus TSDB:

GET /api/v1/status/tsdb

URL query parameters: - limit=<number> : Limit the number of returned items

to a given number for each set of statistics. By default, 10 items are returned.

The data section of the query result consists of - headStats: This provides the

following data about the head block of the TSDB: - numSeries: The number of

series. - chunkCount: The number of chunks. - minTime: The current

minimum timestamp in milliseconds. - maxTime: The current maximum

timestamp in milliseconds. - seriesCountByMetricName: This will provide a

list of metrics names and their series count. - labelValueCountByLabelName:

This will provide a list of the label names and their value count. -

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 33/40

memoryInBytesByLabelName This will provide a list of the label names and

memory used in bytes. Memory usage is calculated by adding the length of all

values for a given label name. - seriesCountByLabelPair This will provide a list

of label value pairs and their series count.

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 34/40

$ curl http://localhost:9090/api/v1/status/tsdb
{
 "status": "success",
 "data": {
 "headStats": {
 "numSeries": 508,
 "chunkCount": 937,
 "minTime": 1591516800000,
 "maxTime": 1598896800143,
 },
 "seriesCountByMetricName": [
 {
 "name": "net_conntrack_dialer_conn_failed_total",
 "value": 20
 },
 {
 "name": "prometheus_http_request_duration_seconds_bucket",
 "value": 20
 }
],
 "labelValueCountByLabelName": [
 {
 "name": "__name__",
 "value": 211
 },
 {
 "name": "event",
 "value": 3
 }
],
 "memoryInBytesByLabelName": [
 {
 "name": "__name__",
 "value": 8266
 },
 {
 "name": "instance",
 "value": 28
 }
],
 "seriesCountByLabelValuePair": [
 {
 "name": "job=prometheus",

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 35/40

 "value": 425
 },
 {
 "name": "instance=localhost:9090",
 "value": 425
 }
]
 }
}

New in v2.15

WAL Replay Stats

The following endpoint returns information about the WAL replay:

GET /api/v1/status/walreplay

read: The number of segments replayed so far. total: The total number

segments needed to be replayed. progress: The progress of the replay (0 -

100%). state: The state of the replay. Possible states: - waiting: Waiting for the

replay to start. - in progress: The replay is in progress. - done: The replay has

finished.

$ curl http://localhost:9090/api/v1/status/walreplay
{
 "status": "success",
 "data": {
 "min": 2,
 "max": 5,
 "current": 40,
 "state": "in progress"
 }
}

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 36/40

NOTE: This endpoint is available before the server has been marked ready

and is updated in real time to facilitate monitoring the progress of the WAL

replay.

New in v2.28

TSDB Admin APIs

These are APIs that expose database functionalities for the advanced user.

These APIs are not enabled unless the --web.enable-admin-api is set.

Snapshot

Snapshot creates a snapshot of all current data into snapshots/<datetime>-

<rand> under the TSDB's data directory and returns the directory as response.

It will optionally skip snapshotting data that is only present in the head block,

and which has not yet been compacted to disk.

POST /api/v1/admin/tsdb/snapshot
PUT /api/v1/admin/tsdb/snapshot

URL query parameters:

skip_head=<bool> : Skip data present in the head block. Optional.

$ curl -XPOST http://localhost:9090/api/v1/admin/tsdb/snapshot
{
 "status": "success",
 "data": {
 "name": "20171210T211224Z-2be650b6d019eb54"
 }
}

The snapshot now exists at <data-dir>/snapshots/20171210T211224Z-

2be650b6d019eb54

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 37/40

New in v2.1 and supports PUT from v2.9

Delete Series

DeleteSeries deletes data for a selection of series in a time range. The actual

data still exists on disk and is cleaned up in future compactions or can be

explicitly cleaned up by hitting the Clean Tombstones endpoint.

If successful, a 204 is returned.

POST /api/v1/admin/tsdb/delete_series
PUT /api/v1/admin/tsdb/delete_series

URL query parameters:

match[]=<series_selector> : Repeated label matcher argument that

selects the series to delete. At least one match[] argument must be

provided.

start=<rfc3339 | unix_timestamp> : Start timestamp. Optional and

defaults to minimum possible time.

end=<rfc3339 | unix_timestamp> : End timestamp. Optional and defaults

to maximum possible time.

Not mentioning both start and end times would clear all the data for the

matched series in the database.

Example:

$ curl -X POST \
 -g 'http://localhost:9090/api/v1/admin/tsdb/delete_series?match[]=up&match[]=pr

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 38/40

NOTE: This endpoint marks samples from series as deleted, but will not

necessarily prevent associated series metadata from still being returned in

metadata queries for the affected time range (even after cleaning

tombstones). The exact extent of metadata deletion is an implementation

detail that may change in the future.

New in v2.1 and supports PUT from v2.9

Clean Tombstones

CleanTombstones removes the deleted data from disk and cleans up the

existing tombstones. This can be used after deleting series to free up space.

If successful, a 204 is returned.

POST /api/v1/admin/tsdb/clean_tombstones
PUT /api/v1/admin/tsdb/clean_tombstones

This takes no parameters or body.

$ curl -XPOST http://localhost:9090/api/v1/admin/tsdb/clean_tombstones

New in v2.1 and supports PUT from v2.9

Remote Write Receiver

Prometheus can be configured as a receiver for the Prometheus remote write

protocol. This is not considered an efficient way of ingesting samples. Use it

with caution for specific low-volume use cases. It is not suitable for replacing

the ingestion via scraping and turning Prometheus into a push-based metrics

collection system.

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 39/40

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

Enable the remote write receiver by setting --web.enable-remote-write-

receiver . When enabled, the remote write receiver endpoint is /api/v1/write .

Find more details here (../../storage/#overview).

New in v2.33

OTLP Receiver

Prometheus can be configured as a receiver for the OTLP Metrics protocol. This

is not considered an efficient way of ingesting samples. Use it with caution for

specific low-volume use cases. It is not suitable for replacing the ingestion via

scraping.

Enable the OTLP receiver by the feature flag --enable-feature=otlp-write-

receiver . When enabled, the OTLP receiver endpoint is

/api/v1/otlp/v1/metrics .

New in v2.47

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:19 HTTP API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/api/ 40/40

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://prometheus.io/docs/prometheus/latest/storage/#overview
https://prometheus.io/docs/prometheus/latest/storage/#overview
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Querying

Basics (/docs/prometheus/latest/querying/basics/)

Operators (/docs/prometheus/latest/querying/operators/)

Functions (/docs/prometheus/latest/querying/functions/)

Examples (/docs/prometheus/latest/querying/examples/)

HTTP API (/docs/prometheus/latest/querying/api/)

Remote Read API (/docs/prometheus/latest/querying/remote_read_api/)

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

Feature flags (/docs/prometheus/latest/feature_flags/)

10/09/24, 19:19 Remote Read API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/remote_read_api/ 1/3

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/operators/
https://prometheus.io/docs/prometheus/latest/querying/functions/
https://prometheus.io/docs/prometheus/latest/querying/examples/
https://prometheus.io/docs/prometheus/latest/querying/api/
https://prometheus.io/docs/prometheus/latest/querying/remote_read_api/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/feature_flags/

Samples

Streamed Chunks

REMOTE READ API

This is not currently considered part of

the stable API and is subject to change

even between non-major version

releases of Prometheus.

This API provides data read functionality from Prometheus. This interface

expects snappy (https://github.com/google/snappy) compression. The API

definition is located here

(https://github.com/prometheus/prometheus/blob/master/prompb/remote.proto).

Request are made to the following endpoint. /api/v1/read

Samples

This returns a message that includes a list of raw samples.

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:19 Remote Read API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/remote_read_api/ 2/3

https://github.com/google/snappy
https://github.com/google/snappy
https://github.com/prometheus/prometheus/blob/master/prompb/remote.proto
https://github.com/prometheus/prometheus/blob/master/prompb/remote.proto

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

Streamed Chunks

These streamed chunks utilize an XOR algorithm inspired by the Gorilla

(http://www.vldb.org/pvldb/vol8/p1816-teller.pdf) compression to encode the

chunks. However, it provides resolution to the millisecond instead of to the

second.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:19 Remote Read API | Prometheus

https://prometheus.io/docs/prometheus/latest/querying/remote_read_api/ 3/3

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
http://www.vldb.org/pvldb/vol8/p1816-teller.pdf
http://www.vldb.org/pvldb/vol8/p1816-teller.pdf
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Querying

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

10/09/24, 19:19 Storage | Prometheus

https://prometheus.io/docs/prometheus/latest/storage/ 1/11

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/feature_flags/

Local storage

On-disk layout

Compaction

Operational aspects

Right-Sizing Retention

Size

Remote storage

integrations

Overview

Existing integrations

Backfilling from

OpenMetrics format

Overview

Usage

Backfilling for Recording

Rules

Overview

Usage

Limitations

STORAGE

Prometheus includes a local on-disk time

series database, but also optionally integrates

with remote storage systems.

Local storage 

Prometheus's local time series database

stores data in a custom, highly efficient format

on local storage.

On-disk layout

Ingested samples are grouped into blocks of

two hours. Each two-hour block consists of a

directory containing a chunks subdirectory

containing all the time series samples for that

window of time, a metadata file, and an index

file (which indexes metric names and labels to

time series in the chunks directory). The

samples in the chunks directory are grouped

together into one or more segment files of up

to 512MB each by default. When series are deleted via the API, deletion records

are stored in separate tombstone files (instead of deleting the data immediately

from the chunk segments).

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:19 Storage | Prometheus

https://prometheus.io/docs/prometheus/latest/storage/ 2/11

The current block for incoming samples is kept in memory and is not fully

persisted. It is secured against crashes by a write-ahead log (WAL) that can be

replayed when the Prometheus server restarts. Write-ahead log files are stored

in the wal directory in 128MB segments. These files contain raw data that has

not yet been compacted; thus they are significantly larger than regular block

files. Prometheus will retain a minimum of three write-ahead log files. High-

traffic servers may retain more than three WAL files in order to keep at least

two hours of raw data.

A Prometheus server's data directory looks something like this:

./data
├── 01BKGV7JBM69T2G1BGBGM6KB12
│ └── meta.json
├── 01BKGTZQ1SYQJTR4PB43C8PD98
│ ├── chunks
│ │ └── 000001
│ ├── tombstones
│ ├── index
│ └── meta.json
├── 01BKGTZQ1HHWHV8FBJXW1Y3W0K
│ └── meta.json
├── 01BKGV7JC0RY8A6MACW02A2PJD
│ ├── chunks
│ │ └── 000001
│ ├── tombstones
│ ├── index
│ └── meta.json
├── chunks_head
│ └── 000001
└── wal
 ├── 000000002
 └── checkpoint.00000001
 └── 00000000

Note that a limitation of local storage is that it is not clustered or replicated.

Thus, it is not arbitrarily scalable or durable in the face of drive or node outages

and should be managed like any other single node database.

10/09/24, 19:19 Storage | Prometheus

https://prometheus.io/docs/prometheus/latest/storage/ 3/11

Snapshots (../querying/api/#snapshot) are recommended for backups. Backups

made without snapshots run the risk of losing data that was recorded since the

last WAL sync, which typically happens every two hours. With proper

architecture, it is possible to retain years of data in local storage.

Alternatively, external storage may be used via the remote read/write APIs

(/docs/operating/integrations/#remote-endpoints-and-storage). Careful

evaluation is required for these systems as they vary greatly in durability,

performance, and efficiency.

For further details on file format, see TSDB format

(https://github.com/prometheus/prometheus/blob/release-

2.54/tsdb/docs/format/README.md).

Compaction

The initial two-hour blocks are eventually compacted into longer blocks in the

background.

Compaction will create larger blocks containing data spanning up to 10% of the

retention time, or 31 days, whichever is smaller.

Operational aspects

Prometheus has several flags that configure local storage. The most important

are:

--storage.tsdb.path : Where Prometheus writes its database. Defaults to

data/ .

--storage.tsdb.retention.time : How long to retain samples in storage.

When this flag is set, it overrides storage.tsdb.retention . If neither this

flag nor storage.tsdb.retention nor storage.tsdb.retention.size is set,

the retention time defaults to 15d . Supported units: y, w, d, h, m, s, ms.

--storage.tsdb.retention.size : The maximum number of bytes of

storage blocks to retain. The oldest data will be removed first. Defaults to

0 or disabled. Units supported: B, KB, MB, GB, TB, PB, EB. Ex: "512MB".

Based on powers-of-2, so 1KB is 1024B. Only the persistent blocks are

deleted to honor this retention although WAL and m-mapped chunks are

10/09/24, 19:19 Storage | Prometheus

https://prometheus.io/docs/prometheus/latest/storage/ 4/11

https://prometheus.io/docs/prometheus/latest/querying/api/#snapshot
https://prometheus.io/docs/prometheus/latest/querying/api/#snapshot
https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
https://github.com/prometheus/prometheus/blob/release-2.54/tsdb/docs/format/README.md
https://github.com/prometheus/prometheus/blob/release-2.54/tsdb/docs/format/README.md
https://github.com/prometheus/prometheus/blob/release-2.54/tsdb/docs/format/README.md

counted in the total size. So the minimum requirement for the disk is the

peak space taken by the wal (the WAL and Checkpoint) and chunks_head

(m-mapped Head chunks) directory combined (peaks every 2 hours).

--storage.tsdb.retention : Deprecated in favor of

storage.tsdb.retention.time .

--storage.tsdb.wal-compression : Enables compression of the write-ahead

log (WAL). Depending on your data, you can expect the WAL size to be

halved with little extra cpu load. This flag was introduced in 2.11.0 and

enabled by default in 2.20.0. Note that once enabled, downgrading

Prometheus to a version below 2.11.0 will require deleting the WAL.

Prometheus stores an average of only 1-2 bytes per sample. Thus, to plan the

capacity of a Prometheus server, you can use the rough formula:

needed_disk_space = retention_time_seconds * ingested_samples_per_second * bytes_

To lower the rate of ingested samples, you can either reduce the number of

time series you scrape (fewer targets or fewer series per target), or you can

increase the scrape interval. However, reducing the number of series is likely

more effective, due to compression of samples within a series.

If your local storage becomes corrupted for whatever reason, the best strategy

to address the problem is to shut down Prometheus then remove the entire

storage directory. You can also try removing individual block directories, or the

WAL directory to resolve the problem. Note that this means losing

approximately two hours data per block directory. Again, Prometheus's local

storage is not intended to be durable long-term storage; external solutions

offer extended retention and data durability.

10/09/24, 19:19 Storage | Prometheus

https://prometheus.io/docs/prometheus/latest/storage/ 5/11

CAUTION: Non-POSIX compliant filesystems are not supported for

Prometheus' local storage as unrecoverable corruptions may happen. NFS

filesystems (including AWS's EFS) are not supported. NFS could be POSIX-

compliant, but most implementations are not. It is strongly recommended

to use a local filesystem for reliability.

If both time and size retention policies are specified, whichever triggers first will

be used.

Expired block cleanup happens in the background. It may take up to two hours

to remove expired blocks. Blocks must be fully expired before they are

removed.

Right-Sizing Retention Size

If you are utilizing storage.tsdb.retention.size to set a size limit, you will want

to consider the right size for this value relative to the storage you have

allocated for Prometheus. It is wise to reduce the retention size to provide a

buffer, ensuring that older entries will be removed before the allocated storage

for Prometheus becomes full.

At present, we recommend setting the retention size to, at most, 80-85% of

your allocated Prometheus disk space. This increases the likelihood that older

entires will be removed prior to hitting any disk limitations.

Remote storage integrations

Prometheus's local storage is limited to a single node's scalability and

durability. Instead of trying to solve clustered storage in Prometheus itself,

Prometheus offers a set of interfaces that allow integrating with remote storage

systems.

Overview

Prometheus integrates with remote storage systems in three ways:

10/09/24, 19:19 Storage | Prometheus

https://prometheus.io/docs/prometheus/latest/storage/ 6/11

Prometheus can write samples that it ingests to a remote URL in a

standardized format.

Prometheus can receive samples from other Prometheus servers in a

standardized format.

Prometheus can read (back) sample data from a remote URL in a

standardized format.

The read and write protocols both use a snappy-compressed protocol buffer

encoding over HTTP. The protocols are not considered as stable APIs yet and

may change to use gRPC over HTTP/2 in the future, when all hops between

Prometheus and the remote storage can safely be assumed to support HTTP/2.

For details on configuring remote storage integrations in Prometheus, see the

remote write (../configuration/configuration/#remote_write) and remote read

(../configuration/configuration/#remote_read) sections of the Prometheus

configuration documentation.

The built-in remote write receiver can be enabled by setting the --web.enable-

remote-write-receiver command line flag. When enabled, the remote write

receiver endpoint is /api/v1/write .

For details on the request and response messages, see the remote storage

protocol buffer definitions

(https://github.com/prometheus/prometheus/blob/main/prompb/remote.proto).

Note that on the read path, Prometheus only fetches raw series data for a set

of label selectors and time ranges from the remote end. All PromQL evaluation

on the raw data still happens in Prometheus itself. This means that remote read

queries have some scalability limit, since all necessary data needs to be loaded

into the querying Prometheus server first and then processed there. However,

supporting fully distributed evaluation of PromQL was deemed infeasible for

the time being.

10/09/24, 19:19 Storage | Prometheus

https://prometheus.io/docs/prometheus/latest/storage/ 7/11

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#remote_write
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#remote_write
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#remote_read
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#remote_read
https://github.com/prometheus/prometheus/blob/main/prompb/remote.proto
https://github.com/prometheus/prometheus/blob/main/prompb/remote.proto
https://github.com/prometheus/prometheus/blob/main/prompb/remote.proto

Existing integrations

To learn more about existing integrations with remote storage systems, see the

Integrations documentation (/docs/operating/integrations/#remote-endpoints-

and-storage).

Backfilling from OpenMetrics format

Overview

If a user wants to create blocks into the TSDB from data that is in OpenMetrics

(https://openmetrics.io/) format, they can do so using backfilling. However, they

should be careful and note that it is not safe to backfill data from the last 3

hours (the current head block) as this time range may overlap with the current

head block Prometheus is still mutating. Backfilling will create new TSDB blocks,

each containing two hours of metrics data. This limits the memory

requirements of block creation. Compacting the two hour blocks into larger

blocks is later done by the Prometheus server itself.

A typical use case is to migrate metrics data from a different monitoring system

or time-series database to Prometheus. To do so, the user must first convert

the source data into OpenMetrics (https://openmetrics.io/) format, which is the

input format for the backfilling as described below.

Note that native histograms and staleness markers are not supported by this

procedure, as they cannot be represented in the OpenMetrics format.

Usage

Backfilling can be used via the Promtool command line. Promtool will write the

blocks to a directory. By default this output directory is ./data/, you can change

it by using the name of the desired output directory as an optional argument in

the sub-command.

promtool tsdb create-blocks-from openmetrics <input file> [<output directory>]

10/09/24, 19:19 Storage | Prometheus

https://prometheus.io/docs/prometheus/latest/storage/ 8/11

https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
https://openmetrics.io/
https://openmetrics.io/
https://openmetrics.io/
https://openmetrics.io/

After the creation of the blocks, move it to the data directory of Prometheus. If

there is an overlap with the existing blocks in Prometheus, the flag --

storage.tsdb.allow-overlapping-blocks needs to be set for Prometheus

versions v2.38 and below. Note that any backfilled data is subject to the

retention configured for your Prometheus server (by time or size).

Longer Block Durations

By default, the promtool will use the default block duration (2h) for the blocks;

this behavior is the most generally applicable and correct. However, when

backfilling data over a long range of times, it may be advantageous to use a

larger value for the block duration to backfill faster and prevent additional

compactions by TSDB later.

The --max-block-duration flag allows the user to configure a maximum

duration of blocks. The backfilling tool will pick a suitable block duration no

larger than this.

While larger blocks may improve the performance of backfilling large datasets,

drawbacks exist as well. Time-based retention policies must keep the entire

block around if even one sample of the (potentially large) block is still within the

retention policy. Conversely, size-based retention policies will remove the entire

block even if the TSDB only goes over the size limit in a minor way.

Therefore, backfilling with few blocks, thereby choosing a larger block duration,

must be done with care and is not recommended for any production instances.

Backfilling for Recording Rules

Overview

When a new recording rule is created, there is no historical data for it.

Recording rule data only exists from the creation time on. promtool makes it

possible to create historical recording rule data.

Usage

To see all options, use: $ promtool tsdb create-blocks-from rules --help .

10/09/24, 19:19 Storage | Prometheus

https://prometheus.io/docs/prometheus/latest/storage/ 9/11

Example usage:

$ promtool tsdb create-blocks-from rules \
 --start 1617079873 \
 --end 1617097873 \
 --url http://mypromserver.com:9090 \
 rules.yaml rules2.yaml

The recording rule files provided should be a normal Prometheus rules file

(/docs/prometheus/latest/configuration/recording_rules/).

The output of promtool tsdb create-blocks-from rules command is a directory

that contains blocks with the historical rule data for all rules in the recording

rule files. By default, the output directory is data/ . In order to make use of this

new block data, the blocks must be moved to a running Prometheus instance

data dir storage.tsdb.path (for Prometheus versions v2.38 and below, the flag

--storage.tsdb.allow-overlapping-blocks must be enabled). Once moved, the

new blocks will merge with existing blocks when the next compaction runs.

Limitations

If you run the rule backfiller multiple times with the overlapping start/end

times, blocks containing the same data will be created each time the rule

backfiller is run.

All rules in the recording rule files will be evaluated.

If the interval is set in the recording rule file that will take priority over

the eval-interval flag in the rule backfill command.

Alerts are currently ignored if they are in the recording rule file.

Rules in the same group cannot see the results of previous rules. Meaning

that rules that refer to other rules being backfilled is not supported. A

workaround is to backfill multiple times and create the dependent data

first (and move dependent data to the Prometheus server data dir so that

it is accessible from the Prometheus API).

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

10/09/24, 19:19 Storage | Prometheus

https://prometheus.io/docs/prometheus/latest/storage/ 10/11

https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

improve it by filing issues or pull requests.

10/09/24, 19:19 Storage | Prometheus

https://prometheus.io/docs/prometheus/latest/storage/ 11/11

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Querying

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

10/09/24, 19:19 Federation | Prometheus

https://prometheus.io/docs/prometheus/latest/federation/ 1/4

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/feature_flags/

Use cases

Hierarchical

federation

Cross-service

federation

Configuring federation

FEDERATION

Federation allows a Prometheus server to

scrape selected time series from another

Prometheus server.

Note about native histograms (experimental
feature): To scrape native histograms via
federation, the scraping Prometheus server
needs to run with native histograms enabled (via
the command line flag --enable-feature=native-histograms), implying that the

protobuf format is used for scraping. Should the federated metrics contain a mix of
different sample types (float64, counter histogram, gauge histogram) for the same
metric name, the federation payload will contain multiple metric families with the
same name (but different types). Technically, this violates the rules of the protobuf
exposition format, but Prometheus is nevertheless able to ingest all metrics
correctly.

Use cases

There are different use cases for federation. Commonly, it is used to either

achieve scalable Prometheus monitoring setups or to pull related metrics from

one service's Prometheus into another.

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:19 Federation | Prometheus

https://prometheus.io/docs/prometheus/latest/federation/ 2/4

Hierarchical federation

Hierarchical federation allows Prometheus to scale to environments with tens

of data centers and millions of nodes. In this use case, the federation topology

resembles a tree, with higher-level Prometheus servers collecting aggregated

time series data from a larger number of subordinated servers.

For example, a setup might consist of many per-datacenter Prometheus servers

that collect data in high detail (instance-level drill-down), and a set of global

Prometheus servers which collect and store only aggregated data (job-level

drill-down) from those local servers. This provides an aggregate global view and

detailed local views.

Cross-service federation

In cross-service federation, a Prometheus server of one service is configured to

scrape selected data from another service's Prometheus server to enable

alerting and queries against both datasets within a single server.

For example, a cluster scheduler running multiple services might expose

resource usage information (like memory and CPU usage) about service

instances running on the cluster. On the other hand, a service running on that

cluster will only expose application-specific service metrics. Often, these two

sets of metrics are scraped by separate Prometheus servers. Using federation,

the Prometheus server containing service-level metrics may pull in the cluster

resource usage metrics about its specific service from the cluster Prometheus,

so that both sets of metrics can be used within that server.

Configuring federation

On any given Prometheus server, the /federate endpoint allows retrieving the

current value for a selected set of time series in that server. At least one

match[] URL parameter must be specified to select the series to expose. Each

match[] argument needs to specify an instant vector selector

(../querying/basics/#instant-vector-selectors) like up or {job="api-server"} . If

multiple match[] parameters are provided, the union of all matched series is

selected.

10/09/24, 19:19 Federation | Prometheus

https://prometheus.io/docs/prometheus/latest/federation/ 3/4

https://prometheus.io/docs/prometheus/latest/querying/basics/#instant-vector-selectors
https://prometheus.io/docs/prometheus/latest/querying/basics/#instant-vector-selectors

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

To federate metrics from one server to another, configure your destination

Prometheus server to scrape from the /federate endpoint of a source server,

while also enabling the honor_labels scrape option (to not overwrite any labels

exposed by the source server) and passing in the desired match[] parameters.

For example, the following scrape_configs federates any series with the label

job="prometheus" or a metric name starting with job: from the Prometheus

servers at source-prometheus-{1,2,3}:9090 into the scraping Prometheus:

scrape_configs:
 - job_name: 'federate'
 scrape_interval: 15s

 honor_labels: true
 metrics_path: '/federate'

 params:
 'match[]':
 - '{job="prometheus"}'
 - '{__name__=~"job:.*"}'

 static_configs:
 - targets:
 - 'source-prometheus-1:9090'
 - 'source-prometheus-2:9090'
 - 'source-prometheus-3:9090'

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:19 Federation | Prometheus

https://prometheus.io/docs/prometheus/latest/federation/ 4/4

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Querying

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

10/09/24, 19:19 HTTP SD | Prometheus

https://prometheus.io/docs/prometheus/latest/http_sd/ 1/5

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/feature_flags/

Comparison between

File-Based SD and HTTP

SD

Requirements of HTTP

SD endpoints

HTTP_SD format

WRITING HTTP SERVICE DISCOVERY

Prometheus provides a generic HTTP Service

Discovery

(/docs/prometheus/latest/configuration/configuration/#http_sd_config), that

enables it to discover targets over an HTTP endpoint.

The HTTP Service Discovery is complimentary to the supported service

discovery mechanisms, and is an alternative to File-based Service Discovery

(/docs/guides/file-sd/#use-file-based-service-discovery-to-discover-scrape-

targets).

Comparison between File-Based SD and HTTP SD

Here is a table comparing our two generic Service Discovery implementations.

Item File SD HTTP SD

Event Based Yes, via inotify No

Update

frequency

Instant, thanks to

inotify

Following refresh_interval

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:19 HTTP SD | Prometheus

https://prometheus.io/docs/prometheus/latest/http_sd/ 2/5

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#http_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#http_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#http_sd_config
https://prometheus.io/docs/guides/file-sd/#use-file-based-service-discovery-to-discover-scrape-targets
https://prometheus.io/docs/guides/file-sd/#use-file-based-service-discovery-to-discover-scrape-targets
https://prometheus.io/docs/guides/file-sd/#use-file-based-service-discovery-to-discover-scrape-targets

Item File SD HTTP SD

Format Yaml or JSON JSON

Transport Local file HTTP/HTTPS

Security File-Based security TLS, Basic auth, Authorization

header, OAuth2

Requirements of HTTP SD endpoints

If you implement an HTTP SD endpoint, here are a few requirements you

should be aware of.

The response is consumed as is, unmodified. On each refresh interval (default:

1 minute), Prometheus will perform a GET request to the HTTP SD endpoint.

The GET request contains a X-Prometheus-Refresh-Interval-Seconds HTTP

header with the refresh interval.

The SD endpoint must answer with an HTTP 200 response, with the HTTP

Header Content-Type: application/json . The answer must be UTF-8

formatted. If no targets should be transmitted, HTTP 200 must also be emitted,

with an empty list [] . Target lists are unordered.

Prometheus caches target lists. If an error occurs while fetching an updated

targets list, Prometheus keeps using the current targets list. The targets list is

not saved across restart. The prometheus_sd_http_failures_total counter

metric tracks the number of refresh failures.

The whole list of targets must be returned on every scrape. There is no support

for incremental updates. A Prometheus instance does not send its hostname

and it is not possible for a SD endpoint to know if the SD requests is the first

one after a restart or not.

The URL to the HTTP SD is not considered secret. The authentication and any

API keys should be passed with the appropriate authentication mechanisms.

Prometheus supports TLS authentication, basic authentication, OAuth2, and

authorization headers.

10/09/24, 19:19 HTTP SD | Prometheus

https://prometheus.io/docs/prometheus/latest/http_sd/ 3/5

HTTP_SD format

[
 {
 "targets": ["<host>", ...],
 "labels": {
 "<labelname>": "<labelvalue>", ...
 }
 },
 ...
]

Examples:

[
 {
 "targets": ["10.0.10.2:9100", "10.0.10.3:9100", "10.0.10.4:9100", "10.0.1
 "labels": {
 "__meta_datacenter": "london",
 "__meta_prometheus_job": "node"
 }
 },
 {
 "targets": ["10.0.40.2:9100", "10.0.40.3:9100"],
 "labels": {
 "__meta_datacenter": "london",
 "__meta_prometheus_job": "alertmanager"
 }
 },
 {
 "targets": ["10.0.40.2:9093", "10.0.40.3:9093"],
 "labels": {
 "__meta_datacenter": "newyork",
 "__meta_prometheus_job": "alertmanager"
 }
 }
]

10/09/24, 19:19 HTTP SD | Prometheus

https://prometheus.io/docs/prometheus/latest/http_sd/ 4/5

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:19 HTTP SD | Prometheus

https://prometheus.io/docs/prometheus/latest/http_sd/ 5/5

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Querying

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

10/09/24, 19:19 Management API | Prometheus

https://prometheus.io/docs/prometheus/latest/management_api/ 1/3

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/feature_flags/

Health check

Readiness check

Reload

Quit

MANAGEMENT API

Prometheus provides a set of management

APIs to facilitate automation and integration.

Health check

GET /-/healthy
HEAD /-/healthy

This endpoint always returns 200 and should be used to check Prometheus

health.

Readiness check

GET /-/ready
HEAD /-/ready

This endpoint returns 200 when Prometheus is ready to serve traffic (i.e.

respond to queries).

Reload

PUT /-/reload
POST /-/reload

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:19 Management API | Prometheus

https://prometheus.io/docs/prometheus/latest/management_api/ 2/3

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

This endpoint triggers a reload of the Prometheus configuration and rule files.

It's disabled by default and can be enabled via the --web.enable-lifecycle flag.

Alternatively, a configuration reload can be triggered by sending a SIGHUP to

the Prometheus process.

Quit

PUT /-/quit
POST /-/quit

This endpoint triggers a graceful shutdown of Prometheus. It's disabled by

default and can be enabled via the --web.enable-lifecycle flag.

Alternatively, a graceful shutdown can be triggered by sending a SIGTERM to the

Prometheus process.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:19 Management API | Prometheus

https://prometheus.io/docs/prometheus/latest/management_api/ 3/3

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

PROMETHEUS

The Prometheus monitoring server

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Querying

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

prometheus (/docs/prometheus/latest/command-line/prometheus/)

promtool (/docs/prometheus/latest/command-line/promtool/)

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:20 prometheus | Prometheus

https://prometheus.io/docs/prometheus/latest/command-line/prometheus/ 1/5

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/command-line/prometheus/
https://prometheus.io/docs/prometheus/latest/command-line/promtool/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/feature_flags/

Flags

Flag Description

-h , --help Show context-sensitive help (also try --help-long and --help-

man).

--version Show application version.

--config.file Prometheus configuration file path.

--web.listen-address Address to listen on for UI, API, and telemetry.

--auto-gomemlimit.ratio The ratio of reserved GOMEMLIMIT memory to the detected

maximum container or system memory

--web.config.file [EXPERIMENTAL] Path to configuration file that can enable

TLS or authentication.

--web.read-timeout Maximum duration before timing out read of the request,

and closing idle connections.

--web.max-connections Maximum number of simultaneous connections.

--web.external-url The URL under which Prometheus is externally reachable (for

example, if Prometheus is served via a reverse proxy). Used

for generating relative and absolute links back to

Prometheus itself. If the URL has a path portion, it will be

used to prefix all HTTP endpoints served by Prometheus. If

omitted, relevant URL components will be derived

automatically.

--web.route-prefix Prefix for the internal routes of web endpoints. Defaults to

path of --web.external-url.

--web.user-assets Path to static asset directory, available at /user.

--web.enable-lifecycle Enable shutdown and reload via HTTP request.

--web.enable-admin-api Enable API endpoints for admin control actions.

--web.enable-remote-write-receiver Enable API endpoint accepting remote write requests.

--web.remote-write-receiver.accepted-protobuf-messages List of the remote write protobuf messages to accept when

receiving the remote writes. Supported values:

prometheus.WriteRequest, io.prometheus.write.v2.Request

--web.console.templates Path to the console template directory, available at

/consoles.

--web.console.libraries Path to the console library directory.

--web.page-title Document title of Prometheus instance.

--web.cors.origin Regex for CORS origin. It is fully anchored. Example:

'https?://(domain1\

--storage.tsdb.path Base path for metrics storage. Use with server mode only.

10/09/24, 19:20 prometheus | Prometheus

https://prometheus.io/docs/prometheus/latest/command-line/prometheus/ 2/5

Flag Description

--storage.tsdb.retention [DEPRECATED] How long to retain samples in storage. This

flag has been deprecated, use "storage.tsdb.retention.time"

instead. Use with server mode only.

--storage.tsdb.retention.time How long to retain samples in storage. When this flag is set it

overrides "storage.tsdb.retention". If neither this flag nor

"storage.tsdb.retention" nor "storage.tsdb.retention.size" is

set, the retention time defaults to 15d. Units Supported: y, w,

d, h, m, s, ms. Use with server mode only.

--storage.tsdb.retention.size Maximum number of bytes that can be stored for blocks. A

unit is required, supported units: B, KB, MB, GB, TB, PB, EB.

Ex: "512MB". Based on powers-of-2, so 1KB is 1024B. Use

with server mode only.

--storage.tsdb.no-lockfile Do not create lockfile in data directory. Use with server mode

only.

--storage.tsdb.head-chunks-write-queue-size Size of the queue through which head chunks are written to

the disk to be m-mapped, 0 disables the queue completely.

Experimental. Use with server mode only.

--storage.agent.path Base path for metrics storage. Use with agent mode only.

--storage.agent.wal-compression Compress the agent WAL. Use with agent mode only.

--storage.agent.retention.min-time Minimum age samples may be before being considered for

deletion when the WAL is truncated Use with agent mode

only.

--storage.agent.retention.max-time Maximum age samples may be before being forcibly deleted

when the WAL is truncated Use with agent mode only.

--storage.agent.no-lockfile Do not create lockfile in data directory. Use with agent mode

only.

--storage.remote.flush-deadline How long to wait flushing sample on shutdown or config

reload.

--storage.remote.read-sample-limit Maximum overall number of samples to return via the

remote read interface, in a single query. 0 means no limit.

This limit is ignored for streamed response types. Use with

server mode only.

--storage.remote.read-concurrent-limit Maximum number of concurrent remote read calls. 0 means

no limit. Use with server mode only.

--storage.remote.read-max-bytes-in-frame Maximum number of bytes in a single frame for streaming

remote read response types before marshalling. Note that

client might have limit on frame size as well. 1MB as

recommended by protobuf by default. Use with server mode

only.

--rules.alert.for-outage-tolerance Max time to tolerate prometheus outage for restoring "for"

state of alert. Use with server mode only.

10/09/24, 19:20 prometheus | Prometheus

https://prometheus.io/docs/prometheus/latest/command-line/prometheus/ 3/5

Flag Description

--rules.alert.for-grace-period Minimum duration between alert and restored "for" state.

This is maintained only for alerts with configured "for" time

greater than grace period. Use with server mode only.

--rules.alert.resend-delay Minimum amount of time to wait before resending an alert

to Alertmanager. Use with server mode only.

--rules.max-concurrent-evals Global concurrency limit for independent rules that can run

concurrently. When set, "query.max-concurrency" may need

to be adjusted accordingly. Use with server mode only.

--alertmanager.notification-queue-capacity The capacity of the queue for pending Alertmanager

notifications. Use with server mode only.

--alertmanager.drain-notification-queue-on-shutdown Send any outstanding Alertmanager notifications when

shutting down. If false, any outstanding Alertmanager

notifications will be dropped when shutting down. Use with

server mode only.

--query.lookback-delta The maximum lookback duration for retrieving metrics

during expression evaluations and federation. Use with

server mode only.

--query.timeout Maximum time a query may take before being aborted. Use

with server mode only.

--query.max-concurrency Maximum number of queries executed concurrently. Use

with server mode only.

--query.max-samples Maximum number of samples a single query can load into

memory. Note that queries will fail if they try to load more

samples than this into memory, so this also limits the

number of samples a query can return. Use with server

mode only.

--enable-feature Comma separated feature names to enable. Valid options:

agent, auto-gomemlimit, exemplar-storage, expand-external-

labels, memory-snapshot-on-shutdown, promql-per-step-

stats, promql-experimental-functions, remote-write-receiver

(DEPRECATED), extra-scrape-metrics, new-service-discovery-

manager, auto-gomaxprocs, no-default-scrape-port, native-

histograms, otlp-write-receiver, created-timestamp-zero-

ingestion, concurrent-rule-eval. See

https://prometheus.io/docs/prometheus/latest/feature_flags/

(/docs/prometheus/latest/feature_flags/) for more details.

--log.level Only log messages with the given severity or above. One of:

[debug, info, warn, error]

--log.format Output format of log messages. One of: [logfmt, json]

 This documentation is open-source (https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:20 prometheus | Prometheus

https://prometheus.io/docs/prometheus/latest/command-line/prometheus/ 4/5

https://prometheus.io/docs/prometheus/latest/feature_flags/
https://prometheus.io/docs/prometheus/latest/feature_flags/
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list of trademarks of The Linux

Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-usage) page.

10/09/24, 19:20 prometheus | Prometheus

https://prometheus.io/docs/prometheus/latest/command-line/prometheus/ 5/5

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Querying

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

prometheus (/docs/prometheus/latest/command-line/prometheus/)

promtool (/docs/prometheus/latest/command-line/promtool/)

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

10/09/24, 19:20 promtool | Prometheus

https://prometheus.io/docs/prometheus/latest/command-line/promtool/ 1/16

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/command-line/prometheus/
https://prometheus.io/docs/prometheus/latest/command-line/promtool/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/feature_flags/

Flags

Commands

promtool help

promtool check

promtool query

promtool debug

promtool push

promtool test

promtool tsdb

promtool promql

PROMTOOL

Tooling for the Prometheus monitoring system.

Flags

Flag Description

-h , --help Show context-sensitive help (also try --help-long and --help-

man).

--version Show application version.

--experimental Enable experimental commands.

--enable-feature Comma separated feature names to enable (only PromQL

related and no-default-scrape-port). See

https://prometheus.io/docs/prometheus/latest/feature_flags/

(/docs/prometheus/latest/feature_flags/) for the options and

more details.

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:20 promtool | Prometheus

https://prometheus.io/docs/prometheus/latest/command-line/promtool/ 2/16

https://prometheus.io/docs/prometheus/latest/feature_flags/
https://prometheus.io/docs/prometheus/latest/feature_flags/

Commands

Command Description

help Show help.

check Check the resources for validity.

query Run query against a Prometheus server.

debug Fetch debug information.

push Push to a Prometheus server.

test Unit testing.

tsdb Run tsdb commands.

promql PromQL formatting and editing. Requires the --experimental flag.

promtool help

Show help.

Arguments

Argument Description

command Show help on command.

promtool check

Check the resources for validity.

Flags

Flag Description

--extended Print extended information related to the cardinality of the metrics.

promtool check service-discovery

Perform service discovery for the given job name and report the results, including

relabeling.

10/09/24, 19:20 promtool | Prometheus

https://prometheus.io/docs/prometheus/latest/command-line/promtool/ 3/16

Flags

Flag Description Default

--timeout The time to wait for discovery results. 30s

Arguments

Argument Description Required

config-file The prometheus config file. Yes

job The job to run service discovery for. Yes

promtool check config

Check if the config files are valid or not.

Flags

Flag Description Default

--syntax-only Only check the config file syntax, ignoring file and

content validation referenced in the config

--lint Linting checks to apply to the rules specified in the

config. Available options are: all, duplicate-rules,

none. Use --lint=none to disable linting

duplicate-

rules

--lint-fatal Make lint errors exit with exit code 3. false

--agent Check config file for Prometheus in Agent mode.

Arguments

Argument Description Required

config-files The config files to check. Yes

promtool check web-config

Check if the web config files are valid or not.

Arguments

10/09/24, 19:20 promtool | Prometheus

https://prometheus.io/docs/prometheus/latest/command-line/promtool/ 4/16

Argument Description Required

web-config-files The config files to check. Yes

promtool check healthy

Check if the Prometheus server is healthy.

Flags

Flag Description Default

--http.config.file HTTP client configuration file for

promtool to connect to Prometheus.

--url The URL for the Prometheus server. http://localhost:9090

promtool check ready

Check if the Prometheus server is ready.

Flags

Flag Description Default

--http.config.file HTTP client configuration file for

promtool to connect to Prometheus.

--url The URL for the Prometheus server. http://localhost:9090

promtool check rules

Check if the rule files are valid or not.

Flags

Flag Description Default

--lint Linting checks to apply. Available options are: all,

duplicate-rules, none. Use --lint=none to disable

linting

duplicate-

rules

--lint-fatal Make lint errors exit with exit code 3. false

Arguments

10/09/24, 19:20 promtool | Prometheus

https://prometheus.io/docs/prometheus/latest/command-line/promtool/ 5/16

Argument Description

rule-files The rule files to check, default is read from standard input.

promtool check metrics

Pass Prometheus metrics over stdin to lint them for consistency and correctness.

examples:

$ cat metrics.prom | promtool check metrics

$ curl -s http://localhost:9090/metrics (http://localhost:9090/metrics) | promtool check

metrics

promtool query

Run query against a Prometheus server.

Flags

Flag Description Default

-o , --format Output format of the query. promql

--http.config.file HTTP client configuration file for promtool to

connect to Prometheus.

promtool query instant

Run instant query.

Flags

Flag Description

--time Query evaluation time (RFC3339 or Unix timestamp).

Arguments

Argument Description Required

server Prometheus server to query. Yes

expr PromQL query expression. Yes

10/09/24, 19:20 promtool | Prometheus

https://prometheus.io/docs/prometheus/latest/command-line/promtool/ 6/16

http://localhost:9090/metrics
http://localhost:9090/metrics

promtool query range

Run range query.

Flags

Flag Description

--header Extra headers to send to server.

--start Query range start time (RFC3339 or Unix timestamp).

--end Query range end time (RFC3339 or Unix timestamp).

--step Query step size (duration).

Arguments

Argument Description Required

server Prometheus server to query. Yes

expr PromQL query expression. Yes

promtool query series

Run series query.

Flags

Flag Description

--match Series selector. Can be specified multiple times.

--start Start time (RFC3339 or Unix timestamp).

--end End time (RFC3339 or Unix timestamp).

Arguments

Argument Description Required

server Prometheus server to query. Yes

promtool query labels

Run labels query.

10/09/24, 19:20 promtool | Prometheus

https://prometheus.io/docs/prometheus/latest/command-line/promtool/ 7/16

Flags

Flag Description

--start Start time (RFC3339 or Unix timestamp).

--end End time (RFC3339 or Unix timestamp).

--match Series selector. Can be specified multiple times.

Arguments

Argument Description Required

server Prometheus server to query. Yes

name Label name to provide label values for. Yes

promtool query analyze

Run queries against your Prometheus to analyze the usage pattern of certain metrics.

Flags

Flag Description Default

--server Prometheus server to query.

--type Type of metric: histogram.

--duration Time frame to analyze. 1h

--time Query time (RFC3339 or Unix timestamp), defaults to now.

--match Series selector. Can be specified multiple times.

promtool debug

Fetch debug information.

promtool debug pprof

Fetch profiling debug information.

Arguments

10/09/24, 19:20 promtool | Prometheus

https://prometheus.io/docs/prometheus/latest/command-line/promtool/ 8/16

Argument Description Required

server Prometheus server to get pprof files from. Yes

promtool debug metrics

Fetch metrics debug information.

Arguments

Argument Description Required

server Prometheus server to get metrics from. Yes

promtool debug all

Fetch all debug information.

Arguments

Argument Description Required

server Prometheus server to get all debug information from. Yes

promtool push

Push to a Prometheus server.

Flags

Flag Description

--http.config.file HTTP client configuration file for promtool to connect to

Prometheus.

promtool push metrics

Push metrics to a prometheus remote write (for testing purpose only).

Flags

Flag Description Default

--label Label to attach to metrics. Can be specified multiple

times.

job=promtool

10/09/24, 19:20 promtool | Prometheus

https://prometheus.io/docs/prometheus/latest/command-line/promtool/ 9/16

Flag Description Default

--timeout The time to wait for pushing metrics. 30s

--header Prometheus remote write header.

Arguments

Argument Description Required

remote-write-

url

Prometheus remote write url to push metrics. Yes

metric-files The metric files to push, default is read from standard

input.

promtool test

Unit testing.

promtool test rules

Unit tests for rules.

Flags

Flag Description Default

--run If set, will only run test groups whose names match the regular

expression. Can be specified multiple times.

--diff [Experimental] Print colored differential output between

expected & received output.

false

Arguments

Argument Description Required

test-rule-file The unit test file. Yes

promtool tsdb

Run tsdb commands.

promtool tsdb bench

10/09/24, 19:20 promtool | Prometheus

https://prometheus.io/docs/prometheus/latest/command-line/promtool/ 10/16

Run benchmarks.

promtool tsdb bench write

Run a write performance benchmark.

Flags

Flag Description Default

--out Set the output path. benchout

--metrics Number of metrics to read. 10000

--scrapes Number of scrapes to simulate. 3000

Arguments

Argument Description Default

file Input file with samples data,

default is

(../../tsdb/testdata/20kseries.json).

../../tsdb/testdata/20kseries.json

promtool tsdb analyze

Analyze churn, label pair cardinality and compaction efficiency.

Flags

Flag Description Default

--limit How many items to show in each list. 20

--extended Run extended analysis.

--match Series selector to analyze. Only 1 set of matchers is

supported now.

Arguments

Argument Description Default

db path Database path (default is data/). data/

block id Block to analyze (default is the last block).

10/09/24, 19:20 promtool | Prometheus

https://prometheus.io/docs/prometheus/latest/command-line/promtool/ 11/16

promtool tsdb list

List tsdb blocks.

Flags

Flag Description

-r , --human-readable Print human readable values.

Arguments

Argument Description Default

db path Database path (default is data/). data/

promtool tsdb dump

Dump samples from a TSDB.

Flags

Flag Description Default

--sandbox-dir-root Root directory where a sandbox

directory would be created in case

WAL replay generates chunks. The

sandbox directory is cleaned up at

the end.

data/

--min-time Minimum timestamp to dump. -9223372036854775808

--max-time Maximum timestamp to dump. 9223372036854775807

--match Series selector. Can be specified

multiple times.

{__name__=~'(?

s:.*)'}

Arguments

Argument Description Default

db path Database path (default is data/). data/

promtool tsdb dump-openmetrics

10/09/24, 19:20 promtool | Prometheus

https://prometheus.io/docs/prometheus/latest/command-line/promtool/ 12/16

[Experimental] Dump samples from a TSDB into OpenMetrics text format, excluding

native histograms and staleness markers, which are not representable in OpenMetrics.

Flags

Flag Description Default

--sandbox-dir-root Root directory where a sandbox

directory would be created in case

WAL replay generates chunks. The

sandbox directory is cleaned up at

the end.

data/

--min-time Minimum timestamp to dump. -9223372036854775808

--max-time Maximum timestamp to dump. 9223372036854775807

--match Series selector. Can be specified

multiple times.

{__name__=~'(?

s:.*)'}

Arguments

Argument Description Default

db path Database path (default is data/). data/

promtool tsdb create-blocks-from

[Experimental] Import samples from input and produce TSDB blocks. Please refer to

the storage docs for more details.

Flags

Flag Description

-r , --human-readable Print human readable values.

-q , --quiet Do not print created blocks.

promtool tsdb create-blocks-from openmetrics

Import samples from OpenMetrics input and produce TSDB blocks. Please refer to the

storage docs for more details.

Arguments

10/09/24, 19:20 promtool | Prometheus

https://prometheus.io/docs/prometheus/latest/command-line/promtool/ 13/16

Argument Description Default Required

input file OpenMetrics file to read samples from. Yes

output directory Output directory for generated blocks. data/

promtool tsdb create-blocks-from rules

Create blocks of data for new recording rules.

Flags

Flag Description Default

--http.config.file HTTP client configuration file for

promtool to connect to Prometheus.

--url The URL for the Prometheus API

with the data where the rule will be

backfilled from.

http://localhost:9090

--start The time to start backfilling the new

rule from. Must be a RFC3339

formatted date or Unix timestamp.

Required.

--end If an end time is provided, all

recording rules in the rule files

provided will be backfilled to the

end time. Default will backfill up to 3

hours ago. Must be a RFC3339

formatted date or Unix timestamp.

--output-dir Output directory for generated

blocks.

data/

--eval-interval How frequently to evaluate rules

when backfilling if a value is not set

in the recording rule files.

60s

Arguments

10/09/24, 19:20 promtool | Prometheus

https://prometheus.io/docs/prometheus/latest/command-line/promtool/ 14/16

Argument Description Required

rule-files A list of one or more files containing recording rules to be

backfilled. All recording rules listed in the files will be

backfilled. Alerting rules are not evaluated.

Yes

promtool promql

PromQL formatting and editing. Requires the --experimental flag.

promtool promql format

Format PromQL query to pretty printed form.

Arguments

Argument Description Required

query PromQL query. Yes

promtool promql label-matchers

Edit label matchers contained within an existing PromQL query.

promtool promql label-matchers set

Set a label matcher in the query.

Flags

Flag Description Default

-t , --type Type of the label matcher to set. =

Arguments

Argument Description Required

query PromQL query. Yes

name Name of the label matcher to set. Yes

value Value of the label matcher to set. Yes

promtool promql label-matchers delete

10/09/24, 19:20 promtool | Prometheus

https://prometheus.io/docs/prometheus/latest/command-line/promtool/ 15/16

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses

trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

Delete a label from the query.

Arguments

Argument Description Required

query PromQL query. Yes

name Name of the label to delete. Yes

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help improve

it by filing issues or pull requests.

10/09/24, 19:20 promtool | Prometheus

https://prometheus.io/docs/prometheus/latest/command-line/promtool/ 16/16

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Querying

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

10/09/24, 19:20 Migration | Prometheus

https://prometheus.io/docs/prometheus/latest/migration/ 1/7

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/feature_flags/

Flags

Alertmanager service

discovery

Recording rules and

alerts

Storage

PromQL

Miscellaneous

Prometheus non-

root user

Prometheus lifecycle

PROMETHEUS 2.0 MIGRATION GUIDE

In line with our stability promise

(/blog/2016/07/18/prometheus-1-0-

released/#fine-print), the Prometheus 2.0

release contains a number of backwards

incompatible changes. This document offers

guidance on migrating from Prometheus 1.8

to Prometheus 2.0 and newer versions.

Flags

The format of Prometheus command line flags

has changed. Instead of a single dash, all flags

now use a double dash. Common flags (--

config.file , --web.listen-address and --web.external-url) remain but

almost all storage-related flags have been removed.

Some notable flags which have been removed:

-alertmanager.url In Prometheus 2.0, the command line flags for

configuring a static Alertmanager URL have been removed. Alertmanager

must now be discovered via service discovery, see Alertmanager service

discovery.

-log.format In Prometheus 2.0 logs can only be streamed to standard

error.

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:20 Migration | Prometheus

https://prometheus.io/docs/prometheus/latest/migration/ 2/7

https://prometheus.io/blog/2016/07/18/prometheus-1-0-released/#fine-print
https://prometheus.io/blog/2016/07/18/prometheus-1-0-released/#fine-print
https://prometheus.io/blog/2016/07/18/prometheus-1-0-released/#fine-print

-query.staleness-delta has been renamed to --query.lookback-delta ;

Prometheus 2.0 introduces a new mechanism for handling staleness, see

staleness (../querying/basics/#staleness).

-storage.local.* Prometheus 2.0 introduces a new storage engine; as

such all flags relating to the old engine have been removed. For

information on the new engine, see Storage.

-storage.remote.* Prometheus 2.0 has removed the deprecated remote

storage flags, and will fail to start if they are supplied. To write to InfluxDB,

Graphite, or OpenTSDB use the relevant storage adapter.

Alertmanager service discovery

Alertmanager service discovery was introduced in Prometheus 1.4, allowing

Prometheus to dynamically discover Alertmanager replicas using the same

mechanism as scrape targets. In Prometheus 2.0, the command line flags for

static Alertmanager config have been removed, so the following command line

flag:

./prometheus -alertmanager.url=http://alertmanager:9093/

Would be replaced with the following in the prometheus.yml config file:

alerting:
 alertmanagers:
 - static_configs:
 - targets:
 - alertmanager:9093

You can also use all the usual Prometheus service discovery integrations and

relabeling in your Alertmanager configuration. This snippet instructs

Prometheus to search for Kubernetes pods, in the default namespace, with

the label name: alertmanager and with a non-empty port.

10/09/24, 19:20 Migration | Prometheus

https://prometheus.io/docs/prometheus/latest/migration/ 3/7

https://prometheus.io/docs/prometheus/latest/querying/basics/#staleness
https://prometheus.io/docs/prometheus/latest/querying/basics/#staleness

alerting:
 alertmanagers:
 - kubernetes_sd_configs:
 - role: pod
 tls_config:
 ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
 bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
 relabel_configs:
 - source_labels: [__meta_kubernetes_pod_label_name]
 regex: alertmanager
 action: keep
 - source_labels: [__meta_kubernetes_namespace]
 regex: default
 action: keep
 - source_labels: [__meta_kubernetes_pod_container_port_number]
 regex:
 action: drop

Recording rules and alerts

The format for configuring alerting and recording rules has been changed to

YAML. An example of a recording rule and alert in the old format:

job:request_duration_seconds:histogram_quantile99 =
 histogram_quantile(0.99, sum by (le, job) (rate(request_duration_seconds_bucket

ALERT FrontendRequestLatency
 IF job:request_duration_seconds:histogram_quantile99{job="frontend"} > 0.1
 FOR 5m
 ANNOTATIONS {
 summary = "High frontend request latency",
 }

Would look like this:

10/09/24, 19:20 Migration | Prometheus

https://prometheus.io/docs/prometheus/latest/migration/ 4/7

groups:
- name: example.rules
 rules:
 - record: job:request_duration_seconds:histogram_quantile99
 expr: histogram_quantile(0.99, sum by (le, job) (rate(request_duration_second
 - alert: FrontendRequestLatency
 expr: job:request_duration_seconds:histogram_quantile99{job="frontend"} > 0.1
 for: 5m
 annotations:
 summary: High frontend request latency

To help with the change, the promtool tool has a mode to automate the rules

conversion. Given a .rules file, it will output a .rules.yml file in the new

format. For example:

$ promtool update rules example.rules

You will need to use promtool from Prometheus 2.5

(https://github.com/prometheus/prometheus/releases/tag/v2.5.0) as later

versions no longer contain the above subcommand.

Storage

The data format in Prometheus 2.0 has completely changed and is not

backwards compatible with 1.8 and older versions. To retain access to your

historic monitoring data we recommend you run a non-scraping Prometheus

instance running at least version 1.8.1 in parallel with your Prometheus 2.0

instance, and have the new server read existing data from the old one via the

remote read protocol.

Your Prometheus 1.8 instance should be started with the following flags and an

config file containing only the external_labels setting (if any):

$./prometheus-1.8.1.linux-amd64/prometheus -web.listen-address ":9094" -config.f

10/09/24, 19:20 Migration | Prometheus

https://prometheus.io/docs/prometheus/latest/migration/ 5/7

https://github.com/prometheus/prometheus/releases/tag/v2.5.0
https://github.com/prometheus/prometheus/releases/tag/v2.5.0

Prometheus 2.0 can then be started (on the same machine) with the following

flags:

$./prometheus-2.0.0.linux-amd64/prometheus --config.file prometheus.yml

Where prometheus.yml contains in addition to your full existing configuration,

the stanza:

remote_read:
 - url: "http://localhost:9094/api/v1/read"

PromQL

The following features have been removed from PromQL:

drop_common_labels function - the without aggregation modifier should

be used instead.

keep_common aggregation modifier - the by modifier should be used

instead.

count_scalar function - use cases are better handled by absent() or

correct propagation of labels in operations.

See issue #3060 (https://github.com/prometheus/prometheus/issues/3060) for

more details.

Miscellaneous

Prometheus non-root user

The Prometheus Docker image is now built to run Prometheus as a non-root

user (https://github.com/prometheus/prometheus/pull/2859). If you want the

Prometheus UI/API to listen on a low port number (say, port 80), you'll need to

override it. For Kubernetes, you would use the following YAML:

10/09/24, 19:20 Migration | Prometheus

https://prometheus.io/docs/prometheus/latest/migration/ 6/7

https://github.com/prometheus/prometheus/issues/3060
https://github.com/prometheus/prometheus/issues/3060
https://github.com/prometheus/prometheus/pull/2859
https://github.com/prometheus/prometheus/pull/2859
https://github.com/prometheus/prometheus/pull/2859

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

apiVersion: v1
kind: Pod
metadata:
 name: security-context-demo-2
spec:
 securityContext:
 runAsUser: 0
...

See Configure a Security Context for a Pod or Container

(https://kubernetes.io/docs/tasks/configure-pod-container/security-context/)

for more details.

If you're using Docker, then the following snippet would be used:

docker run -p 9090:9090 prom/prometheus:latest

Prometheus lifecycle

If you use the Prometheus /-/reload HTTP endpoint to automatically reload

your Prometheus config when it changes (../configuration/configuration/), these

endpoints are disabled by default for security reasons in Prometheus 2.0. To

enable them, set the --web.enable-lifecycle flag.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:20 Migration | Prometheus

https://prometheus.io/docs/prometheus/latest/migration/ 7/7

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Querying

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

10/09/24, 19:20 API Stability | Prometheus

https://prometheus.io/docs/prometheus/latest/stability/ 1/3

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/feature_flags/

API STABILITY GUARANTEES

Prometheus promises API stability within a major version, and strives to avoid

breaking changes for key features. Some features, which are cosmetic, still

under development, or depend on 3rd party services, are not covered by this.

Things considered stable for 2.x:

The query language and data model

Alerting and recording rules

The ingestion exposition format

v1 HTTP API (used by dashboards and UIs)

Configuration file format (minus the service discovery remote read/write,

see below)

Rule/alert file format

Console template syntax and semantics

Remote write sending, per the 1.0 specification

(/docs/concepts/remote_write_spec/).

Things considered unstable for 2.x:

Any feature listed as experimental or subject to change, including:

The holt_winters PromQL function

(https://github.com/prometheus/prometheus/issues/2458)

Remote write receiving, remote read and the remote read endpoint

Server-side HTTPS and basic authentication

Service discovery integrations, with the exception of static_configs and

file_sd_configs

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:20 API Stability | Prometheus

https://prometheus.io/docs/prometheus/latest/stability/ 2/3

https://prometheus.io/docs/concepts/remote_write_spec/
https://prometheus.io/docs/concepts/remote_write_spec/
https://github.com/prometheus/prometheus/issues/2458
https://github.com/prometheus/prometheus/issues/2458

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

Go APIs of packages that are part of the server

HTML generated by the web UI

The metrics in the /metrics endpoint of Prometheus itself

Exact on-disk format. Potential changes however, will be forward

compatible and transparently handled by Prometheus

The format of the logs

As long as you are not using any features marked as experimental/unstable, an

upgrade within a major version can usually be performed without any

operational adjustments and very little risk that anything will break. Any

breaking changes will be marked as CHANGE in release notes.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:20 API Stability | Prometheus

https://prometheus.io/docs/prometheus/latest/stability/ 3/3

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

Version: latest (2.54)

Getting started (/docs/prometheus/latest/getting_started/)

Installation (/docs/prometheus/latest/installation/)

Configuration

Querying

Storage (/docs/prometheus/latest/storage/)

Federation (/docs/prometheus/latest/federation/)

HTTP SD (/docs/prometheus/latest/http_sd/)

Management API (/docs/prometheus/latest/management_api/)

Command Line

Migration (/docs/prometheus/latest/migration/)

API Stability (/docs/prometheus/latest/stability/)

Feature flags (/docs/prometheus/latest/feature_flags/)

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:20 Feature flags | Prometheus

https://prometheus.io/docs/prometheus/latest/feature_flags/ 1/7

https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/federation/
https://prometheus.io/docs/prometheus/latest/http_sd/
https://prometheus.io/docs/prometheus/latest/management_api/
https://prometheus.io/docs/prometheus/latest/migration/
https://prometheus.io/docs/prometheus/latest/stability/
https://prometheus.io/docs/prometheus/latest/feature_flags/

Expand environment variables in

external labels

Remote Write Receiver

Exemplars storage

Memory snapshot on shutdown

Extra scrape metrics

New service discovery manager

Prometheus agent

Per-step stats

Auto GOMAXPROCS

Auto GOMEMLIMIT

No default scrape port

Native Histograms

OTLP Receiver

Experimental PromQL functions

Created Timestamps Zero

Injection

Concurrent evaluation of

independent rules

Metadata WAL Records

FEATURE FLAGS

Here is a list of features that are disabled by default since

they are breaking changes or are considered experimental.

Their behaviour can change in future releases which will be

communicated via the release changelog

(https://github.com/prometheus/prometheus/blob/main/CHANGELOG.md).

You can enable them using the --enable-feature flag with a comma separated list of features. They may

be enabled by default in future versions.

Expand environment variables in external labels

--enable-feature=expand-external-labels

Replace ${var} or $var in the external_labels (../configuration/configuration/#configuration-file)

values according to the values of the current environment variables. References to undefined variables

are replaced by the empty string. The $ character can be escaped by using $$.

Remote Write Receiver

--enable-feature=remote-write-receiver

The remote write receiver allows Prometheus to accept remote write requests from other Prometheus

servers. More details can be found here (../storage/#overview).

Activating the remote write receiver via a feature flag is deprecated. Use --web.enable-remote-write-

receiver instead. This feature flag will be ignored in future versions of Prometheus.

Exemplars storage

--enable-feature=exemplar-storage

10/09/24, 19:20 Feature flags | Prometheus

https://prometheus.io/docs/prometheus/latest/feature_flags/ 2/7

https://github.com/prometheus/prometheus/blob/main/CHANGELOG.md
https://github.com/prometheus/prometheus/blob/main/CHANGELOG.md
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#configuration-file
https://prometheus.io/docs/prometheus/latest/storage/#overview
https://prometheus.io/docs/prometheus/latest/storage/#overview

OpenMetrics

(https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#exemplars)

introduces the ability for scrape targets to add exemplars to certain metrics. Exemplars are references to

data outside of the MetricSet. A common use case are IDs of program traces.

Exemplar storage is implemented as a fixed size circular buffer that stores exemplars in memory for all

series. Enabling this feature will enable the storage of exemplars scraped by Prometheus. The config file

block storage (../configuration/configuration/#configuration-file)/exemplars

(../configuration/configuration/#exemplars) can be used to control the size of circular buffer by # of

exemplars. An exemplar with just a trace_id=<jaeger-trace-id> uses roughly 100 bytes of memory via

the in-memory exemplar storage. If the exemplar storage is enabled, we will also append the exemplars

to WAL for local persistence (for WAL duration).

Memory snapshot on shutdown

--enable-feature=memory-snapshot-on-shutdown

This takes the snapshot of the chunks that are in memory along with the series information when

shutting down and stores it on disk. This will reduce the startup time since the memory state can be

restored with this snapshot and m-mapped chunks without the need of WAL replay.

Extra scrape metrics

--enable-feature=extra-scrape-metrics

When enabled, for each instance scrape, Prometheus stores a sample in the following additional time

series:

scrape_timeout_seconds . The configured scrape_timeout for a target. This allows you to measure

each target to find out how close they are to timing out with scrape_duration_seconds /

scrape_timeout_seconds .

scrape_sample_limit . The configured sample_limit for a target. This allows you to measure each

target to find out how close they are to reaching the limit with

scrape_samples_post_metric_relabeling / scrape_sample_limit . Note that scrape_sample_limit

can be zero if there is no limit configured, which means that the query above can return +Inf for

targets with no limit (as we divide by zero). If you want to query only for targets that do have a

sample limit use this query: scrape_samples_post_metric_relabeling / (scrape_sample_limit > 0) .

scrape_body_size_bytes . The uncompressed size of the most recent scrape response, if successful.

Scrapes failing because body_size_limit is exceeded report -1 , other scrape failures report 0 .

New service discovery manager

--enable-feature=new-service-discovery-manager

When enabled, Prometheus uses a new service discovery manager that does not restart unchanged

discoveries upon reloading. This makes reloads faster and reduces pressure on service discoveries'

sources.

Users are encouraged to test the new service discovery manager and report any issues upstream.

10/09/24, 19:20 Feature flags | Prometheus

https://prometheus.io/docs/prometheus/latest/feature_flags/ 3/7

https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#exemplars
https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#exemplars
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#configuration-file
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#configuration-file
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#exemplars
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#exemplars

In future releases, this new service discovery manager will become the default and this feature flag will

be ignored.

Prometheus agent

--enable-feature=agent

When enabled, Prometheus runs in agent mode. The agent mode is limited to discovery, scrape and

remote write.

This is useful when you do not need to query the Prometheus data locally, but only from a central

remote endpoint (/docs/operating/integrations/#remote-endpoints-and-storage).

Per-step stats

--enable-feature=promql-per-step-stats

When enabled, passing stats=all in a query request returns per-step statistics. Currently this is limited

to totalQueryableSamples.

When disabled in either the engine or the query, per-step statistics are not computed at all.

Auto GOMAXPROCS

--enable-feature=auto-gomaxprocs

When enabled, GOMAXPROCS variable is automatically set to match Linux container CPU quota.

Auto GOMEMLIMIT

--enable-feature=auto-gomemlimit

When enabled, the GOMEMLIMIT variable is automatically set to match the Linux container memory

limit. If there is no container limit, or the process is running outside of containers, the system memory

total is used.

There is also an additional tuning flag, --auto-gomemlimit.ratio , which allows controlling how much of

the memory is used for Prometheus. The remainder is reserved for memory outside the process. For

example, kernel page cache. Page cache is important for Prometheus TSDB query performance. The

default is 0.9 , which means 90% of the memory limit will be used for Prometheus.

No default scrape port

--enable-feature=no-default-scrape-port

When enabled, the default ports for HTTP (:80) or HTTPS (:443) will not be added to the address used

to scrape a target (the value of the __address_ label), contrary to the default behavior. In addition, if a

default HTTP or HTTPS port has already been added either in a static configuration or by a service

discovery mechanism and the respective scheme is specified (http or https), that port will be removed.

10/09/24, 19:20 Feature flags | Prometheus

https://prometheus.io/docs/prometheus/latest/feature_flags/ 4/7

https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage

Native Histograms

--enable-feature=native-histograms

When enabled, Prometheus will ingest native histograms (formerly also known as sparse histograms or

high-res histograms). Native histograms are still highly experimental. Expect breaking changes to happen

(including those rendering the TSDB unreadable).

Native histograms are currently only supported in the traditional Prometheus protobuf exposition

format. This feature flag therefore also enables a new (and also experimental) protobuf parser, through

which all metrics are ingested (i.e. not only native histograms). Prometheus will try to negotiate the

protobuf format first. The instrumented target needs to support the protobuf format, too, and it needs

to expose native histograms. The protobuf format allows to expose classic and native histograms side by

side. With this feature flag disabled, Prometheus will continue to parse the classic histogram (albeit via

the text format). With this flag enabled, Prometheus will still ingest those classic histograms that do not

come with a corresponding native histogram. However, if a native histogram is present, Prometheus will

ignore the corresponding classic histogram, with the notable exception of exemplars, which are always

ingested. To keep the classic histograms as well, enable scrape_classic_histograms in the scrape job.

Note about the format of le and quantile label values:

In certain situations, the protobuf parsing changes the number formatting of the le labels of classic

histograms and the quantile labels of summaries. Typically, this happens if the scraped target is

instrumented with client_golang (https://github.com/prometheus/client_golang) provided that

promhttp.HandlerOpts.EnableOpenMetrics

(https://pkg.go.dev/github.com/prometheus/client_golang/prometheus/promhttp#HandlerOpts) is set to

false . In such a case, integer label values are represented in the text format as such, e.g. quantile="1"

or le="2" . However, the protobuf parsing changes the representation to float-like (following the

OpenMetrics specification), so the examples above become quantile="1.0" and le="2.0" after

ingestion into Prometheus, which changes the identity of the metric compared to what was ingested

before via the text format.

The effect of this change is that alerts, recording rules and dashboards that directly reference label

values as whole numbers such as le="1" will stop working.

Aggregation by the le and quantile labels for vectors that contain the old and new formatting will lead

to unexpected results, and range vectors that span the transition between the different formatting will

contain additional series. The most common use case for both is the quantile calculation via

histogram_quantile , e.g. histogram_quantile(0.95, sum by (le) (rate(histogram_bucket[10m]))) . The

histogram_quantile function already tries to mitigate the effects to some extent, but there will be

inaccuracies, in particular for shorter ranges that cover only a few samples.

Ways to deal with this change either globally or on a per metric basis:

Fix references to integer le , quantile label values, but otherwise do nothing and accept that

some queries that span the transition time will produce inaccurate or unexpected results. This is the
recommended solution, to get consistently normalized label values. Also Prometheus 3.0 is expected to

enforce normalization of these label values.

Use metric_relabel_config to retain the old labels when scraping targets. This should only be

applied to metrics that currently produce such labels.

10/09/24, 19:20 Feature flags | Prometheus

https://prometheus.io/docs/prometheus/latest/feature_flags/ 5/7

https://github.com/prometheus/client_golang
https://github.com/prometheus/client_golang
https://pkg.go.dev/github.com/prometheus/client_golang/prometheus/promhttp#HandlerOpts
https://pkg.go.dev/github.com/prometheus/client_golang/prometheus/promhttp#HandlerOpts

 metric_relabel_configs:
 - source_labels:
 - quantile
 target_label: quantile
 regex: (\d+)\.0+
 - source_labels:
 - le
 - __name__
 target_label: le
 regex: (\d+)\.0+;.*_bucket

OTLP Receiver

--enable-feature=otlp-write-receiver

The OTLP receiver allows Prometheus to accept OpenTelemetry (https://opentelemetry.io/) metrics

writes. Prometheus is best used as a Pull based system, and staleness, up metric, and other Pull

enabled features won't work when you push OTLP metrics.

Experimental PromQL functions

--enable-feature=promql-experimental-functions

Enables PromQL functions that are considered experimental and whose name or semantics could

change.

Created Timestamps Zero Injection

--enable-feature=created-timestamp-zero-ingestion

Enables ingestion of created timestamp. Created timestamps are injected as 0 valued samples when

appropriate. See PromCon talk (https://youtu.be/nWf0BfQ5EEA) for details.

Currently Prometheus supports created timestamps only on the traditional Prometheus Protobuf

protocol (WIP for other protocols). As a result, when enabling this feature, the Prometheus protobuf

scrape protocol will be prioritized (See scrape_config.scrape_protocols settings for more details).

Besides enabling this feature in Prometheus, created timestamps need to be exposed by the application

being scraped.

Concurrent evaluation of independent rules

--enable-feature=concurrent-rule-eval

By default, rule groups execute concurrently, but the rules within a group execute sequentially; this is

because rules can use the output of a preceding rule as its input. However, if there is no detectable

relationship between rules then there is no reason to run them sequentially. When the concurrent-rule-

eval feature flag is enabled, rules without any dependency on other rules within a rule group will be

evaluated concurrently. This has the potential to improve rule group evaluation latency and resource

utilization at the expense of adding more concurrent query load.

10/09/24, 19:20 Feature flags | Prometheus

https://prometheus.io/docs/prometheus/latest/feature_flags/ 6/7

https://opentelemetry.io/
https://opentelemetry.io/
https://youtu.be/nWf0BfQ5EEA
https://youtu.be/nWf0BfQ5EEA

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list of

trademarks of The Linux Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-usage) page.

The number of concurrent rule evaluations can be configured with --rules.max-concurrent-rule-evals ,

which is set to 4 by default.

Metadata WAL Records

--enable-feature=metadata-wal-records

When enabled, Prometheus will store metadata in-memory and keep track of metadata changes as WAL

records on a per-series basis.

This must be used if you are also using remote write 2.0 as it will only gather metadata from the WAL.

 This documentation is open-source (https://github.com/prometheus/docs#contributing-changes).

Please help improve it by filing issues or pull requests.

10/09/24, 19:20 Feature flags | Prometheus

https://prometheus.io/docs/prometheus/latest/feature_flags/ 7/7

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

EXPRESSION BROWSER 

The expression browser is available at /graph on the Prometheus server,

allowing you to enter any expression and see its result either in a table or

graphed over time.

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

Expression browser (/docs/visualization/browser/)

Grafana (/docs/visualization/grafana/)

Console templates (/docs/visualization/consoles/)

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:21 Expression browser | Prometheus

https://prometheus.io/docs/visualization/browser/ 1/2

https://prometheus.io/docs/visualization/browser/
https://prometheus.io/docs/visualization/grafana/
https://prometheus.io/docs/visualization/consoles/

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

This is primarily useful for ad-hoc queries and debugging. For graphs, use

Grafana (/docs/visualization/grafana/) or Console templates

(/docs/visualization/consoles/).

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:21 Expression browser | Prometheus

https://prometheus.io/docs/visualization/browser/ 2/2

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://prometheus.io/docs/visualization/grafana/
https://prometheus.io/docs/visualization/grafana/
https://prometheus.io/docs/visualization/consoles/
https://prometheus.io/docs/visualization/consoles/
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

Installing

Using

GRAFANA SUPPORT FOR PROMETHEUS

Grafana (http://grafana.com/) supports

querying Prometheus. The Grafana data

source for Prometheus is included since

Grafana 2.5.0 (2015-10-28).

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

Expression browser (/docs/visualization/browser/)

Grafana (/docs/visualization/grafana/)

Console templates (/docs/visualization/consoles/)

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:21 Grafana | Prometheus

https://prometheus.io/docs/visualization/grafana/ 1/5

http://grafana.com/
http://grafana.com/
https://prometheus.io/docs/visualization/browser/
https://prometheus.io/docs/visualization/grafana/
https://prometheus.io/docs/visualization/consoles/

Creating a

Prometheus data

source

Creating a

Prometheus graph

Importing pre-built

dashboards from

Grafana.com

The following shows an example Grafana

dashboard which queries Prometheus for

data:

(/assets/grafana_prometheus.png)

Installing

To install Grafana see the official Grafana documentation

(https://grafana.com/grafana/download/).

Using

By default, Grafana will be listening on http://localhost:3000

(http://localhost:3000). The default login is "admin" / "admin".

10/09/24, 19:21 Grafana | Prometheus

https://prometheus.io/docs/visualization/grafana/ 2/5

https://prometheus.io/assets/grafana_prometheus.png
https://prometheus.io/assets/grafana_prometheus.png
https://prometheus.io/assets/grafana_prometheus.png
https://grafana.com/grafana/download/
https://grafana.com/grafana/download/
http://localhost:3000/
http://localhost:3000/

Creating a Prometheus data source

To create a Prometheus data source in Grafana:

1. Click on the "cogwheel" in the sidebar to open the Configuration menu.

2. Click on "Data Sources".

3. Click on "Add data source".

4. Select "Prometheus" as the type.

5. Set the appropriate Prometheus server URL (for example,

http://localhost:9090/)

6. Adjust other data source settings as desired (for example, choosing the

right Access method).

7. Click "Save & Test" to save the new data source.

The following shows an example data source configuration:

(/assets/grafana_configuring_datasource.png)

Creating a Prometheus graph

Follow the standard way of adding a new Grafana graph. Then:

1. Click the graph title, then click "Edit".

2. Under the "Metrics" tab, select your Prometheus data source (bottom

right).

3. Enter any Prometheus expression into the "Query" field, while using the

"Metric" field to lookup metrics via autocompletion.

10/09/24, 19:21 Grafana | Prometheus

https://prometheus.io/docs/visualization/grafana/ 3/5

https://prometheus.io/assets/grafana_configuring_datasource.png
https://prometheus.io/assets/grafana_configuring_datasource.png
https://prometheus.io/assets/grafana_configuring_datasource.png

4. To format the legend names of time series, use the "Legend format" input.

For example, to show only the method and status labels of a returned

query result, separated by a dash, you could use the legend format string

{{method}} - {{status}} .

5. Tune other graph settings until you have a working graph.

The following shows an example Prometheus graph configuration:

(/assets/grafana_qps_graph.png)

In Grafana 7.2 and later, the $__rate_interval variable is recommended

(https://grafana.com/docs/grafana/latest/datasources/prometheus/#using-

__rate_interval) for use in the rate and increase functions.

Importing pre-built dashboards from Grafana.com

Grafana.com maintains a collection of shared dashboards

(https://grafana.com/dashboards) which can be downloaded and used with

standalone instances of Grafana. Use the Grafana.com "Filter" option to browse

dashboards for the "Prometheus" data source only.

You must currently manually edit the downloaded JSON files and correct the

datasource: entries to reflect the Grafana data source name which you chose

for your Prometheus server. Use the "Dashboards" → "Home" → "Import"

option to import the edited dashboard file into your Grafana install.

10/09/24, 19:21 Grafana | Prometheus

https://prometheus.io/docs/visualization/grafana/ 4/5

https://prometheus.io/assets/grafana_qps_graph.png
https://prometheus.io/assets/grafana_qps_graph.png
https://prometheus.io/assets/grafana_qps_graph.png
https://grafana.com/docs/grafana/latest/datasources/prometheus/#using-__rate_interval
https://grafana.com/docs/grafana/latest/datasources/prometheus/#using-__rate_interval
https://grafana.com/docs/grafana/latest/datasources/prometheus/#using-__rate_interval
https://grafana.com/dashboards
https://grafana.com/dashboards

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:21 Grafana | Prometheus

https://prometheus.io/docs/visualization/grafana/ 5/5

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

Getting started

Example Console

Graph Library

CONSOLE TEMPLATES

Console templates allow for creation of arbitrary consoles using

the Go templating language

(https://golang.org/pkg/text/template/). These are served from

the Prometheus server.

Console templates are the most powerful way to create templates that can be easily managed in source

control. There is a learning curve though, so users new to this style of monitoring should try out Grafana

(/docs/visualization/grafana/) first.

Getting started

Prometheus comes with an example set of consoles to get you going. These can be found at

/consoles/index.html.example on a running Prometheus and will display Node Exporter consoles if

Prometheus is scraping Node Exporters with a job="node" label.

The example consoles have 5 parts:

1. A navigation bar on top

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

Expression browser (/docs/visualization/browser/)

Grafana (/docs/visualization/grafana/)

Console templates (/docs/visualization/consoles/)

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:21 Console templates | Prometheus

https://prometheus.io/docs/visualization/consoles/ 1/5

https://golang.org/pkg/text/template/
https://golang.org/pkg/text/template/
https://prometheus.io/docs/visualization/grafana/
https://prometheus.io/docs/visualization/grafana/
https://prometheus.io/docs/visualization/browser/
https://prometheus.io/docs/visualization/grafana/
https://prometheus.io/docs/visualization/consoles/

2. A menu on the left

3. Time controls on the bottom

4. The main content in the center, usually graphs

5. A table on the right

The navigation bar is for links to other systems, such as other Prometheis

, documentation, and whatever else makes sense to you. The menu is for navigation inside the

same Prometheus server, which is very useful to be able to quickly open a console in another tab to

correlate information. Both are configured in console_libraries/menu.lib .

The time controls allow changing of the duration and range of the graphs. Console URLs can be shared and

will show the same graphs for others.

The main content is usually graphs. There is a configurable JavaScript graphing library provided that will

handle requesting data from Prometheus, and rendering it via Rickshaw

(https://shutterstock.github.io/rickshaw/).

Finally, the table on the right can be used to display statistics in a more compact form than graphs.

Example Console

This is a basic console. It shows the number of tasks, how many of them are up, the average CPU usage, and

the average memory usage in the right-hand-side table. The main content has a queries-per-second graph.

1 (/docs/introduction/faq/#what-is-the-plural-

of-prometheus)

10/09/24, 19:21 Console templates | Prometheus

https://prometheus.io/docs/visualization/consoles/ 2/5

https://shutterstock.github.io/rickshaw/
https://shutterstock.github.io/rickshaw/
https://prometheus.io/docs/introduction/faq/#what-is-the-plural-of-prometheus
https://prometheus.io/docs/introduction/faq/#what-is-the-plural-of-prometheus
https://prometheus.io/docs/introduction/faq/#what-is-the-plural-of-prometheus

{{template "head" .}}

{{template "prom_right_table_head"}}
<tr>
 <th>MyJob</th>
 <th>{{ template "prom_query_drilldown" (args "sum(up{job='myjob'})") }}
 / {{ template "prom_query_drilldown" (args "count(up{job='myjob'})") }}
 </th>
</tr>
<tr>
 <td>CPU</td>
 <td>{{ template "prom_query_drilldown" (args
 "avg by(job)(rate(process_cpu_seconds_total{job='myjob'}[5m]))"
 "s/s" "humanizeNoSmallPrefix") }}
 </td>
</tr>
<tr>
 <td>Memory</td>
 <td>{{ template "prom_query_drilldown" (args
 "avg by(job)(process_resident_memory_bytes{job='myjob'})"
 "B" "humanize1024") }}
 </td>
</tr>
{{template "prom_right_table_tail"}}

{{template "prom_content_head" .}}
<h1>MyJob</h1>

<h3>Queries</h3>
<div id="queryGraph"></div>
<script>
new PromConsole.Graph({
 node: document.querySelector("#queryGraph"),
 expr: "sum(rate(http_query_count{job='myjob'}[5m]))",
 name: "Queries",
 yAxisFormatter: PromConsole.NumberFormatter.humanizeNoSmallPrefix,
 yHoverFormatter: PromConsole.NumberFormatter.humanizeNoSmallPrefix,
 yUnits: "/s",
 yTitle: "Queries"
})
</script>

{{template "prom_content_tail" .}}

{{template "tail"}}

The prom_right_table_head and prom_right_table_tail templates contain the right-hand-side table. This is

optional.

prom_query_drilldown is a template that will evaluate the expression passed to it, format it, and link to the

expression in the expression browser (/docs/visualization/browser/). The first argument is the expression.

The second argument is the unit to use. The third argument is how to format the output. Only the first

argument is required.

Valid output formats for the third argument to prom_query_drilldown :

10/09/24, 19:21 Console templates | Prometheus

https://prometheus.io/docs/visualization/consoles/ 3/5

https://prometheus.io/docs/visualization/browser/
https://prometheus.io/docs/visualization/browser/

Not specified: Default Go display output.

humanize : Display the result using metric prefixes (https://en.wikipedia.org/wiki/Metric_prefix).

humanizeNoSmallPrefix : For absolute values greater than 1, display the result using metric prefixes

(https://en.wikipedia.org/wiki/Metric_prefix). For absolute values less than 1, display 3 significant digits.

This is useful to avoid units such as milliqueries per second that can be produced by humanize .

humanize1024 : Display the humanized result using a base of 1024 rather than 1000. This is usually used

with B as the second argument to produce units such as KiB and MiB .

printf.3g : Display 3 significant digits.

Custom formats can be defined. See prom.lib

(https://github.com/prometheus/prometheus/blob/main/console_libraries/prom.lib) for examples.

Graph Library

The graph library is invoked as:

<div id="queryGraph"></div>
<script>
new PromConsole.Graph({
 node: document.querySelector("#queryGraph"),
 expr: "sum(rate(http_query_count{job='myjob'}[5m]))"
})
</script>

The head template loads the required Javascript and CSS.

Parameters to the graph library:

Name Description

expr Required. Expression to graph. Can be a list.

node Required. DOM node to render into.

duration Optional. Duration of the graph. Defaults to 1 hour.

endTime Optional. Unixtime the graph ends at. Defaults to now.

width Optional. Width of the graph, excluding titles. Defaults to auto-detection.

height Optional. Height of the graph, excluding titles and legends. Defaults to 200 pixels.

min Optional. Minimum x-axis value. Defaults to lowest data value.

max Optional. Maximum y-axis value. Defaults to highest data value.

renderer Optional. Type of graph. Options are line and area (stacked graph). Defaults to line .

name Optional. Title of plots in legend and hover detail. If passed a string, [[label]] will be

substituted with the label value. If passed a function, it will be passed a map of labels

and should return the name as a string. Can be a list.

xTitle Optional. Title of the x-axis. Defaults to Time .

10/09/24, 19:21 Console templates | Prometheus

https://prometheus.io/docs/visualization/consoles/ 4/5

https://en.wikipedia.org/wiki/Metric_prefix
https://en.wikipedia.org/wiki/Metric_prefix
https://en.wikipedia.org/wiki/Metric_prefix
https://en.wikipedia.org/wiki/Metric_prefix
https://github.com/prometheus/prometheus/blob/main/console_libraries/prom.lib
https://github.com/prometheus/prometheus/blob/main/console_libraries/prom.lib

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list of trademarks

of The Linux Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-usage) page.

Name Description

yUnits Optional. Units of the y-axis. Defaults to empty.

yTitle Optional. Title of the y-axis. Defaults to empty.

yAxisFormatter Optional. Number formatter for the y-axis. Defaults to

PromConsole.NumberFormatter.humanize .

yHoverFormatter Optional. Number formatter for the hover detail. Defaults to

PromConsole.NumberFormatter.humanizeExact .

colorScheme Optional. Color scheme to be used by the plots. Can be either a list of hex color codes or

one of the color scheme names

(https://github.com/shutterstock/rickshaw/blob/master/src/js/Rickshaw.Fixtures.Color.js)

supported by Rickshaw. Defaults to 'colorwheel' .

If both expr and name are lists, they must be of the same length. The name will be applied to the plots for

the corresponding expression.

Valid options for the yAxisFormatter and yHoverFormatter :

PromConsole.NumberFormatter.humanize : Format using metric prefixes

(https://en.wikipedia.org/wiki/Metric_prefix).

PromConsole.NumberFormatter.humanizeNoSmallPrefix : For absolute values greater than 1, format using

using metric prefixes (https://en.wikipedia.org/wiki/Metric_prefix). For absolute values less than 1,

format with 3 significant digits. This is useful to avoid units such as milliqueries per second that can be

produced by PromConsole.NumberFormatter.humanize .

PromConsole.NumberFormatter.humanize1024 : Format the humanized result using a base of 1024 rather

than 1000.

 This documentation is open-source (https://github.com/prometheus/docs#contributing-changes).

Please help improve it by filing issues or pull requests.

10/09/24, 19:21 Console templates | Prometheus

https://prometheus.io/docs/visualization/consoles/ 5/5

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/shutterstock/rickshaw/blob/master/src/js/Rickshaw.Fixtures.Color.js
https://github.com/shutterstock/rickshaw/blob/master/src/js/Rickshaw.Fixtures.Color.js
https://en.wikipedia.org/wiki/Metric_prefix
https://en.wikipedia.org/wiki/Metric_prefix
https://en.wikipedia.org/wiki/Metric_prefix
https://en.wikipedia.org/wiki/Metric_prefix
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

Client libraries (/docs/instrumenting/clientlibs/)

Writing client libraries (/docs/instrumenting/writing_clientlibs/)

Pushing metrics (/docs/instrumenting/pushing/)

Exporters and integrations (/docs/instrumenting/exporters/)

Writing exporters (/docs/instrumenting/writing_exporters/)

Exposition formats (/docs/instrumenting/exposition_formats/)

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:21 Client libraries | Prometheus

https://prometheus.io/docs/instrumenting/clientlibs/ 1/3

https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/writing_clientlibs/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/exposition_formats/

CLIENT LIBRARIES

Before you can monitor your services, you need to add instrumentation to their

code via one of the Prometheus client libraries. These implement the

Prometheus metric types (/docs/concepts/metric_types/).

Choose a Prometheus client library that matches the language in which your

application is written. This lets you define and expose internal metrics via an

HTTP endpoint on your application’s instance:

Go (https://github.com/prometheus/client_golang)

Java or Scala (https://github.com/prometheus/client_java)

Python (https://github.com/prometheus/client_python)

Ruby (https://github.com/prometheus/client_ruby)

Rust (https://github.com/prometheus/client_rust)

Unofficial third-party client libraries:

Bash (https://github.com/aecolley/client_bash)

C (https://github.com/digitalocean/prometheus-client-c)

C++ (https://github.com/jupp0r/prometheus-cpp)

Common Lisp (https://github.com/deadtrickster/prometheus.cl)

Dart (https://github.com/tentaclelabs/prometheus_client)

Delphi (https://github.com/marcobreveglieri/prometheus-client-delphi)

Elixir (https://github.com/deadtrickster/prometheus.ex)

Erlang (https://github.com/deadtrickster/prometheus.erl)

Haskell (https://github.com/fimad/prometheus-haskell)

Julia (https://github.com/fredrikekre/Prometheus.jl)

Lua (https://github.com/knyar/nginx-lua-prometheus) for Nginx

Lua (https://github.com/tarantool/metrics) for Tarantool

.NET / C# (https://github.com/prometheus-net/prometheus-net)

Node.js (https://github.com/siimon/prom-client)

OCaml (https://github.com/mirage/prometheus)

Perl (https://metacpan.org/pod/Net::Prometheus)

PHP (https://github.com/promphp/prometheus_client_php)

R (https://github.com/cfmack/pRometheus)

10/09/24, 19:21 Client libraries | Prometheus

https://prometheus.io/docs/instrumenting/clientlibs/ 2/3

https://prometheus.io/docs/concepts/metric_types/
https://prometheus.io/docs/concepts/metric_types/
https://github.com/prometheus/client_golang
https://github.com/prometheus/client_golang
https://github.com/prometheus/client_java
https://github.com/prometheus/client_java
https://github.com/prometheus/client_python
https://github.com/prometheus/client_python
https://github.com/prometheus/client_ruby
https://github.com/prometheus/client_ruby
https://github.com/prometheus/client_rust
https://github.com/prometheus/client_rust
https://github.com/aecolley/client_bash
https://github.com/aecolley/client_bash
https://github.com/digitalocean/prometheus-client-c
https://github.com/digitalocean/prometheus-client-c
https://github.com/jupp0r/prometheus-cpp
https://github.com/jupp0r/prometheus-cpp
https://github.com/deadtrickster/prometheus.cl
https://github.com/deadtrickster/prometheus.cl
https://github.com/tentaclelabs/prometheus_client
https://github.com/tentaclelabs/prometheus_client
https://github.com/marcobreveglieri/prometheus-client-delphi
https://github.com/marcobreveglieri/prometheus-client-delphi
https://github.com/deadtrickster/prometheus.ex
https://github.com/deadtrickster/prometheus.ex
https://github.com/deadtrickster/prometheus.erl
https://github.com/deadtrickster/prometheus.erl
https://github.com/fimad/prometheus-haskell
https://github.com/fimad/prometheus-haskell
https://github.com/fredrikekre/Prometheus.jl
https://github.com/fredrikekre/Prometheus.jl
https://github.com/knyar/nginx-lua-prometheus
https://github.com/knyar/nginx-lua-prometheus
https://github.com/tarantool/metrics
https://github.com/tarantool/metrics
https://github.com/prometheus-net/prometheus-net
https://github.com/prometheus-net/prometheus-net
https://github.com/siimon/prom-client
https://github.com/siimon/prom-client
https://github.com/mirage/prometheus
https://github.com/mirage/prometheus
https://metacpan.org/pod/Net::Prometheus
https://metacpan.org/pod/Net::Prometheus
https://github.com/promphp/prometheus_client_php
https://github.com/promphp/prometheus_client_php
https://github.com/cfmack/pRometheus
https://github.com/cfmack/pRometheus

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

When Prometheus scrapes your instance's HTTP endpoint, the client library

sends the current state of all tracked metrics to the server.

If no client library is available for your language, or you want to avoid

dependencies, you may also implement one of the supported exposition

formats (/docs/instrumenting/exposition_formats/) yourself to expose metrics.

When implementing a new Prometheus client library, please follow the

guidelines on writing client libraries (/docs/instrumenting/writing_clientlibs).

Note that this document is still a work in progress. Please also consider

consulting the development mailing list

(https://groups.google.com/forum/#!forum/prometheus-developers). We are

happy to give advice on how to make your library as useful and consistent as

possible.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:21 Client libraries | Prometheus

https://prometheus.io/docs/instrumenting/clientlibs/ 3/3

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/instrumenting/writing_clientlibs
https://prometheus.io/docs/instrumenting/writing_clientlibs
https://groups.google.com/forum/#!forum/prometheus-developers
https://groups.google.com/forum/#!forum/prometheus-developers
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

Client libraries (/docs/instrumenting/clientlibs/)

Writing client libraries (/docs/instrumenting/writing_clientlibs/)

Pushing metrics (/docs/instrumenting/pushing/)

Exporters and integrations (/docs/instrumenting/exporters/)

Writing exporters (/docs/instrumenting/writing_exporters/)

Exposition formats (/docs/instrumenting/exposition_formats/)

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:21 Writing client libraries | Prometheus

https://prometheus.io/docs/instrumenting/writing_clientlibs/ 1/13

https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/writing_clientlibs/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/exposition_formats/

Conventions

Overall structure

Naming

Metrics

Counter

Gauge

Summary

Histogram

Labels

Metric names

Metric description

and help

Exposition

Standard and runtime

collectors

Process metrics

Runtime metrics

Unit tests

Packaging and

dependencies

Performance

considerations

WRITING CLIENT LIBRARIES

This document covers what functionality and

API Prometheus client libraries should offer,

with the aim of consistency across libraries,

making the easy use cases easy and avoiding

offering functionality that may lead users

down the wrong path.

There are 10 languages already supported

(/docs/instrumenting/clientlibs) at the time of

writing, so we’ve gotten a good sense by now

of how to write a client. These guidelines aim

to help authors of new client libraries produce

good libraries.

Conventions

MUST/MUST NOT/SHOULD/SHOULD NOT/MAY

have the meanings given in

https://www.ietf.org/rfc/rfc2119.txt

(https://www.ietf.org/rfc/rfc2119.txt)

In addition ENCOURAGED means that a

feature is desirable for a library to have, but

it’s okay if it’s not present. In other words, a

nice to have.

Things to keep in mind:

Take advantage of each language’s features.

The common use cases should be easy.

The correct way to do something should be the easy way.

More complex use cases should be possible.

The common use cases are (in order):

10/09/24, 19:21 Writing client libraries | Prometheus

https://prometheus.io/docs/instrumenting/writing_clientlibs/ 2/13

https://prometheus.io/docs/instrumenting/clientlibs
https://prometheus.io/docs/instrumenting/clientlibs
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt

Counters without labels spread liberally around libraries/applications.

Timing functions/blocks of code in Summaries/Histograms.

Gauges to track current states of things (and their limits).

Monitoring of batch jobs.

Overall structure

Clients MUST be written to be callback based internally. Clients SHOULD

generally follow the structure described here.

The key class is the Collector. This has a method (typically called ‘collect’) that

returns zero or more metrics and their samples. Collectors get registered with a

CollectorRegistry. Data is exposed by passing a CollectorRegistry to a

class/method/function "bridge", which returns the metrics in a format

Prometheus supports. Every time the CollectorRegistry is scraped it must

callback to each of the Collectors’ collect method.

The interface most users interact with are the Counter, Gauge, Summary, and

Histogram Collectors. These represent a single metric, and should cover the

vast majority of use cases where a user is instrumenting their own code.

More advanced uses cases (such as proxying from another

monitoring/instrumentation system) require writing a custom Collector.

Someone may also want to write a "bridge" that takes a CollectorRegistry and

produces data in a format a different monitoring/instrumentation system

understands, allowing users to only have to think about one instrumentation

system.

CollectorRegistry SHOULD offer register() / unregister() functions, and a

Collector SHOULD be allowed to be registered to multiple CollectorRegistrys.

Client libraries MUST be thread safe.

For non-OO languages such as C, client libraries should follow the spirit of this

structure as much as is practical.

10/09/24, 19:21 Writing client libraries | Prometheus

https://prometheus.io/docs/instrumenting/writing_clientlibs/ 3/13

Naming

Client libraries SHOULD follow function/method/class names mentioned in this

document, keeping in mind the naming conventions of the language they’re

working in. For example, set_to_current_time() is good for a method name in

Python, but SetToCurrentTime() is better in Go and setToCurrentTime() is the

convention in Java. Where names differ for technical reasons (e.g. not allowing

function overloading), documentation/help strings SHOULD point users

towards the other names.

Libraries MUST NOT offer functions/methods/classes with the same or similar

names to ones given here, but with different semantics.

Metrics

The Counter, Gauge, Summary and Histogram metric types

(/docs/concepts/metric_types/) are the primary interface by users.

Counter and Gauge MUST be part of the client library. At least one of Summary

and Histogram MUST be offered.

These should be primarily used as file-static variables, that is, global variables

defined in the same file as the code they’re instrumenting. The client library

SHOULD enable this. The common use case is instrumenting a piece of code

overall, not a piece of code in the context of one instance of an object. Users

shouldn’t have to worry about plumbing their metrics throughout their code,

the client library should do that for them (and if it doesn’t, users will write a

wrapper around the library to make it "easier" - which rarely tends to go well).

There MUST be a default CollectorRegistry, the standard metrics MUST by

default implicitly register into it with no special work required by the user.

There MUST be a way to have metrics not register to the default

CollectorRegistry, for use in batch jobs and unittests. Custom collectors

SHOULD also follow this.

Exactly how the metrics should be created varies by language. For some (Java,

Go) a builder approach is best, whereas for others (Python) function arguments

are rich enough to do it in one call.

10/09/24, 19:21 Writing client libraries | Prometheus

https://prometheus.io/docs/instrumenting/writing_clientlibs/ 4/13

https://prometheus.io/docs/concepts/metric_types/
https://prometheus.io/docs/concepts/metric_types/

For example in the Java Simpleclient we have:

class YourClass {
 static final Counter requests = Counter.build()
 .name("requests_total")
 .help("Requests.").register();
}

This will register requests with the default CollectorRegistry. By calling build()

rather than register() the metric won’t be registered (handy for unittests),

you can also pass in a CollectorRegistry to register() (handy for batch jobs).

Counter

Counter (/docs/concepts/metric_types/#counter) is a monotonically increasing

counter. It MUST NOT allow the value to decrease, however it MAY be reset to 0

(such as by server restart).

A counter MUST have the following methods:

inc() : Increment the counter by 1

inc(double v) : Increment the counter by the given amount. MUST check

that v >= 0.

A counter is ENCOURAGED to have:

A way to count exceptions throw/raised in a given piece of code, and optionally

only certain types of exceptions. This is count_exceptions in Python.

Counters MUST start at 0.

Gauge

Gauge (/docs/concepts/metric_types/#gauge) represents a value that can go up

and down.

A gauge MUST have the following methods:

inc() : Increment the gauge by 1

inc(double v) : Increment the gauge by the given amount

10/09/24, 19:21 Writing client libraries | Prometheus

https://prometheus.io/docs/instrumenting/writing_clientlibs/ 5/13

https://prometheus.io/docs/concepts/metric_types/#counter
https://prometheus.io/docs/concepts/metric_types/#counter
https://prometheus.io/docs/concepts/metric_types/#gauge
https://prometheus.io/docs/concepts/metric_types/#gauge

dec() : Decrement the gauge by 1

dec(double v) : Decrement the gauge by the given amount

set(double v) : Set the gauge to the given value

Gauges MUST start at 0, you MAY offer a way for a given gauge to start at a

different number.

A gauge SHOULD have the following methods:

set_to_current_time() : Set the gauge to the current unixtime in seconds.

A gauge is ENCOURAGED to have:

A way to track in-progress requests in some piece of code/function. This is

track_inprogress in Python.

A way to time a piece of code and set the gauge to its duration in seconds. This

is useful for batch jobs. This is startTimer/setDuration in Java and the time()

decorator/context manager in Python. This SHOULD match the pattern in

Summary/Histogram (though set() rather than observe()).

Summary

A summary (/docs/concepts/metric_types/#summary) samples observations

(usually things like request durations) over sliding windows of time and

provides instantaneous insight into their distributions, frequencies, and sums.

A summary MUST NOT allow the user to set "quantile" as a label name, as this

is used internally to designate summary quantiles. A summary is ENCOURAGED

to offer quantiles as exports, though these can’t be aggregated and tend to be

slow. A summary MUST allow not having quantiles, as just _count / _sum is quite

useful and this MUST be the default.

A summary MUST have the following methods:

observe(double v) : Observe the given amount

A summary SHOULD have the following methods:

10/09/24, 19:21 Writing client libraries | Prometheus

https://prometheus.io/docs/instrumenting/writing_clientlibs/ 6/13

https://prometheus.io/docs/concepts/metric_types/#summary
https://prometheus.io/docs/concepts/metric_types/#summary

Some way to time code for users in seconds. In Python this is the time()

decorator/context manager. In Java this is startTimer/observeDuration. Units

other than seconds MUST NOT be offered (if a user wants something else, they

can do it by hand). This should follow the same pattern as Gauge/Histogram.

Summary _count / _sum MUST start at 0.

Histogram

Histograms (/docs/concepts/metric_types/#histogram) allow aggregatable

distributions of events, such as request latencies. This is at its core a counter

per bucket.

A histogram MUST NOT allow le as a user-set label, as le is used internally to

designate buckets.

A histogram MUST offer a way to manually choose the buckets. Ways to set

buckets in a linear(start, width, count) and exponential(start, factor,

count) fashion SHOULD be offered. Count MUST include the +Inf bucket.

A histogram SHOULD have the same default buckets as other client libraries.

Buckets MUST NOT be changeable once the metric is created.

A histogram MUST have the following methods:

observe(double v) : Observe the given amount

A histogram SHOULD have the following methods:

Some way to time code for users in seconds. In Python this is the time()

decorator/context manager. In Java this is startTimer / observeDuration . Units

other than seconds MUST NOT be offered (if a user wants something else, they

can do it by hand). This should follow the same pattern as Gauge/Summary.

Histogram _count / _sum and the buckets MUST start at 0.

Further metrics considerations

Providing additional functionality in metrics beyond what’s documented above

as makes sense for a given language is ENCOURAGED.

10/09/24, 19:21 Writing client libraries | Prometheus

https://prometheus.io/docs/instrumenting/writing_clientlibs/ 7/13

https://prometheus.io/docs/concepts/metric_types/#histogram
https://prometheus.io/docs/concepts/metric_types/#histogram

If there’s a common use case you can make simpler then go for it, as long as it

won’t encourage undesirable behaviours (such as suboptimal metric/label

layouts, or doing computation in the client).

Labels

Labels are one of the most powerful aspects

(/docs/practices/instrumentation/#use-labels) of Prometheus, but easily abused

(/docs/practices/instrumentation/#do-not-overuse-labels). Accordingly client

libraries must be very careful in how labels are offered to users.

Client libraries MUST NOT allow users to have different label names for the

same metric for Gauge/Counter/Summary/Histogram or any other Collector

offered by the library.

Metrics from custom collectors should almost always have consistent label

names. As there are still rare but valid use cases where this is not the case,

client libraries should not verify this.

While labels are powerful, the majority of metrics will not have labels.

Accordingly the API should allow for labels but not dominate it.

A client library MUST allow for optionally specifying a list of label names at

Gauge/Counter/Summary/Histogram creation time. A client library SHOULD

support any number of label names. A client library MUST validate that label

names meet the documented requirements

(/docs/concepts/data_model/#metric-names-and-labels).

The general way to provide access to labeled dimension of a metric is via a

labels() method that takes either a list of the label values or a map from label

name to label value and returns a "Child". The usual

.inc() / .dec() / .observe() etc. methods can then be called on the Child.

The Child returned by labels() SHOULD be cacheable by the user, to avoid

having to look it up again - this matters in latency-critical code.

Metrics with labels SHOULD support a remove() method with the same

signature as labels() that will remove a Child from the metric no longer

exporting it, and a clear() method that removes all Children from the metric.

10/09/24, 19:21 Writing client libraries | Prometheus

https://prometheus.io/docs/instrumenting/writing_clientlibs/ 8/13

https://prometheus.io/docs/practices/instrumentation/#use-labels
https://prometheus.io/docs/practices/instrumentation/#use-labels
https://prometheus.io/docs/practices/instrumentation/#do-not-overuse-labels
https://prometheus.io/docs/practices/instrumentation/#do-not-overuse-labels
https://prometheus.io/docs/concepts/data_model/#metric-names-and-labels
https://prometheus.io/docs/concepts/data_model/#metric-names-and-labels

These invalidate caching of Children.

There SHOULD be a way to initialize a given Child with the default value, usually

just calling labels() . Metrics without labels MUST always be initialized to avoid

problems with missing metrics (/docs/practices/instrumentation/#avoid-

missing-metrics).

Metric names

Metric names must follow the specification

(/docs/concepts/data_model/#metric-names-and-labels). As with label names,

this MUST be met for uses of Gauge/Counter/Summary/Histogram and in any

other Collector offered with the library.

Many client libraries offer setting the name in three parts:

namespace_subsystem_name of which only the name is mandatory.

Dynamic/generated metric names or subparts of metric names MUST be

discouraged, except when a custom Collector is proxying from other

instrumentation/monitoring systems. Generated/dynamic metric names are a

sign that you should be using labels instead.

Metric description and help

Gauge/Counter/Summary/Histogram MUST require metric descriptions/help to

be provided.

Any custom Collectors provided with the client libraries MUST have

descriptions/help on their metrics.

It is suggested to make it a mandatory argument, but not to check that it’s of a

certain length as if someone really doesn’t want to write docs we’re not going to

convince them otherwise. Collectors offered with the library (and indeed

everywhere we can within the ecosystem) SHOULD have good metric

descriptions, to lead by example.

10/09/24, 19:21 Writing client libraries | Prometheus

https://prometheus.io/docs/instrumenting/writing_clientlibs/ 9/13

https://prometheus.io/docs/practices/instrumentation/#avoid-missing-metrics
https://prometheus.io/docs/practices/instrumentation/#avoid-missing-metrics
https://prometheus.io/docs/practices/instrumentation/#avoid-missing-metrics
https://prometheus.io/docs/concepts/data_model/#metric-names-and-labels
https://prometheus.io/docs/concepts/data_model/#metric-names-and-labels

Exposition

Clients MUST implement the text-based exposition format outlined in the

exposition formats (/docs/instrumenting/exposition_formats) documentation.

Reproducible order of the exposed metrics is ENCOURAGED (especially for

human readable formats) if it can be implemented without a significant

resource cost.

Standard and runtime collectors

Client libraries SHOULD offer what they can of the Standard exports,

documented below.

These SHOULD be implemented as custom Collectors, and registered by default

on the default CollectorRegistry. There SHOULD be a way to disable these, as

there are some very niche use cases where they get in the way.

Process metrics

These metrics have the prefix process_ . If obtaining a necessary value is

problematic or even impossible with the used language or runtime, client

libraries SHOULD prefer leaving out the corresponding metric over exporting

bogus, inaccurate, or special values (like NaN). All memory values in bytes, all

times in unixtime/seconds.

Metric name Help string Unit

process_cpu_seconds_total Total user and system

CPU time spent in

seconds.

seconds

process_open_fds Number of open file

descriptors.

file

descriptors

process_max_fds Maximum number of

open file descriptors.

file

descriptors

10/09/24, 19:21 Writing client libraries | Prometheus

https://prometheus.io/docs/instrumenting/writing_clientlibs/ 10/13

https://prometheus.io/docs/instrumenting/exposition_formats
https://prometheus.io/docs/instrumenting/exposition_formats

Metric name Help string Unit

process_virtual_memory_bytes Virtual memory size in

bytes.

bytes

process_virtual_memory_max_bytes Maximum amount of

virtual memory available

in bytes.

bytes

process_resident_memory_bytes Resident memory size in

bytes.

bytes

process_heap_bytes Process heap size in

bytes.

bytes

process_start_time_seconds Start time of the process

since unix epoch in

seconds.

seconds

process_threads Number of OS threads in

the process.

threads

Runtime metrics

In addition, client libraries are ENCOURAGED to also offer whatever makes

sense in terms of metrics for their language’s runtime (e.g. garbage collection

stats), with an appropriate prefix such as go_ , hotspot_ etc.

Unit tests

Client libraries SHOULD have unit tests covering the core instrumentation

library and exposition.

Client libraries are ENCOURAGED to offer ways that make it easy for users to

unit-test their use of the instrumentation code. For example, the

CollectorRegistry.get_sample_value in Python.

10/09/24, 19:21 Writing client libraries | Prometheus

https://prometheus.io/docs/instrumenting/writing_clientlibs/ 11/13

Packaging and dependencies

Ideally, a client library can be included in any application to add some

instrumentation without breaking the application.

Accordingly, caution is advised when adding dependencies to the client library.

For example, if you add a library that uses a Prometheus client that requires

version x.y of a library but the application uses x.z elsewhere, will that have an

adverse impact on the application?

It is suggested that where this may arise, that the core instrumentation is

separated from the bridges/exposition of metrics in a given format. For

example, the Java simpleclient simpleclient module has no dependencies, and

the simpleclient_servlet has the HTTP bits.

Performance considerations

As client libraries must be thread-safe, some form of concurrency control is

required and consideration must be given to performance on multi-core

machines and applications.

In our experience the least performant is mutexes.

Processor atomic instructions tend to be in the middle, and generally

acceptable.

Approaches that avoid different CPUs mutating the same bit of RAM work best,

such as the DoubleAdder in Java’s simpleclient. There is a memory cost though.

As noted above, the result of labels() should be cacheable. The concurrent

maps that tend to back metric with labels tend to be relatively slow. Special-

casing metrics without labels to avoid labels() -like lookups can help a lot.

Metrics SHOULD avoid blocking when they are being

incremented/decremented/set etc. as it’s undesirable for the whole application

to be held up while a scrape is ongoing.

Having benchmarks of the main instrumentation operations, including labels, is

ENCOURAGED.

10/09/24, 19:21 Writing client libraries | Prometheus

https://prometheus.io/docs/instrumenting/writing_clientlibs/ 12/13

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

Resource consumption, particularly RAM, should be kept in mind when

performing exposition. Consider reducing the memory footprint by streaming

results, and potentially having a limit on the number of concurrent scrapes.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:21 Writing client libraries | Prometheus

https://prometheus.io/docs/instrumenting/writing_clientlibs/ 13/13

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

PUSHING METRICS

Occasionally you will need to monitor components which cannot be scraped. The Prometheus

Pushgateway (https://github.com/prometheus/pushgateway) allows you to push time series

from short-lived service-level batch jobs (/docs/practices/pushing/) to an intermediary job

which Prometheus can scrape. Combined with Prometheus's simple text-based exposition

format, this makes it easy to instrument even shell scripts without a client library.

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

Client libraries (/docs/instrumenting/clientlibs/)

Writing client libraries (/docs/instrumenting/writing_clientlibs/)

Pushing metrics (/docs/instrumenting/pushing/)

Exporters and integrations (/docs/instrumenting/exporters/)

Writing exporters (/docs/instrumenting/writing_exporters/)

Exposition formats (/docs/instrumenting/exposition_formats/)

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:21 Pushing metrics | Prometheus

https://prometheus.io/docs/instrumenting/pushing/ 1/2

https://github.com/prometheus/pushgateway
https://github.com/prometheus/pushgateway
https://github.com/prometheus/pushgateway
https://prometheus.io/docs/practices/pushing/
https://prometheus.io/docs/practices/pushing/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/writing_clientlibs/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/exposition_formats/

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For

a list of trademarks of The Linux Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-

usage) page.

For more information on using the Pushgateway and use from a Unix shell, see the

project's README.md

(https://github.com/prometheus/pushgateway/blob/master/README.md).

For use from Java see the Pushgateway documentation

(https://prometheus.github.io/client_java/exporters/pushgateway/).

For use from Go see the Push

(https://godoc.org/github.com/prometheus/client_golang/prometheus/push#Pusher.Push)

and Add

(https://godoc.org/github.com/prometheus/client_golang/prometheus/push#Pusher.Add)

methods.

For use from Python see Exporting to a Pushgateway

(https://prometheus.github.io/client_python/exporting/pushgateway/).

For use from Ruby see the Pushgateway documentation

(https://github.com/prometheus/client_ruby#pushgateway).

To find out about Pushgateway support of client libraries maintained outside of

the Prometheus project (/docs/instrumenting/clientlibs/), refer to their respective

documentation.

 This documentation is open-source (https://github.com/prometheus/docs#contributing-

changes). Please help improve it by filing issues or pull requests.

10/09/24, 19:21 Pushing metrics | Prometheus

https://prometheus.io/docs/instrumenting/pushing/ 2/2

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/pushgateway/blob/master/README.md
https://github.com/prometheus/pushgateway/blob/master/README.md
https://prometheus.github.io/client_java/exporters/pushgateway/
https://prometheus.github.io/client_java/exporters/pushgateway/
https://godoc.org/github.com/prometheus/client_golang/prometheus/push#Pusher.Push
https://godoc.org/github.com/prometheus/client_golang/prometheus/push#Pusher.Push
https://godoc.org/github.com/prometheus/client_golang/prometheus/push#Pusher.Add
https://godoc.org/github.com/prometheus/client_golang/prometheus/push#Pusher.Add
https://prometheus.github.io/client_python/exporting/pushgateway/
https://prometheus.github.io/client_python/exporting/pushgateway/
https://github.com/prometheus/client_ruby#pushgateway
https://github.com/prometheus/client_ruby#pushgateway
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

Third-party exporters

Databases

Hardware related

Issue trackers and continuous

integration

Messaging systems

Storage

HTTP

APIs

Logging

FinOps

Other monitoring systems

Miscellaneous

Software exposing Prometheus metrics

Other third-party utilities

EXPORTERS AND INTEGRATIONS

There are a number of libraries and servers which help in exporting

existing metrics from third-party systems as Prometheus metrics. This

is useful for cases where it is not feasible to instrument a given system

with Prometheus metrics directly (for example, HAProxy or Linux

system stats).

Third-party exporters

Some of these exporters are maintained as part of the official

Prometheus GitHub organization (https://github.com/prometheus),

those are marked as official, others are externally contributed and

maintained.

We encourage the creation of more exporters but cannot vet all of

them for best practices (/docs/instrumenting/writing_exporters/).

Commonly, those exporters are hosted outside of the Prometheus

GitHub organization.

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

Client libraries (/docs/instrumenting/clientlibs/)

Writing client libraries (/docs/instrumenting/writing_clientlibs/)

Pushing metrics (/docs/instrumenting/pushing/)

Exporters and integrations (/docs/instrumenting/exporters/)

Writing exporters (/docs/instrumenting/writing_exporters/)

Exposition formats (/docs/instrumenting/exposition_formats/)

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:22 Exporters and integrations | Prometheus

https://prometheus.io/docs/instrumenting/exporters/ 1/7

https://github.com/prometheus
https://github.com/prometheus
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/writing_clientlibs/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/exposition_formats/

The exporter default port (https://github.com/prometheus/prometheus/wiki/Default-port-allocations) wiki page has

become another catalog of exporters, and may include exporters not listed here due to overlapping functionality or still

being in development.

The JMX exporter (https://github.com/prometheus/jmx_exporter) can export from a wide variety of JVM-based

applications, for example Kafka (http://kafka.apache.org/) and Cassandra (http://cassandra.apache.org/).

Databases

Aerospike exporter (https://github.com/aerospike/aerospike-prometheus-exporter)

AWS RDS exporter (https://github.com/qonto/prometheus-rds-exporter)

ClickHouse exporter (https://github.com/f1yegor/clickhouse_exporter)

Consul exporter (https://github.com/prometheus/consul_exporter) (official)

Couchbase exporter (https://github.com/blakelead/couchbase_exporter)

CouchDB exporter (https://github.com/gesellix/couchdb-exporter)

Druid Exporter (https://github.com/opstree/druid-exporter)

Elasticsearch exporter (https://github.com/prometheus-community/elasticsearch_exporter)

EventStore exporter (https://github.com/marcinbudny/eventstore_exporter)

IoTDB exporter (https://github.com/fagnercarvalho/prometheus-iotdb-exporter)

KDB+ exporter (https://github.com/KxSystems/prometheus-kdb-exporter)

Memcached exporter (https://github.com/prometheus/memcached_exporter) (official)

MongoDB exporter (https://github.com/percona/mongodb_exporter)

MongoDB query exporter (https://github.com/raffis/mongodb-query-exporter)

MongoDB Node.js Driver exporter (https://github.com/christiangalsterer/mongodb-driver-prometheus-exporter)

MSSQL server exporter (https://github.com/awaragi/prometheus-mssql-exporter)

MySQL router exporter (https://github.com/rluisr/mysqlrouter_exporter)

MySQL server exporter (https://github.com/prometheus/mysqld_exporter) (official)

OpenTSDB Exporter (https://github.com/cloudflare/opentsdb_exporter)

Oracle DB Exporter (https://github.com/iamseth/oracledb_exporter)

PgBouncer exporter (https://github.com/prometheus-community/pgbouncer_exporter)

PostgreSQL exporter (https://github.com/prometheus-community/postgres_exporter)

Presto exporter (https://github.com/yahoojapan/presto_exporter)

ProxySQL exporter (https://github.com/percona/proxysql_exporter)

RavenDB exporter (https://github.com/marcinbudny/ravendb_exporter)

Redis exporter (https://github.com/oliver006/redis_exporter)

RethinkDB exporter (https://github.com/oliver006/rethinkdb_exporter)

SQL exporter (https://github.com/burningalchemist/sql_exporter)

Tarantool metric library (https://github.com/tarantool/metrics)

Twemproxy (https://github.com/stuartnelson3/twemproxy_exporter)

Hardware related

apcupsd exporter (https://github.com/mdlayher/apcupsd_exporter)

BIG-IP exporter (https://github.com/ExpressenAB/bigip_exporter)

Bosch Sensortec BMP/BME exporter (https://github.com/David-Igou/bsbmp-exporter)

Collins exporter (https://github.com/soundcloud/collins_exporter)

Dell Hardware OMSA exporter (https://github.com/galexrt/dellhw_exporter)

Disk usage exporter (https://github.com/dundee/disk_usage_exporter)

Fortigate exporter (https://github.com/bluecmd/fortigate_exporter)

IBM Z HMC exporter (https://github.com/zhmcclient/zhmc-prometheus-exporter)

IoT Edison exporter (https://github.com/roman-vynar/edison_exporter)

InfiniBand exporter (https://github.com/treydock/infiniband_exporter)

IPMI exporter (https://github.com/soundcloud/ipmi_exporter)

knxd exporter (https://github.com/RichiH/knxd_exporter)

Modbus exporter (https://github.com/RichiH/modbus_exporter)

Netgear Cable Modem Exporter (https://github.com/ickymettle/netgear_cm_exporter)

Netgear Router exporter (https://github.com/DRuggeri/netgear_exporter)

Network UPS Tools (NUT) exporter (https://github.com/DRuggeri/nut_exporter)

10/09/24, 19:22 Exporters and integrations | Prometheus

https://prometheus.io/docs/instrumenting/exporters/ 2/7

https://github.com/prometheus/prometheus/wiki/Default-port-allocations
https://github.com/prometheus/prometheus/wiki/Default-port-allocations
https://github.com/prometheus/jmx_exporter
https://github.com/prometheus/jmx_exporter
http://kafka.apache.org/
http://kafka.apache.org/
http://cassandra.apache.org/
http://cassandra.apache.org/
https://github.com/aerospike/aerospike-prometheus-exporter
https://github.com/aerospike/aerospike-prometheus-exporter
https://github.com/qonto/prometheus-rds-exporter
https://github.com/qonto/prometheus-rds-exporter
https://github.com/f1yegor/clickhouse_exporter
https://github.com/f1yegor/clickhouse_exporter
https://github.com/prometheus/consul_exporter
https://github.com/prometheus/consul_exporter
https://github.com/blakelead/couchbase_exporter
https://github.com/blakelead/couchbase_exporter
https://github.com/gesellix/couchdb-exporter
https://github.com/gesellix/couchdb-exporter
https://github.com/opstree/druid-exporter
https://github.com/opstree/druid-exporter
https://github.com/prometheus-community/elasticsearch_exporter
https://github.com/prometheus-community/elasticsearch_exporter
https://github.com/marcinbudny/eventstore_exporter
https://github.com/marcinbudny/eventstore_exporter
https://github.com/fagnercarvalho/prometheus-iotdb-exporter
https://github.com/fagnercarvalho/prometheus-iotdb-exporter
https://github.com/KxSystems/prometheus-kdb-exporter
https://github.com/KxSystems/prometheus-kdb-exporter
https://github.com/prometheus/memcached_exporter
https://github.com/prometheus/memcached_exporter
https://github.com/percona/mongodb_exporter
https://github.com/percona/mongodb_exporter
https://github.com/raffis/mongodb-query-exporter
https://github.com/raffis/mongodb-query-exporter
https://github.com/christiangalsterer/mongodb-driver-prometheus-exporter
https://github.com/christiangalsterer/mongodb-driver-prometheus-exporter
https://github.com/awaragi/prometheus-mssql-exporter
https://github.com/awaragi/prometheus-mssql-exporter
https://github.com/rluisr/mysqlrouter_exporter
https://github.com/rluisr/mysqlrouter_exporter
https://github.com/prometheus/mysqld_exporter
https://github.com/prometheus/mysqld_exporter
https://github.com/cloudflare/opentsdb_exporter
https://github.com/cloudflare/opentsdb_exporter
https://github.com/iamseth/oracledb_exporter
https://github.com/iamseth/oracledb_exporter
https://github.com/prometheus-community/pgbouncer_exporter
https://github.com/prometheus-community/pgbouncer_exporter
https://github.com/prometheus-community/postgres_exporter
https://github.com/prometheus-community/postgres_exporter
https://github.com/yahoojapan/presto_exporter
https://github.com/yahoojapan/presto_exporter
https://github.com/percona/proxysql_exporter
https://github.com/percona/proxysql_exporter
https://github.com/marcinbudny/ravendb_exporter
https://github.com/marcinbudny/ravendb_exporter
https://github.com/oliver006/redis_exporter
https://github.com/oliver006/redis_exporter
https://github.com/oliver006/rethinkdb_exporter
https://github.com/oliver006/rethinkdb_exporter
https://github.com/burningalchemist/sql_exporter
https://github.com/burningalchemist/sql_exporter
https://github.com/tarantool/metrics
https://github.com/tarantool/metrics
https://github.com/stuartnelson3/twemproxy_exporter
https://github.com/stuartnelson3/twemproxy_exporter
https://github.com/mdlayher/apcupsd_exporter
https://github.com/mdlayher/apcupsd_exporter
https://github.com/ExpressenAB/bigip_exporter
https://github.com/ExpressenAB/bigip_exporter
https://github.com/David-Igou/bsbmp-exporter
https://github.com/David-Igou/bsbmp-exporter
https://github.com/soundcloud/collins_exporter
https://github.com/soundcloud/collins_exporter
https://github.com/galexrt/dellhw_exporter
https://github.com/galexrt/dellhw_exporter
https://github.com/dundee/disk_usage_exporter
https://github.com/dundee/disk_usage_exporter
https://github.com/bluecmd/fortigate_exporter
https://github.com/bluecmd/fortigate_exporter
https://github.com/zhmcclient/zhmc-prometheus-exporter
https://github.com/zhmcclient/zhmc-prometheus-exporter
https://github.com/roman-vynar/edison_exporter
https://github.com/roman-vynar/edison_exporter
https://github.com/treydock/infiniband_exporter
https://github.com/treydock/infiniband_exporter
https://github.com/soundcloud/ipmi_exporter
https://github.com/soundcloud/ipmi_exporter
https://github.com/RichiH/knxd_exporter
https://github.com/RichiH/knxd_exporter
https://github.com/RichiH/modbus_exporter
https://github.com/RichiH/modbus_exporter
https://github.com/ickymettle/netgear_cm_exporter
https://github.com/ickymettle/netgear_cm_exporter
https://github.com/DRuggeri/netgear_exporter
https://github.com/DRuggeri/netgear_exporter
https://github.com/DRuggeri/nut_exporter
https://github.com/DRuggeri/nut_exporter

Node/system metrics exporter (https://github.com/prometheus/node_exporter) (official)

NVIDIA GPU exporter (https://github.com/mindprince/nvidia_gpu_prometheus_exporter)

ProSAFE exporter (https://github.com/dalance/prosafe_exporter)

SmartRAID exporter (https://gitlab.com/calestyo/prometheus-smartraid-exporter)

Waveplus Radon Sensor Exporter (https://github.com/jeremybz/waveplus_exporter)

Weathergoose Climate Monitor Exporter (https://github.com/branttaylor/watchdog-prometheus-exporter)

Windows exporter (https://github.com/prometheus-community/windows_exporter)

Intel® Optane™ Persistent Memory Controller Exporter (https://github.com/intel/ipmctl-exporter)

Issue trackers and continuous integration

Bamboo exporter (https://github.com/AndreyVMarkelov/bamboo-prometheus-exporter)

Bitbucket exporter (https://github.com/AndreyVMarkelov/prom-bitbucket-exporter)

Confluence exporter (https://github.com/AndreyVMarkelov/prom-confluence-exporter)

Jenkins exporter (https://github.com/lovoo/jenkins_exporter)

JIRA exporter (https://github.com/AndreyVMarkelov/jira-prometheus-exporter)

Messaging systems

Beanstalkd exporter (https://github.com/messagebird/beanstalkd_exporter)

EMQ exporter (https://github.com/nuvo/emq_exporter)

Gearman exporter (https://github.com/bakins/gearman-exporter)

IBM MQ exporter (https://github.com/ibm-messaging/mq-metric-samples/tree/master/cmd/mq_prometheus)

Kafka exporter (https://github.com/danielqsj/kafka_exporter)

NATS exporter (https://github.com/nats-io/prometheus-nats-exporter)

NSQ exporter (https://github.com/lovoo/nsq_exporter)

Mirth Connect exporter (https://github.com/vynca/mirth_exporter)

MQTT blackbox exporter (https://github.com/inovex/mqtt_blackbox_exporter)

MQTT2Prometheus (https://github.com/hikhvar/mqtt2prometheus)

RabbitMQ exporter (https://github.com/kbudde/rabbitmq_exporter)

RabbitMQ Management Plugin exporter (https://github.com/deadtrickster/prometheus_rabbitmq_exporter)

RocketMQ exporter (https://github.com/apache/rocketmq-exporter)

Solace exporter (https://github.com/solacecommunity/solace-prometheus-exporter)

Storage

Ceph exporter (https://github.com/digitalocean/ceph_exporter)

Ceph RADOSGW exporter (https://github.com/blemmenes/radosgw_usage_exporter)

Gluster exporter (https://github.com/ofesseler/gluster_exporter)

GPFS exporter (https://github.com/treydock/gpfs_exporter)

Hadoop HDFS FSImage exporter (https://github.com/marcelmay/hadoop-hdfs-fsimage-exporter)

HPE CSI info metrics provider (https://scod.hpedev.io/csi_driver/metrics.html)

HPE storage array exporter (https://hpe-storage.github.io/array-exporter/)

Lustre exporter (https://github.com/HewlettPackard/lustre_exporter)

NetApp E-Series exporter (https://github.com/treydock/eseries_exporter)

Pure Storage exporter (https://github.com/PureStorage-OpenConnect/pure-exporter)

ScaleIO exporter (https://github.com/syepes/sio2prom)

Tivoli Storage Manager/IBM Spectrum Protect exporter (https://github.com/treydock/tsm_exporter)

HTTP

Apache exporter (https://github.com/Lusitaniae/apache_exporter)

HAProxy exporter (https://github.com/prometheus/haproxy_exporter) (official)

Nginx metric library (https://github.com/knyar/nginx-lua-prometheus)

Nginx VTS exporter (https://github.com/sysulq/nginx-vts-exporter)

Passenger exporter (https://github.com/stuartnelson3/passenger_exporter)

Squid exporter (https://github.com/boynux/squid-exporter)

Tinyproxy exporter (https://github.com/gmm42/tinyproxy_exporter)

Varnish exporter (https://github.com/jonnenauha/prometheus_varnish_exporter)

10/09/24, 19:22 Exporters and integrations | Prometheus

https://prometheus.io/docs/instrumenting/exporters/ 3/7

https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/mindprince/nvidia_gpu_prometheus_exporter
https://github.com/mindprince/nvidia_gpu_prometheus_exporter
https://github.com/dalance/prosafe_exporter
https://github.com/dalance/prosafe_exporter
https://gitlab.com/calestyo/prometheus-smartraid-exporter
https://gitlab.com/calestyo/prometheus-smartraid-exporter
https://github.com/jeremybz/waveplus_exporter
https://github.com/jeremybz/waveplus_exporter
https://github.com/branttaylor/watchdog-prometheus-exporter
https://github.com/branttaylor/watchdog-prometheus-exporter
https://github.com/prometheus-community/windows_exporter
https://github.com/prometheus-community/windows_exporter
https://github.com/intel/ipmctl-exporter
https://github.com/intel/ipmctl-exporter
https://github.com/AndreyVMarkelov/bamboo-prometheus-exporter
https://github.com/AndreyVMarkelov/bamboo-prometheus-exporter
https://github.com/AndreyVMarkelov/prom-bitbucket-exporter
https://github.com/AndreyVMarkelov/prom-bitbucket-exporter
https://github.com/AndreyVMarkelov/prom-confluence-exporter
https://github.com/AndreyVMarkelov/prom-confluence-exporter
https://github.com/lovoo/jenkins_exporter
https://github.com/lovoo/jenkins_exporter
https://github.com/AndreyVMarkelov/jira-prometheus-exporter
https://github.com/AndreyVMarkelov/jira-prometheus-exporter
https://github.com/messagebird/beanstalkd_exporter
https://github.com/messagebird/beanstalkd_exporter
https://github.com/nuvo/emq_exporter
https://github.com/nuvo/emq_exporter
https://github.com/bakins/gearman-exporter
https://github.com/bakins/gearman-exporter
https://github.com/ibm-messaging/mq-metric-samples/tree/master/cmd/mq_prometheus
https://github.com/ibm-messaging/mq-metric-samples/tree/master/cmd/mq_prometheus
https://github.com/danielqsj/kafka_exporter
https://github.com/danielqsj/kafka_exporter
https://github.com/nats-io/prometheus-nats-exporter
https://github.com/nats-io/prometheus-nats-exporter
https://github.com/lovoo/nsq_exporter
https://github.com/lovoo/nsq_exporter
https://github.com/vynca/mirth_exporter
https://github.com/vynca/mirth_exporter
https://github.com/inovex/mqtt_blackbox_exporter
https://github.com/inovex/mqtt_blackbox_exporter
https://github.com/hikhvar/mqtt2prometheus
https://github.com/hikhvar/mqtt2prometheus
https://github.com/kbudde/rabbitmq_exporter
https://github.com/kbudde/rabbitmq_exporter
https://github.com/deadtrickster/prometheus_rabbitmq_exporter
https://github.com/deadtrickster/prometheus_rabbitmq_exporter
https://github.com/apache/rocketmq-exporter
https://github.com/apache/rocketmq-exporter
https://github.com/solacecommunity/solace-prometheus-exporter
https://github.com/solacecommunity/solace-prometheus-exporter
https://github.com/digitalocean/ceph_exporter
https://github.com/digitalocean/ceph_exporter
https://github.com/blemmenes/radosgw_usage_exporter
https://github.com/blemmenes/radosgw_usage_exporter
https://github.com/ofesseler/gluster_exporter
https://github.com/ofesseler/gluster_exporter
https://github.com/treydock/gpfs_exporter
https://github.com/treydock/gpfs_exporter
https://github.com/marcelmay/hadoop-hdfs-fsimage-exporter
https://github.com/marcelmay/hadoop-hdfs-fsimage-exporter
https://scod.hpedev.io/csi_driver/metrics.html
https://scod.hpedev.io/csi_driver/metrics.html
https://hpe-storage.github.io/array-exporter/
https://hpe-storage.github.io/array-exporter/
https://github.com/HewlettPackard/lustre_exporter
https://github.com/HewlettPackard/lustre_exporter
https://github.com/treydock/eseries_exporter
https://github.com/treydock/eseries_exporter
https://github.com/PureStorage-OpenConnect/pure-exporter
https://github.com/PureStorage-OpenConnect/pure-exporter
https://github.com/syepes/sio2prom
https://github.com/syepes/sio2prom
https://github.com/treydock/tsm_exporter
https://github.com/treydock/tsm_exporter
https://github.com/Lusitaniae/apache_exporter
https://github.com/Lusitaniae/apache_exporter
https://github.com/prometheus/haproxy_exporter
https://github.com/prometheus/haproxy_exporter
https://github.com/knyar/nginx-lua-prometheus
https://github.com/knyar/nginx-lua-prometheus
https://github.com/sysulq/nginx-vts-exporter
https://github.com/sysulq/nginx-vts-exporter
https://github.com/stuartnelson3/passenger_exporter
https://github.com/stuartnelson3/passenger_exporter
https://github.com/boynux/squid-exporter
https://github.com/boynux/squid-exporter
https://github.com/gmm42/tinyproxy_exporter
https://github.com/gmm42/tinyproxy_exporter
https://github.com/jonnenauha/prometheus_varnish_exporter
https://github.com/jonnenauha/prometheus_varnish_exporter

WebDriver exporter (https://github.com/mattbostock/webdriver_exporter)

APIs

AWS ECS exporter (https://github.com/slok/ecs-exporter)

AWS Health exporter (https://github.com/Jimdo/aws-health-exporter)

AWS SQS exporter (https://github.com/jmal98/sqs_exporter)

Azure Health exporter (https://github.com/FXinnovation/azure-health-exporter)

BigBlueButton (https://github.com/greenstatic/bigbluebutton-exporter)

Cloudflare exporter (https://gitlab.com/gitlab-org/cloudflare_exporter)

Cryptowat exporter (https://github.com/nbarrientos/cryptowat_exporter)

DigitalOcean exporter (https://github.com/metalmatze/digitalocean_exporter)

Docker Cloud exporter (https://github.com/infinityworks/docker-cloud-exporter)

Docker Hub exporter (https://github.com/infinityworks/docker-hub-exporter)

Fastly exporter (https://github.com/peterbourgon/fastly-exporter)

GitHub exporter (https://github.com/githubexporter/github-exporter)

Gmail exporter (https://github.com/jamesread/prometheus-gmail-exporter/)

GraphQL exporter (https://github.com/ricardbejarano/graphql_exporter)

InstaClustr exporter (https://github.com/fcgravalos/instaclustr_exporter)

Mozilla Observatory exporter (https://github.com/Jimdo/observatory-exporter)

OpenWeatherMap exporter (https://github.com/RichiH/openweathermap_exporter)

Pagespeed exporter (https://github.com/foomo/pagespeed_exporter)

Rancher exporter (https://github.com/infinityworks/prometheus-rancher-exporter)

Speedtest exporter (https://github.com/nlamirault/speedtest_exporter)

Tankerkönig API Exporter (https://github.com/lukasmalkmus/tankerkoenig_exporter)

Logging

Fluentd exporter (https://github.com/V3ckt0r/fluentd_exporter)

Google's mtail log data extractor (https://github.com/google/mtail)

Grok exporter (https://github.com/fstab/grok_exporter)

FinOps

AWS Cost Exporter (https://github.com/electrolux-oss/aws-cost-exporter)

Azure Cost Exporter (https://github.com/electrolux-oss/azure-cost-exporter)

Kubernetes Cost Exporter (https://github.com/electrolux-oss/kubernetes-cost-exporter)

Other monitoring systems

Akamai Cloudmonitor exporter (https://github.com/ExpressenAB/cloudmonitor_exporter)

Alibaba Cloudmonitor exporter (https://github.com/aylei/aliyun-exporter)

AWS CloudWatch exporter (https://github.com/prometheus/cloudwatch_exporter) (official)

Azure Monitor exporter (https://github.com/RobustPerception/azure_metrics_exporter)

Cloud Foundry Firehose exporter (https://github.com/cloudfoundry-community/firehose_exporter)

Collectd exporter (https://github.com/prometheus/collectd_exporter) (official)

Google Stackdriver exporter (https://github.com/frodenas/stackdriver_exporter)

Graphite exporter (https://github.com/prometheus/graphite_exporter) (official)

Heka dashboard exporter (https://github.com/docker-infra/heka_exporter)

Heka exporter (https://github.com/imgix/heka_exporter)

Huawei Cloudeye exporter (https://github.com/huaweicloud/cloudeye-exporter)

InfluxDB exporter (https://github.com/prometheus/influxdb_exporter) (official)

ITM exporter (https://github.com/rafal-szypulka/itm_exporter)

Java GC exporter (https://github.com/loyispa/jgc_exporter)

JavaMelody exporter (https://github.com/fschlag/javamelody-prometheus-exporter)

JMX exporter (https://github.com/prometheus/jmx_exporter) (official)

Munin exporter (https://github.com/pvdh/munin_exporter)

Nagios / Naemon exporter (https://github.com/Griesbacher/Iapetos)

Neptune Apex exporter (https://github.com/dl-romero/neptune_exporter)

10/09/24, 19:22 Exporters and integrations | Prometheus

https://prometheus.io/docs/instrumenting/exporters/ 4/7

https://github.com/mattbostock/webdriver_exporter
https://github.com/mattbostock/webdriver_exporter
https://github.com/slok/ecs-exporter
https://github.com/slok/ecs-exporter
https://github.com/Jimdo/aws-health-exporter
https://github.com/Jimdo/aws-health-exporter
https://github.com/jmal98/sqs_exporter
https://github.com/jmal98/sqs_exporter
https://github.com/FXinnovation/azure-health-exporter
https://github.com/FXinnovation/azure-health-exporter
https://github.com/greenstatic/bigbluebutton-exporter
https://github.com/greenstatic/bigbluebutton-exporter
https://gitlab.com/gitlab-org/cloudflare_exporter
https://gitlab.com/gitlab-org/cloudflare_exporter
https://github.com/nbarrientos/cryptowat_exporter
https://github.com/nbarrientos/cryptowat_exporter
https://github.com/metalmatze/digitalocean_exporter
https://github.com/metalmatze/digitalocean_exporter
https://github.com/infinityworks/docker-cloud-exporter
https://github.com/infinityworks/docker-cloud-exporter
https://github.com/infinityworks/docker-hub-exporter
https://github.com/infinityworks/docker-hub-exporter
https://github.com/peterbourgon/fastly-exporter
https://github.com/peterbourgon/fastly-exporter
https://github.com/githubexporter/github-exporter
https://github.com/githubexporter/github-exporter
https://github.com/jamesread/prometheus-gmail-exporter/
https://github.com/jamesread/prometheus-gmail-exporter/
https://github.com/ricardbejarano/graphql_exporter
https://github.com/ricardbejarano/graphql_exporter
https://github.com/fcgravalos/instaclustr_exporter
https://github.com/fcgravalos/instaclustr_exporter
https://github.com/Jimdo/observatory-exporter
https://github.com/Jimdo/observatory-exporter
https://github.com/RichiH/openweathermap_exporter
https://github.com/RichiH/openweathermap_exporter
https://github.com/foomo/pagespeed_exporter
https://github.com/foomo/pagespeed_exporter
https://github.com/infinityworks/prometheus-rancher-exporter
https://github.com/infinityworks/prometheus-rancher-exporter
https://github.com/nlamirault/speedtest_exporter
https://github.com/nlamirault/speedtest_exporter
https://github.com/lukasmalkmus/tankerkoenig_exporter
https://github.com/lukasmalkmus/tankerkoenig_exporter
https://github.com/V3ckt0r/fluentd_exporter
https://github.com/V3ckt0r/fluentd_exporter
https://github.com/google/mtail
https://github.com/google/mtail
https://github.com/fstab/grok_exporter
https://github.com/fstab/grok_exporter
https://github.com/electrolux-oss/aws-cost-exporter
https://github.com/electrolux-oss/aws-cost-exporter
https://github.com/electrolux-oss/azure-cost-exporter
https://github.com/electrolux-oss/azure-cost-exporter
https://github.com/electrolux-oss/kubernetes-cost-exporter
https://github.com/electrolux-oss/kubernetes-cost-exporter
https://github.com/ExpressenAB/cloudmonitor_exporter
https://github.com/ExpressenAB/cloudmonitor_exporter
https://github.com/aylei/aliyun-exporter
https://github.com/aylei/aliyun-exporter
https://github.com/prometheus/cloudwatch_exporter
https://github.com/prometheus/cloudwatch_exporter
https://github.com/RobustPerception/azure_metrics_exporter
https://github.com/RobustPerception/azure_metrics_exporter
https://github.com/cloudfoundry-community/firehose_exporter
https://github.com/cloudfoundry-community/firehose_exporter
https://github.com/prometheus/collectd_exporter
https://github.com/prometheus/collectd_exporter
https://github.com/frodenas/stackdriver_exporter
https://github.com/frodenas/stackdriver_exporter
https://github.com/prometheus/graphite_exporter
https://github.com/prometheus/graphite_exporter
https://github.com/docker-infra/heka_exporter
https://github.com/docker-infra/heka_exporter
https://github.com/imgix/heka_exporter
https://github.com/imgix/heka_exporter
https://github.com/huaweicloud/cloudeye-exporter
https://github.com/huaweicloud/cloudeye-exporter
https://github.com/prometheus/influxdb_exporter
https://github.com/prometheus/influxdb_exporter
https://github.com/rafal-szypulka/itm_exporter
https://github.com/rafal-szypulka/itm_exporter
https://github.com/loyispa/jgc_exporter
https://github.com/loyispa/jgc_exporter
https://github.com/fschlag/javamelody-prometheus-exporter
https://github.com/fschlag/javamelody-prometheus-exporter
https://github.com/prometheus/jmx_exporter
https://github.com/prometheus/jmx_exporter
https://github.com/pvdh/munin_exporter
https://github.com/pvdh/munin_exporter
https://github.com/Griesbacher/Iapetos
https://github.com/Griesbacher/Iapetos
https://github.com/dl-romero/neptune_exporter
https://github.com/dl-romero/neptune_exporter

New Relic exporter (https://github.com/mrf/newrelic_exporter)

NRPE exporter (https://github.com/robustperception/nrpe_exporter)

Osquery exporter (https://github.com/zwopir/osquery_exporter)

OTC CloudEye exporter (https://github.com/tiagoReichert/otc-cloudeye-prometheus-exporter)

Pingdom exporter (https://github.com/giantswarm/prometheus-pingdom-exporter)

Promitor (Azure Monitor) (https://promitor.io)

scollector exporter (https://github.com/tgulacsi/prometheus_scollector)

Sensu exporter (https://github.com/reachlin/sensu_exporter)

site24x7_exporter (https://github.com/svenstaro/site24x7_exporter)

SNMP exporter (https://github.com/prometheus/snmp_exporter) (official)

StatsD exporter (https://github.com/prometheus/statsd_exporter) (official)

TencentCloud monitor exporter (https://github.com/tencentyun/tencentcloud-exporter)

ThousandEyes exporter (https://github.com/sapcc/1000eyes_exporter)

StatusPage exporter (https://github.com/sergeyshevch/statuspage-exporter)

Miscellaneous

ACT Fibernet Exporter (https://git.captnemo.in/nemo/prometheus-act-exporter)

BIND exporter (https://github.com/prometheus-community/bind_exporter)

BIND query exporter (https://github.com/DRuggeri/bind_query_exporter)

Bitcoind exporter (https://github.com/LePetitBloc/bitcoind-exporter)

Blackbox exporter (https://github.com/prometheus/blackbox_exporter) (official)

Bungeecord exporter (https://github.com/weihao/bungeecord-prometheus-exporter)

BOSH exporter (https://github.com/cloudfoundry-community/bosh_exporter)

cAdvisor (https://github.com/google/cadvisor)

Cachet exporter (https://github.com/ContaAzul/cachet_exporter)

ccache exporter (https://github.com/virtualtam/ccache_exporter)

c-lightning exporter (https://github.com/lightningd/plugins/tree/master/prometheus)

DHCPD leases exporter (https://github.com/DRuggeri/dhcpd_leases_exporter)

Dovecot exporter (https://github.com/kumina/dovecot_exporter)

Dnsmasq exporter (https://github.com/google/dnsmasq_exporter)

eBPF exporter (https://github.com/cloudflare/ebpf_exporter)

Ethereum Client exporter (https://github.com/31z4/ethereum-prometheus-exporter)

File statistics exporter (https://github.com/michael-doubez/filestat_exporter)

JFrog Artifactory Exporter (https://github.com/peimanja/artifactory_exporter)

Hostapd Exporter (https://github.com/Fundacio-i2CAT/hostapd_prometheus_exporter)

IBM Security Verify Access / Security Access Manager Exporter (https://gitlab.com/zeblawson/isva-prometheus-

exporter)

IPsec exporter (https://github.com/torilabs/ipsec-prometheus-exporter)

IRCd exporter (https://github.com/dgl/ircd_exporter)

Linux HA ClusterLabs exporter (https://github.com/ClusterLabs/ha_cluster_exporter)

JMeter plugin (https://github.com/johrstrom/jmeter-prometheus-plugin)

JSON exporter (https://github.com/prometheus-community/json_exporter)

Kannel exporter (https://github.com/apostvav/kannel_exporter)

Kemp LoadBalancer exporter (https://github.com/giantswarm/prometheus-kemp-exporter)

Kibana Exporter (https://github.com/pjhampton/kibana-prometheus-exporter)

kube-state-metrics (https://github.com/kubernetes/kube-state-metrics)

Locust Exporter (https://github.com/ContainerSolutions/locust_exporter)

Meteor JS web framework exporter (https://atmospherejs.com/sevki/prometheus-exporter)

Minecraft exporter module (https://github.com/Baughn/PrometheusIntegration)

Minecraft exporter (https://github.com/dirien/minecraft-prometheus-exporter)

Nomad exporter (https://gitlab.com/yakshaving.art/nomad-exporter)

nftables exporter (https://github.com/Intrinsec/nftables_exporter)

OpenStack exporter (https://github.com/openstack-exporter/openstack-exporter)

OpenStack blackbox exporter (https://github.com/infraly/openstack_client_exporter)

oVirt exporter (https://github.com/czerwonk/ovirt_exporter)

Pact Broker exporter (https://github.com/ContainerSolutions/pactbroker_exporter)

10/09/24, 19:22 Exporters and integrations | Prometheus

https://prometheus.io/docs/instrumenting/exporters/ 5/7

https://github.com/mrf/newrelic_exporter
https://github.com/mrf/newrelic_exporter
https://github.com/robustperception/nrpe_exporter
https://github.com/robustperception/nrpe_exporter
https://github.com/zwopir/osquery_exporter
https://github.com/zwopir/osquery_exporter
https://github.com/tiagoReichert/otc-cloudeye-prometheus-exporter
https://github.com/tiagoReichert/otc-cloudeye-prometheus-exporter
https://github.com/giantswarm/prometheus-pingdom-exporter
https://github.com/giantswarm/prometheus-pingdom-exporter
https://promitor.io/
https://promitor.io/
https://github.com/tgulacsi/prometheus_scollector
https://github.com/tgulacsi/prometheus_scollector
https://github.com/reachlin/sensu_exporter
https://github.com/reachlin/sensu_exporter
https://github.com/svenstaro/site24x7_exporter
https://github.com/svenstaro/site24x7_exporter
https://github.com/prometheus/snmp_exporter
https://github.com/prometheus/snmp_exporter
https://github.com/prometheus/statsd_exporter
https://github.com/prometheus/statsd_exporter
https://github.com/tencentyun/tencentcloud-exporter
https://github.com/tencentyun/tencentcloud-exporter
https://github.com/sapcc/1000eyes_exporter
https://github.com/sapcc/1000eyes_exporter
https://github.com/sergeyshevch/statuspage-exporter
https://github.com/sergeyshevch/statuspage-exporter
https://git.captnemo.in/nemo/prometheus-act-exporter
https://git.captnemo.in/nemo/prometheus-act-exporter
https://github.com/prometheus-community/bind_exporter
https://github.com/prometheus-community/bind_exporter
https://github.com/DRuggeri/bind_query_exporter
https://github.com/DRuggeri/bind_query_exporter
https://github.com/LePetitBloc/bitcoind-exporter
https://github.com/LePetitBloc/bitcoind-exporter
https://github.com/prometheus/blackbox_exporter
https://github.com/prometheus/blackbox_exporter
https://github.com/weihao/bungeecord-prometheus-exporter
https://github.com/weihao/bungeecord-prometheus-exporter
https://github.com/cloudfoundry-community/bosh_exporter
https://github.com/cloudfoundry-community/bosh_exporter
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/ContaAzul/cachet_exporter
https://github.com/ContaAzul/cachet_exporter
https://github.com/virtualtam/ccache_exporter
https://github.com/virtualtam/ccache_exporter
https://github.com/lightningd/plugins/tree/master/prometheus
https://github.com/lightningd/plugins/tree/master/prometheus
https://github.com/DRuggeri/dhcpd_leases_exporter
https://github.com/DRuggeri/dhcpd_leases_exporter
https://github.com/kumina/dovecot_exporter
https://github.com/kumina/dovecot_exporter
https://github.com/google/dnsmasq_exporter
https://github.com/google/dnsmasq_exporter
https://github.com/cloudflare/ebpf_exporter
https://github.com/cloudflare/ebpf_exporter
https://github.com/31z4/ethereum-prometheus-exporter
https://github.com/31z4/ethereum-prometheus-exporter
https://github.com/michael-doubez/filestat_exporter
https://github.com/michael-doubez/filestat_exporter
https://github.com/peimanja/artifactory_exporter
https://github.com/peimanja/artifactory_exporter
https://github.com/Fundacio-i2CAT/hostapd_prometheus_exporter
https://github.com/Fundacio-i2CAT/hostapd_prometheus_exporter
https://gitlab.com/zeblawson/isva-prometheus-exporter
https://gitlab.com/zeblawson/isva-prometheus-exporter
https://gitlab.com/zeblawson/isva-prometheus-exporter
https://github.com/torilabs/ipsec-prometheus-exporter
https://github.com/torilabs/ipsec-prometheus-exporter
https://github.com/dgl/ircd_exporter
https://github.com/dgl/ircd_exporter
https://github.com/ClusterLabs/ha_cluster_exporter
https://github.com/ClusterLabs/ha_cluster_exporter
https://github.com/johrstrom/jmeter-prometheus-plugin
https://github.com/johrstrom/jmeter-prometheus-plugin
https://github.com/prometheus-community/json_exporter
https://github.com/prometheus-community/json_exporter
https://github.com/apostvav/kannel_exporter
https://github.com/apostvav/kannel_exporter
https://github.com/giantswarm/prometheus-kemp-exporter
https://github.com/giantswarm/prometheus-kemp-exporter
https://github.com/pjhampton/kibana-prometheus-exporter
https://github.com/pjhampton/kibana-prometheus-exporter
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/ContainerSolutions/locust_exporter
https://github.com/ContainerSolutions/locust_exporter
https://atmospherejs.com/sevki/prometheus-exporter
https://atmospherejs.com/sevki/prometheus-exporter
https://github.com/Baughn/PrometheusIntegration
https://github.com/Baughn/PrometheusIntegration
https://github.com/dirien/minecraft-prometheus-exporter
https://github.com/dirien/minecraft-prometheus-exporter
https://gitlab.com/yakshaving.art/nomad-exporter
https://gitlab.com/yakshaving.art/nomad-exporter
https://github.com/Intrinsec/nftables_exporter
https://github.com/Intrinsec/nftables_exporter
https://github.com/openstack-exporter/openstack-exporter
https://github.com/openstack-exporter/openstack-exporter
https://github.com/infraly/openstack_client_exporter
https://github.com/infraly/openstack_client_exporter
https://github.com/czerwonk/ovirt_exporter
https://github.com/czerwonk/ovirt_exporter
https://github.com/ContainerSolutions/pactbroker_exporter
https://github.com/ContainerSolutions/pactbroker_exporter

PHP-FPM exporter (https://github.com/bakins/php-fpm-exporter)

PowerDNS exporter (https://github.com/ledgr/powerdns_exporter)

Podman exporter (https://github.com/containers/prometheus-podman-exporter)

Prefect2 exporter (https://github.com/pathfinder177/prefect2-prometheus-exporter)

Process exporter (https://github.com/ncabatoff/process-exporter)

rTorrent exporter (https://github.com/mdlayher/rtorrent_exporter)

Rundeck exporter (https://github.com/phsmith/rundeck_exporter)

SABnzbd exporter (https://github.com/msroest/sabnzbd_exporter)

SAML exporter (https://github.com/DoodleScheduling/saml-exporter)

Script exporter (https://github.com/adhocteam/script_exporter)

Shield exporter (https://github.com/cloudfoundry-community/shield_exporter)

Smokeping prober (https://github.com/SuperQ/smokeping_prober)

SMTP/Maildir MDA blackbox prober (https://github.com/cherti/mailexporter)

SoftEther exporter (https://github.com/dalance/softether_exporter)

SSH exporter (https://github.com/treydock/ssh_exporter)

Teamspeak3 exporter (https://github.com/hikhvar/ts3exporter)

Transmission exporter (https://github.com/metalmatze/transmission-exporter)

Unbound exporter (https://github.com/kumina/unbound_exporter)

WireGuard exporter (https://github.com/MindFlavor/prometheus_wireguard_exporter)

Xen exporter (https://github.com/lovoo/xenstats_exporter)

When implementing a new Prometheus exporter, please follow the guidelines on writing exporters

(/docs/instrumenting/writing_exporters) Please also consider consulting the development mailing list

(https://groups.google.com/forum/#!forum/prometheus-developers). We are happy to give advice on how to make your

exporter as useful and consistent as possible.

Software exposing Prometheus metrics

Some third-party software exposes metrics in the Prometheus format, so no separate exporters are needed:

Ansible Automation Platform Automation Controller (AWX) (https://docs.ansible.com/automation-

controller/latest/html/administration/metrics.html)

App Connect Enterprise (https://github.com/ot4i/ace-docker)

Ballerina (https://ballerina.io/)

BFE (https://github.com/baidu/bfe)

Caddy (https://caddyserver.com/docs/metrics) (direct)

Ceph (https://docs.ceph.com/en/latest/mgr/prometheus/)

CockroachDB (https://www.cockroachlabs.com/docs/stable/monitoring-and-alerting.html#prometheus-endpoint)

Collectd (https://collectd.org/wiki/index.php/Plugin:Write_Prometheus)

Concourse (https://concourse-ci.org/)

CRG Roller Derby Scoreboard (https://github.com/rollerderby/scoreboard) (direct)

Diffusion

(https://docs.pushtechnology.com/docs/latest/manual/html/administratorguide/systemmanagement/r_statistics.html)

Docker Daemon (https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-metrics)

Doorman (https://github.com/youtube/doorman) (direct)

Dovecot (https://doc.dovecot.org/configuration_manual/stats/openmetrics/)

Envoy (https://www.envoyproxy.io/docs/envoy/latest/operations/admin.html#get--stats?format=prometheus)

Etcd (https://github.com/coreos/etcd) (direct)

Flink (https://github.com/apache/flink)

FreeBSD Kernel (https://www.freebsd.org/cgi/man.cgi?

query=prometheus_sysctl_exporter&apropos=0&sektion=8&manpath=FreeBSD+12-

current&arch=default&format=html)

GitLab (https://docs.gitlab.com/ee/administration/monitoring/prometheus/gitlab_metrics.html)

Grafana (https://grafana.com/docs/grafana/latest/administration/view-server/internal-metrics/)

JavaMelody (https://github.com/javamelody/javamelody/wiki/UserGuideAdvanced#exposing-metrics-to-

prometheus)

Kong (https://github.com/Kong/kong-plugin-prometheus)

10/09/24, 19:22 Exporters and integrations | Prometheus

https://prometheus.io/docs/instrumenting/exporters/ 6/7

https://github.com/bakins/php-fpm-exporter
https://github.com/bakins/php-fpm-exporter
https://github.com/ledgr/powerdns_exporter
https://github.com/ledgr/powerdns_exporter
https://github.com/containers/prometheus-podman-exporter
https://github.com/containers/prometheus-podman-exporter
https://github.com/pathfinder177/prefect2-prometheus-exporter
https://github.com/pathfinder177/prefect2-prometheus-exporter
https://github.com/ncabatoff/process-exporter
https://github.com/ncabatoff/process-exporter
https://github.com/mdlayher/rtorrent_exporter
https://github.com/mdlayher/rtorrent_exporter
https://github.com/phsmith/rundeck_exporter
https://github.com/phsmith/rundeck_exporter
https://github.com/msroest/sabnzbd_exporter
https://github.com/msroest/sabnzbd_exporter
https://github.com/DoodleScheduling/saml-exporter
https://github.com/DoodleScheduling/saml-exporter
https://github.com/adhocteam/script_exporter
https://github.com/adhocteam/script_exporter
https://github.com/cloudfoundry-community/shield_exporter
https://github.com/cloudfoundry-community/shield_exporter
https://github.com/SuperQ/smokeping_prober
https://github.com/SuperQ/smokeping_prober
https://github.com/cherti/mailexporter
https://github.com/cherti/mailexporter
https://github.com/dalance/softether_exporter
https://github.com/dalance/softether_exporter
https://github.com/treydock/ssh_exporter
https://github.com/treydock/ssh_exporter
https://github.com/hikhvar/ts3exporter
https://github.com/hikhvar/ts3exporter
https://github.com/metalmatze/transmission-exporter
https://github.com/metalmatze/transmission-exporter
https://github.com/kumina/unbound_exporter
https://github.com/kumina/unbound_exporter
https://github.com/MindFlavor/prometheus_wireguard_exporter
https://github.com/MindFlavor/prometheus_wireguard_exporter
https://github.com/lovoo/xenstats_exporter
https://github.com/lovoo/xenstats_exporter
https://prometheus.io/docs/instrumenting/writing_exporters
https://prometheus.io/docs/instrumenting/writing_exporters
https://groups.google.com/forum/#!forum/prometheus-developers
https://groups.google.com/forum/#!forum/prometheus-developers
https://docs.ansible.com/automation-controller/latest/html/administration/metrics.html
https://docs.ansible.com/automation-controller/latest/html/administration/metrics.html
https://docs.ansible.com/automation-controller/latest/html/administration/metrics.html
https://github.com/ot4i/ace-docker
https://github.com/ot4i/ace-docker
https://ballerina.io/
https://ballerina.io/
https://github.com/baidu/bfe
https://github.com/baidu/bfe
https://caddyserver.com/docs/metrics
https://caddyserver.com/docs/metrics
https://docs.ceph.com/en/latest/mgr/prometheus/
https://docs.ceph.com/en/latest/mgr/prometheus/
https://www.cockroachlabs.com/docs/stable/monitoring-and-alerting.html#prometheus-endpoint
https://www.cockroachlabs.com/docs/stable/monitoring-and-alerting.html#prometheus-endpoint
https://collectd.org/wiki/index.php/Plugin:Write_Prometheus
https://collectd.org/wiki/index.php/Plugin:Write_Prometheus
https://concourse-ci.org/
https://concourse-ci.org/
https://github.com/rollerderby/scoreboard
https://github.com/rollerderby/scoreboard
https://docs.pushtechnology.com/docs/latest/manual/html/administratorguide/systemmanagement/r_statistics.html
https://docs.pushtechnology.com/docs/latest/manual/html/administratorguide/systemmanagement/r_statistics.html
https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-metrics
https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-metrics
https://github.com/youtube/doorman
https://github.com/youtube/doorman
https://doc.dovecot.org/configuration_manual/stats/openmetrics/
https://doc.dovecot.org/configuration_manual/stats/openmetrics/
https://www.envoyproxy.io/docs/envoy/latest/operations/admin.html#get--stats?format=prometheus
https://www.envoyproxy.io/docs/envoy/latest/operations/admin.html#get--stats?format=prometheus
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/apache/flink
https://github.com/apache/flink
https://www.freebsd.org/cgi/man.cgi?query=prometheus_sysctl_exporter&apropos=0&sektion=8&manpath=FreeBSD+12-current&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=prometheus_sysctl_exporter&apropos=0&sektion=8&manpath=FreeBSD+12-current&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=prometheus_sysctl_exporter&apropos=0&sektion=8&manpath=FreeBSD+12-current&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=prometheus_sysctl_exporter&apropos=0&sektion=8&manpath=FreeBSD+12-current&arch=default&format=html
https://docs.gitlab.com/ee/administration/monitoring/prometheus/gitlab_metrics.html
https://docs.gitlab.com/ee/administration/monitoring/prometheus/gitlab_metrics.html
https://grafana.com/docs/grafana/latest/administration/view-server/internal-metrics/
https://grafana.com/docs/grafana/latest/administration/view-server/internal-metrics/
https://github.com/javamelody/javamelody/wiki/UserGuideAdvanced#exposing-metrics-to-prometheus
https://github.com/javamelody/javamelody/wiki/UserGuideAdvanced#exposing-metrics-to-prometheus
https://github.com/javamelody/javamelody/wiki/UserGuideAdvanced#exposing-metrics-to-prometheus
https://github.com/Kong/kong-plugin-prometheus
https://github.com/Kong/kong-plugin-prometheus

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list of trademarks of The Linux

Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-usage) page.

Kubernetes (https://github.com/kubernetes/kubernetes) (direct)

LavinMQ (https://lavinmq.com/)

Linkerd (https://github.com/BuoyantIO/linkerd)

mgmt (https://github.com/purpleidea/mgmt/blob/master/docs/prometheus.md)

MidoNet (https://github.com/midonet/midonet)

midonet-kubernetes (https://github.com/midonet/midonet-kubernetes) (direct)

MinIO (https://docs.minio.io/docs/how-to-monitor-minio-using-prometheus.html)

PATROL with Monitoring Studio X (https://www.sentrysoftware.com/library/swsyx/prometheus/exposing-patrol-

parameters-in-prometheus.html)

Netdata (https://github.com/firehol/netdata)

OpenZiti (https://openziti.github.io)

Pomerium (https://pomerium.com/reference/#metrics-address)

Pretix (https://pretix.eu/)

Quobyte (https://www.quobyte.com/) (direct)

RabbitMQ (https://rabbitmq.com/prometheus.html)

RobustIRC (http://robustirc.net/)

ScyllaDB (https://github.com/scylladb/scylla)

Skipper (https://github.com/zalando/skipper)

SkyDNS (https://github.com/skynetservices/skydns) (direct)

Telegraf (https://github.com/influxdata/telegraf/tree/master/plugins/outputs/prometheus_client)

Traefik (https://github.com/containous/traefik)

Vector (https://vector.dev)

VerneMQ (https://github.com/vernemq/vernemq)

Flux (https://github.com/fluxcd/flux2)

Xandikos (https://www.xandikos.org/) (direct)

Zipkin (https://github.com/openzipkin/zipkin/tree/master/zipkin-server#metrics)

The software marked direct is also directly instrumented with a Prometheus client library.

Other third-party utilities

This section lists libraries and other utilities that help you instrument code in a certain language. They are not

Prometheus client libraries themselves but make use of one of the normal Prometheus client libraries under the hood.

As for all independently maintained software, we cannot vet all of them for best practices.

Clojure: iapetos (https://github.com/clj-commons/iapetos)

Go: go-metrics instrumentation library (https://github.com/armon/go-metrics)

Go: gokit (https://github.com/peterbourgon/gokit)

Go: prombolt (https://github.com/mdlayher/prombolt)

Java/JVM: EclipseLink metrics collector (https://github.com/VitaNuova/eclipselinkexporter)

Java/JVM: Hystrix metrics publisher (https://github.com/ahus1/prometheus-hystrix)

Java/JVM: Jersey metrics collector (https://github.com/VitaNuova/jerseyexporter)

Java/JVM: Micrometer Prometheus Registry (https://micrometer.io/docs/registry/prometheus)

Python-Django: django-prometheus (https://github.com/korfuri/django-prometheus)

Node.js: swagger-stats (https://github.com/slanatech/swagger-stats)

 This documentation is open-source (https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:22 Exporters and integrations | Prometheus

https://prometheus.io/docs/instrumenting/exporters/ 7/7

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://lavinmq.com/
https://lavinmq.com/
https://github.com/BuoyantIO/linkerd
https://github.com/BuoyantIO/linkerd
https://github.com/purpleidea/mgmt/blob/master/docs/prometheus.md
https://github.com/purpleidea/mgmt/blob/master/docs/prometheus.md
https://github.com/midonet/midonet
https://github.com/midonet/midonet
https://github.com/midonet/midonet-kubernetes
https://github.com/midonet/midonet-kubernetes
https://docs.minio.io/docs/how-to-monitor-minio-using-prometheus.html
https://docs.minio.io/docs/how-to-monitor-minio-using-prometheus.html
https://www.sentrysoftware.com/library/swsyx/prometheus/exposing-patrol-parameters-in-prometheus.html
https://www.sentrysoftware.com/library/swsyx/prometheus/exposing-patrol-parameters-in-prometheus.html
https://www.sentrysoftware.com/library/swsyx/prometheus/exposing-patrol-parameters-in-prometheus.html
https://github.com/firehol/netdata
https://github.com/firehol/netdata
https://openziti.github.io/
https://openziti.github.io/
https://pomerium.com/reference/#metrics-address
https://pomerium.com/reference/#metrics-address
https://pretix.eu/
https://pretix.eu/
https://www.quobyte.com/
https://www.quobyte.com/
https://rabbitmq.com/prometheus.html
https://rabbitmq.com/prometheus.html
http://robustirc.net/
http://robustirc.net/
https://github.com/scylladb/scylla
https://github.com/scylladb/scylla
https://github.com/zalando/skipper
https://github.com/zalando/skipper
https://github.com/skynetservices/skydns
https://github.com/skynetservices/skydns
https://github.com/influxdata/telegraf/tree/master/plugins/outputs/prometheus_client
https://github.com/influxdata/telegraf/tree/master/plugins/outputs/prometheus_client
https://github.com/containous/traefik
https://github.com/containous/traefik
https://vector.dev/
https://vector.dev/
https://github.com/vernemq/vernemq
https://github.com/vernemq/vernemq
https://github.com/fluxcd/flux2
https://github.com/fluxcd/flux2
https://www.xandikos.org/
https://www.xandikos.org/
https://github.com/openzipkin/zipkin/tree/master/zipkin-server#metrics
https://github.com/openzipkin/zipkin/tree/master/zipkin-server#metrics
https://github.com/clj-commons/iapetos
https://github.com/clj-commons/iapetos
https://github.com/armon/go-metrics
https://github.com/armon/go-metrics
https://github.com/peterbourgon/gokit
https://github.com/peterbourgon/gokit
https://github.com/mdlayher/prombolt
https://github.com/mdlayher/prombolt
https://github.com/VitaNuova/eclipselinkexporter
https://github.com/VitaNuova/eclipselinkexporter
https://github.com/ahus1/prometheus-hystrix
https://github.com/ahus1/prometheus-hystrix
https://github.com/VitaNuova/jerseyexporter
https://github.com/VitaNuova/jerseyexporter
https://micrometer.io/docs/registry/prometheus
https://micrometer.io/docs/registry/prometheus
https://github.com/korfuri/django-prometheus
https://github.com/korfuri/django-prometheus
https://github.com/slanatech/swagger-stats
https://github.com/slanatech/swagger-stats
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

Maintainability and purity

Configuration

Metrics

Naming

Labels

Target labels, not static scraped

labels

Types

Help strings

Drop less useful statistics

Dotted strings

Collectors

Metrics about the scrape itself

Machine and process metrics

Deployment

Scheduling

Pushes

WRITING EXPORTERS

If you are instrumenting your own code, the general rules of how to

instrument code with a Prometheus client library

(/docs/practices/instrumentation/) should be followed. When taking

metrics from another monitoring or instrumentation system, things

tend not to be so black and white.

This document contains things you should consider when writing an

exporter or custom collector. The theory covered will also be of interest

to those doing direct instrumentation.

If you are writing an exporter and are unclear on anything here, please

contact us on IRC (#prometheus on libera) or the mailing list

(/community).

Maintainability and purity

The main decision you need to make when writing an exporter is how

much work you’re willing to put in to get perfect metrics out of it.

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

Client libraries (/docs/instrumenting/clientlibs/)

Writing client libraries (/docs/instrumenting/writing_clientlibs/)

Pushing metrics (/docs/instrumenting/pushing/)

Exporters and integrations (/docs/instrumenting/exporters/)

Writing exporters (/docs/instrumenting/writing_exporters/)

Exposition formats (/docs/instrumenting/exposition_formats/)

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:22 Writing exporters | Prometheus

https://prometheus.io/docs/instrumenting/writing_exporters/ 1/8

https://prometheus.io/docs/practices/instrumentation/
https://prometheus.io/docs/practices/instrumentation/
https://prometheus.io/docs/practices/instrumentation/
https://prometheus.io/community
https://prometheus.io/community
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/writing_clientlibs/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/exposition_formats/

Failed scrapes

Landing page

Port numbers

Announcing

If the system in question has only a handful of metrics that rarely

change, then getting everything perfect is an easy choice, a good

example of this is the HAProxy exporter

(https://github.com/prometheus/haproxy_exporter).

On the other hand, if you try to get things perfect when the system has

hundreds of metrics that change frequently with new versions, then you’ve signed yourself up for a lot of ongoing work.

The MySQL exporter (https://github.com/prometheus/mysqld_exporter) is on this end of the spectrum.

The node exporter (https://github.com/prometheus/node_exporter) is a mix of these, with complexity varying by module.

For example, the mdadm collector hand-parses a file and exposes metrics created specifically for that collector, so we may

as well get the metrics right. For the meminfo collector the results vary across kernel versions so we end up doing just

enough of a transform to create valid metrics.

Configuration

When working with applications, you should aim for an exporter that requires no custom configuration by the user

beyond telling it where the application is. You may also need to offer the ability to filter out certain metrics if they may be

too granular and expensive on large setups, for example the HAProxy exporter

(https://github.com/prometheus/haproxy_exporter) allows filtering of per-server stats. Similarly, there may be expensive

metrics that are disabled by default.

When working with other monitoring systems, frameworks and protocols you will often need to provide additional

configuration or customization to generate metrics suitable for Prometheus. In the best case scenario, a monitoring

system has a similar enough data model to Prometheus that you can automatically determine how to transform metrics.

This is the case for Cloudwatch (https://github.com/prometheus/cloudwatch_exporter), SNMP

(https://github.com/prometheus/snmp_exporter) and collectd (https://github.com/prometheus/collectd_exporter). At

most, we need the ability to let the user select which metrics they want to pull out.

In other cases, metrics from the system are completely non-standard, depending on the usage of the system and the

underlying application. In that case the user has to tell us how to transform the metrics. The JMX exporter

(https://github.com/prometheus/jmx_exporter) is the worst offender here, with the Graphite

(https://github.com/prometheus/graphite_exporter) and StatsD (https://github.com/prometheus/statsd_exporter)

exporters also requiring configuration to extract labels.

Ensuring the exporter works out of the box without configuration, and providing a selection of example configurations for

transformation if required, is advised.

YAML is the standard Prometheus configuration format, all configuration should use YAML by default.

Metrics

Naming

Follow the best practices on metric naming (/docs/practices/naming).

Generally metric names should allow someone who is familiar with Prometheus but not a particular system to make a

good guess as to what a metric means. A metric named http_requests_total is not extremely useful - are these being

measured as they come in, in some filter or when they get to the user’s code? And requests_total is even worse, what

type of requests?

With direct instrumentation, a given metric should exist within exactly one file. Accordingly, within exporters and

collectors, a metric should apply to exactly one subsystem and be named accordingly.

Metric names should never be procedurally generated, except when writing a custom collector or exporter.

Metric names for applications should generally be prefixed by the exporter name, e.g. haproxy_up .

10/09/24, 19:22 Writing exporters | Prometheus

https://prometheus.io/docs/instrumenting/writing_exporters/ 2/8

https://github.com/prometheus/haproxy_exporter
https://github.com/prometheus/haproxy_exporter
https://github.com/prometheus/mysqld_exporter
https://github.com/prometheus/mysqld_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/haproxy_exporter
https://github.com/prometheus/haproxy_exporter
https://github.com/prometheus/cloudwatch_exporter
https://github.com/prometheus/cloudwatch_exporter
https://github.com/prometheus/snmp_exporter
https://github.com/prometheus/snmp_exporter
https://github.com/prometheus/collectd_exporter
https://github.com/prometheus/collectd_exporter
https://github.com/prometheus/jmx_exporter
https://github.com/prometheus/jmx_exporter
https://github.com/prometheus/graphite_exporter
https://github.com/prometheus/graphite_exporter
https://github.com/prometheus/statsd_exporter
https://github.com/prometheus/statsd_exporter
https://prometheus.io/docs/practices/naming
https://prometheus.io/docs/practices/naming

Metrics must use base units (e.g. seconds, bytes) and leave converting them to something more readable to graphing

tools. No matter what units you end up using, the units in the metric name must match the units in use. Similarly, expose

ratios, not percentages. Even better, specify a counter for each of the two components of the ratio.

Metric names should not include the labels that they’re exported with, e.g. by_type , as that won’t make sense if the label

is aggregated away.

The one exception is when you’re exporting the same data with different labels via multiple metrics, in which case that’s

usually the sanest way to distinguish them. For direct instrumentation, this should only come up when exporting a single

metric with all the labels would have too high a cardinality.

Prometheus metrics and label names are written in snake_case . Converting camelCase to snake_case is desirable,

though doing so automatically doesn’t always produce nice results for things like myTCPExample or isNaN so sometimes

it’s best to leave them as-is.

Exposed metrics should not contain colons, these are reserved for user defined recording rules to use when aggregating.

Only [a-zA-Z0-9:_] are valid in metric names.

The _sum , _count , _bucket and _total suffixes are used by Summaries, Histograms and Counters. Unless you’re

producing one of those, avoid these suffixes.

_total is a convention for counters, you should use it if you’re using the COUNTER type.

The process_ and scrape_ prefixes are reserved. It’s okay to add your own prefix on to these if they follow matching

semantics. For example, Prometheus has scrape_duration_seconds for how long a scrape took, it's good practice to also

have an exporter-centric metric, e.g. jmx_scrape_duration_seconds , saying how long the specific exporter took to do its

thing. For process stats where you have access to the PID, both Go and Python offer collectors that’ll handle this for you.

A good example of this is the HAProxy exporter (https://github.com/prometheus/haproxy_exporter).

When you have a successful request count and a failed request count, the best way to expose this is as one metric for

total requests and another metric for failed requests. This makes it easy to calculate the failure ratio. Do not use one

metric with a failed or success label. Similarly, with hit or miss for caches, it’s better to have one metric for total and

another for hits.

Consider the likelihood that someone using monitoring will do a code or web search for the metric name. If the names

are very well-established and unlikely to be used outside of the realm of people used to those names, for example SNMP

and network engineers, then leaving them as-is may be a good idea. This logic doesn’t apply for all exporters, for example

the MySQL exporter metrics may be used by a variety of people, not just DBAs. A HELP string with the original name can

provide most of the same benefits as using the original names.

Labels

Read the general advice (/docs/practices/instrumentation/#things-to-watch-out-for) on labels.

Avoid type as a label name, it’s too generic and often meaningless. You should also try where possible to avoid names

that are likely to clash with target labels, such as region , zone , cluster , availability_zone , az , datacenter , dc ,

owner , customer , stage , service , environment and env . If, however, that’s what the application calls some resource, it’s

best not to cause confusion by renaming it.

Avoid the temptation to put things into one metric just because they share a prefix. Unless you’re sure something makes

sense as one metric, multiple metrics is safer.

The label le has special meaning for Histograms, and quantile for Summaries. Avoid these labels generally.

Read/write and send/receive are best as separate metrics, rather than as a label. This is usually because you care about

only one of them at a time, and it is easier to use them that way.

10/09/24, 19:22 Writing exporters | Prometheus

https://prometheus.io/docs/instrumenting/writing_exporters/ 3/8

https://github.com/prometheus/haproxy_exporter
https://github.com/prometheus/haproxy_exporter
https://prometheus.io/docs/practices/instrumentation/#things-to-watch-out-for
https://prometheus.io/docs/practices/instrumentation/#things-to-watch-out-for

The rule of thumb is that one metric should make sense when summed or averaged. There is one other case that comes

up with exporters, and that’s where the data is fundamentally tabular and doing otherwise would require users to do

regexes on metric names to be usable. Consider the voltage sensors on your motherboard, while doing math across them

is meaningless, it makes sense to have them in one metric rather than having one metric per sensor. All values within a

metric should (almost) always have the same unit, for example consider if fan speeds were mixed in with the voltages,

and you had no way to automatically separate them.

Don’t do this:

my_metric{label="a"} 1

my_metric{label="b"} 6
my_metric{label="total"} 7

or this:

my_metric{label="a"} 1
my_metric{label="b"} 6

my_metric{} 7

The former breaks for people who do a sum() over your metric, and the latter breaks sum and is quite difficult to work

with. Some client libraries, for example Go, will actively try to stop you doing the latter in a custom collector, and all client

libraries should stop you from doing the latter with direct instrumentation. Never do either of these, rely on Prometheus

aggregation instead.

If your monitoring exposes a total like this, drop the total. If you have to keep it around for some reason, for example the

total includes things not counted individually, use different metric names.

Instrumentation labels should be minimal, every extra label is one more that users need to consider when writing their

PromQL. Accordingly, avoid having instrumentation labels which could be removed without affecting the uniqueness of

the time series. Additional information around a metric can be added via an info metric, for an example see below how to

handle version numbers.

However, there are cases where it is expected that virtually all users of a metric will want the additional information. If so,

adding a non-unique label, rather than an info metric, is the right solution. For example the mysqld_exporter

(https://github.com/prometheus/mysqld_exporter)'s mysqld_perf_schema_events_statements_total 's digest label is a

hash of the full query pattern and is sufficient for uniqueness. However, it is of little use without the human readable

digest_text label, which for long queries will contain only the start of the query pattern and is thus not unique. Thus we

end up with both the digest_text label for humans and the digest label for uniqueness.

Target labels, not static scraped labels

If you ever find yourself wanting to apply the same label to all of your metrics, stop.

There’s generally two cases where this comes up.

The first is for some label it would be useful to have on the metrics such as the version number of the software. Instead,

use the approach described at https://www.robustperception.io/how-to-have-labels-for-machine-roles/

(http://www.robustperception.io/how-to-have-labels-for-machine-roles/).

The second case is when a label is really a target label. These are things like region, cluster names, and so on, that come

from your infrastructure setup rather than the application itself. It’s not for an application to say where it fits in your label

taxonomy, that’s for the person running the Prometheus server to configure and different people monitoring the same

application may give it different names.

Accordingly, these labels belong up in the scrape configs of Prometheus via whatever service discovery you’re using. It’s

okay to apply the concept of machine roles here as well, as it’s likely useful information for at least some people scraping

it.

10/09/24, 19:22 Writing exporters | Prometheus

https://prometheus.io/docs/instrumenting/writing_exporters/ 4/8

https://github.com/prometheus/mysqld_exporter
https://github.com/prometheus/mysqld_exporter
http://www.robustperception.io/how-to-have-labels-for-machine-roles/
http://www.robustperception.io/how-to-have-labels-for-machine-roles/

Types

You should try to match up the types of your metrics to Prometheus types. This usually means counters and gauges. The

_count and _sum of summaries are also relatively common, and on occasion you’ll see quantiles. Histograms are rare, if

you come across one remember that the exposition format exposes cumulative values.

Often it won’t be obvious what the type of metric is, especially if you’re automatically processing a set of metrics. In

general UNTYPED is a safe default.

Counters can’t go down, so if you have a counter type coming from another instrumentation system that can be

decremented, for example Dropwizard metrics then it's not a counter, it's a gauge. UNTYPED is probably the best type to

use there, as GAUGE would be misleading if it were being used as a counter.

Help strings

When you’re transforming metrics it’s useful for users to be able to track back to what the original was, and what rules

were in play that caused that transformation. Putting in the name of the collector or exporter, the ID of any rule that was

applied and the name and details of the original metric into the help string will greatly aid users.

Prometheus doesn’t like one metric having different help strings. If you’re making one metric from many others, choose

one of them to put in the help string.

For examples of this, the SNMP exporter uses the OID and the JMX exporter puts in a sample mBean name. The HAProxy

exporter (https://github.com/prometheus/haproxy_exporter) has hand-written strings. The node exporter

(https://github.com/prometheus/node_exporter) also has a wide variety of examples.

Drop less useful statistics

Some instrumentation systems expose 1m, 5m, 15m rates, average rates since application start (these are called mean in

Dropwizard metrics for example) in addition to minimums, maximums and standard deviations.

These should all be dropped, as they’re not very useful and add clutter. Prometheus can calculate rates itself, and usually

more accurately as the averages exposed are usually exponentially decaying. You don’t know what time the min or max

were calculated over, and the standard deviation is statistically useless and you can always expose sum of squares, _sum

and _count if you ever need to calculate it.

Quantiles have related issues, you may choose to drop them or put them in a Summary.

Dotted strings

Many monitoring systems don’t have labels, instead doing things like

my.class.path.mymetric.labelvalue1.labelvalue2.labelvalue3 .

The Graphite (https://github.com/prometheus/graphite_exporter) and StatsD

(https://github.com/prometheus/statsd_exporter) exporters share a way of transforming these with a small configuration

language. Other exporters should implement the same. The transformation is currently implemented only in Go, and

would benefit from being factored out into a separate library.

Collectors

When implementing the collector for your exporter, you should never use the usual direct instrumentation approach and

then update the metrics on each scrape.

Rather create new metrics each time. In Go this is done with MustNewConstMetric

(https://godoc.org/github.com/prometheus/client_golang/prometheus#MustNewConstMetric) in your Collect() method.

For Python see https://github.com/prometheus/client_python#custom-collectors

(https://prometheus.github.io/client_python/collector/custom/) and for Java generate a List<MetricFamilySamples> in

10/09/24, 19:22 Writing exporters | Prometheus

https://prometheus.io/docs/instrumenting/writing_exporters/ 5/8

https://github.com/prometheus/haproxy_exporter
https://github.com/prometheus/haproxy_exporter
https://github.com/prometheus/haproxy_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/graphite_exporter
https://github.com/prometheus/graphite_exporter
https://github.com/prometheus/statsd_exporter
https://github.com/prometheus/statsd_exporter
https://godoc.org/github.com/prometheus/client_golang/prometheus#MustNewConstMetric
https://godoc.org/github.com/prometheus/client_golang/prometheus#MustNewConstMetric
https://prometheus.github.io/client_python/collector/custom/
https://prometheus.github.io/client_python/collector/custom/

your collect method, see StandardExports.java

(https://github.com/prometheus/client_java/blob/master/simpleclient_hotspot/src/main/java/io/prometheus/client/hotspot/

for an example.

The reason for this is two-fold. Firstly, two scrapes could happen at the same time, and direct instrumentation uses what

are effectively file-level global variables, so you’ll get race conditions. Secondly, if a label value disappears, it’ll still be

exported.

Instrumenting your exporter itself via direct instrumentation is fine, e.g. total bytes transferred or calls performed by the

exporter across all scrapes. For exporters such as the blackbox exporter

(https://github.com/prometheus/blackbox_exporter) and SNMP exporter

(https://github.com/prometheus/snmp_exporter), which aren’t tied to a single target, these should only be exposed on a

vanilla /metrics call, not on a scrape of a particular target.

Metrics about the scrape itself

Sometimes you’d like to export metrics that are about the scrape, like how long it took or how many records you

processed.

These should be exposed as gauges as they’re about an event, the scrape, and the metric name prefixed by the exporter

name, for example jmx_scrape_duration_seconds . Usually the _exporter is excluded and if the exporter also makes

sense to use as just a collector, then definitely exclude it.

Machine and process metrics

Many systems, for example Elasticsearch, expose machine metrics such as CPU, memory and filesystem information. As

the node exporter (https://github.com/prometheus/node_exporter) provides these in the Prometheus ecosystem, such

metrics should be dropped.

In the Java world, many instrumentation frameworks expose process-level and JVM-level stats such as CPU and GC. The

Java client and JMX exporter already include these in the preferred form via DefaultExports.java

(https://github.com/prometheus/client_java/blob/master/simpleclient_hotspot/src/main/java/io/prometheus/client/hotspot/

so these should also be dropped.

Similarly with other languages and frameworks.

Deployment

Each exporter should monitor exactly one instance application, preferably sitting right beside it on the same machine.

That means for every HAProxy you run, you run a haproxy_exporter process. For every machine with a Mesos worker,

you run the Mesos exporter (https://github.com/mesosphere/mesos_exporter) on it, and another one for the master, if a

machine has both.

The theory behind this is that for direct instrumentation this is what you’d be doing, and we’re trying to get as close to

that as we can in other layouts. This means that all service discovery is done in Prometheus, not in exporters. This also

has the benefit that Prometheus has the target information it needs to allow users probe your service with the blackbox

exporter (https://github.com/prometheus/blackbox_exporter).

There are two exceptions:

The first is where running beside the application you are monitoring is completely nonsensical. The SNMP, blackbox and

IPMI exporters are the main examples of this. The IPMI and SNMP exporters as the devices are often black boxes that it’s

impossible to run code on (though if you could run a node exporter on them instead that’d be better), and the blackbox

exporter where you’re monitoring something like a DNS name, where there’s also nothing to run on. In this case,

Prometheus should still do service discovery, and pass on the target to be scraped. See the blackbox and SNMP exporters

for examples.

Note that it is only currently possible to write this type of exporter with the Go, Python and Java client libraries.

10/09/24, 19:22 Writing exporters | Prometheus

https://prometheus.io/docs/instrumenting/writing_exporters/ 6/8

https://github.com/prometheus/client_java/blob/master/simpleclient_hotspot/src/main/java/io/prometheus/client/hotspot/StandardExports.java
https://github.com/prometheus/client_java/blob/master/simpleclient_hotspot/src/main/java/io/prometheus/client/hotspot/StandardExports.java
https://github.com/prometheus/blackbox_exporter
https://github.com/prometheus/blackbox_exporter
https://github.com/prometheus/snmp_exporter
https://github.com/prometheus/snmp_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/client_java/blob/master/simpleclient_hotspot/src/main/java/io/prometheus/client/hotspot/DefaultExports.java
https://github.com/prometheus/client_java/blob/master/simpleclient_hotspot/src/main/java/io/prometheus/client/hotspot/DefaultExports.java
https://github.com/mesosphere/mesos_exporter
https://github.com/mesosphere/mesos_exporter
https://github.com/prometheus/blackbox_exporter
https://github.com/prometheus/blackbox_exporter
https://github.com/prometheus/blackbox_exporter

The second exception is where you’re pulling some stats out of a random instance of a system and don’t care which one

you’re talking to. Consider a set of MySQL replicas you wanted to run some business queries against the data to then

export. Having an exporter that uses your usual load balancing approach to talk to one replica is the sanest approach.

This doesn’t apply when you’re monitoring a system with master-election, in that case you should monitor each instance

individually and deal with the "masterness" in Prometheus. This is as there isn’t always exactly one master, and changing

what a target is underneath Prometheus’s feet will cause oddities.

Scheduling

Metrics should only be pulled from the application when Prometheus scrapes them, exporters should not perform

scrapes based on their own timers. That is, all scrapes should be synchronous.

Accordingly, you should not set timestamps on the metrics you expose, let Prometheus take care of that. If you think you

need timestamps, then you probably need the Pushgateway (https://prometheus.io/docs/instrumenting/pushing/)

instead.

If a metric is particularly expensive to retrieve, i.e. takes more than a minute, it is acceptable to cache it. This should be

noted in the HELP string.

The default scrape timeout for Prometheus is 10 seconds. If your exporter can be expected to exceed this, you should

explicitly call this out in your user documentation.

Pushes

Some applications and monitoring systems only push metrics, for example StatsD, Graphite and collectd.

There are two considerations here.

Firstly, when do you expire metrics? Collectd and things talking to Graphite both export regularly, and when they stop we

want to stop exposing the metrics. Collectd includes an expiry time so we use that, Graphite doesn’t so it is a flag on the

exporter.

StatsD is a bit different, as it is dealing with events rather than metrics. The best model is to run one exporter beside each

application and restart them when the application restarts so that the state is cleared.

Secondly, these sort of systems tend to allow your users to send either deltas or raw counters. You should rely on the raw

counters as far as possible, as that’s the general Prometheus model.

For service-level metrics, e.g. service-level batch jobs, you should have your exporter push into the Pushgateway and exit

after the event rather than handling the state yourself. For instance-level batch metrics, there is no clear pattern yet. The

options are either to abuse the node exporter’s textfile collector, rely on in-memory state (probably best if you don’t need

to persist over a reboot) or implement similar functionality to the textfile collector.

Failed scrapes

There are currently two patterns for failed scrapes where the application you’re talking to doesn’t respond or has other

problems.

The first is to return a 5xx error.

The second is to have a myexporter_up , e.g. haproxy_up , variable that has a value of 0 or 1 depending on whether the

scrape worked.

The latter is better where there’s still some useful metrics you can get even with a failed scrape, such as the HAProxy

exporter providing process stats. The former is a tad easier for users to deal with, as up works in the usual way

(/docs/concepts/jobs_instances/#automatically-generated-labels-and-time-series), although you can’t distinguish between

the exporter being down and the application being down.

10/09/24, 19:22 Writing exporters | Prometheus

https://prometheus.io/docs/instrumenting/writing_exporters/ 7/8

https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/concepts/jobs_instances/#automatically-generated-labels-and-time-series
https://prometheus.io/docs/concepts/jobs_instances/#automatically-generated-labels-and-time-series

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list of trademarks of The Linux

Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-usage) page.

Landing page

It’s nicer for users if visiting http://yourexporter/ has a simple HTML page with the name of the exporter, and a link to

the /metrics page.

Port numbers

A user may have many exporters and Prometheus components on the same machine, so to make that easier each has a

unique port number.

https://github.com/prometheus/prometheus/wiki/Default-port-allocations

(https://github.com/prometheus/prometheus/wiki/Default-port-allocations) is where we track them, this is publicly

editable.

Feel free to grab the next free port number when developing your exporter, preferably before publicly announcing it. If

you’re not ready to release yet, putting your username and WIP is fine.

This is a registry to make our users’ lives a little easier, not a commitment to develop particular exporters. For exporters

for internal applications we recommend using ports outside of the range of default port allocations.

Announcing

Once you’re ready to announce your exporter to the world, email the mailing list and send a PR to add it to the list of

available exporters (https://github.com/prometheus/docs/blob/main/content/docs/instrumenting/exporters.md).

 This documentation is open-source (https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:22 Writing exporters | Prometheus

https://prometheus.io/docs/instrumenting/writing_exporters/ 8/8

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/prometheus/wiki/Default-port-allocations
https://github.com/prometheus/prometheus/wiki/Default-port-allocations
https://github.com/prometheus/docs/blob/main/content/docs/instrumenting/exporters.md
https://github.com/prometheus/docs/blob/main/content/docs/instrumenting/exporters.md
https://github.com/prometheus/docs/blob/main/content/docs/instrumenting/exporters.md
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

Text-based format

Basic info

Text format details

Text format example

OpenMetrics Text Format

Exemplars (Experimental)

Protobuf format

Historical versions

EXPOSITION FORMATS

Metrics can be exposed to Prometheus using a simple text-

based exposition format. There are various client libraries

(/docs/instrumenting/clientlibs/) that implement this format

for you. If your preferred language doesn't have a client

library you can create your own

(/docs/instrumenting/writing_clientlibs/).

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

Client libraries (/docs/instrumenting/clientlibs/)

Writing client libraries (/docs/instrumenting/writing_clientlibs/)

Pushing metrics (/docs/instrumenting/pushing/)

Exporters and integrations (/docs/instrumenting/exporters/)

Writing exporters (/docs/instrumenting/writing_exporters/)

Exposition formats (/docs/instrumenting/exposition_formats/)

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:22 Exposition formats | Prometheus

https://prometheus.io/docs/instrumenting/exposition_formats/ 1/6

https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/writing_clientlibs/
https://prometheus.io/docs/instrumenting/writing_clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/writing_clientlibs/
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/exposition_formats/

Text-based format

As of Prometheus version 2.0, all processes that expose metrics to Prometheus need to use a text-based

format. In this section you can find some basic information about this format as well as a more detailed

breakdown of the format.

Basic info

Aspect Description

Inception April 2014

Supported in Prometheus version >=0.4.0

Transmission HTTP

Encoding UTF-8, \n line endings

HTTP Content-Type text/plain; version=0.0.4 (A missing version value will lead to a fall-

back to the most recent text format version.)

Optional HTTP Content-

Encoding

gzip

Advantages Human-readable

Easy to assemble, especially for minimalistic cases (no nesting

required)

Readable line by line (with the exception of type hints and docstrings)

Limitations Verbose

Types and docstrings not integral part of the syntax, meaning little-

to-nonexistent metric contract validation

Parsing cost

Supported metric

primitives

Counter

Gauge

Histogram

Summary

Untyped

Text format details

Prometheus' text-based format is line oriented. Lines are separated by a line feed character (\n). The last

line must end with a line feed character. Empty lines are ignored.

Line format

Within a line, tokens can be separated by any number of blanks and/or tabs (and must be separated by

at least one if they would otherwise merge with the previous token). Leading and trailing whitespace is

ignored.

10/09/24, 19:22 Exposition formats | Prometheus

https://prometheus.io/docs/instrumenting/exposition_formats/ 2/6

Comments, help text, and type information

Lines with a # as the first non-whitespace character are comments. They are ignored unless the first

token after # is either HELP or TYPE . Those lines are treated as follows: If the token is HELP , at least one

more token is expected, which is the metric name. All remaining tokens are considered the docstring for

that metric name. HELP lines may contain any sequence of UTF-8 characters (after the metric name), but

the backslash and the line feed characters have to be escaped as \\ and \n , respectively. Only one

HELP line may exist for any given metric name.

If the token is TYPE , exactly two more tokens are expected. The first is the metric name, and the second

is either counter , gauge , histogram , summary , or untyped , defining the type for the metric of that name.

Only one TYPE line may exist for a given metric name. The TYPE line for a metric name must appear

before the first sample is reported for that metric name. If there is no TYPE line for a metric name, the

type is set to untyped .

The remaining lines describe samples (one per line) using the following syntax (EBNF

(https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form)):

metric_name [
 "{" label_name "=" `"` label_value `"` { "," label_name "=" `"` label_value `"` } [","] "}"
] value [timestamp]

In the sample syntax:

metric_name and label_name carry the usual Prometheus expression language restrictions.

label_value can be any sequence of UTF-8 characters, but the backslash (\), double-quote ("),

and line feed (\n) characters have to be escaped as \\ , \" , and \n , respectively.

value is a float represented as required by Go's ParseFloat()

(https://golang.org/pkg/strconv/#ParseFloat) function. In addition to standard numerical values,

NaN , +Inf , and -Inf are valid values representing not a number, positive infinity, and negative

infinity, respectively.

The timestamp is an int64 (milliseconds since epoch, i.e. 1970-01-01 00:00:00 UTC, excluding leap

seconds), represented as required by Go's ParseInt() (https://golang.org/pkg/strconv/#ParseInt)

function.

Grouping and sorting

All lines for a given metric must be provided as one single group, with the optional HELP and TYPE lines

first (in no particular order). Beyond that, reproducible sorting in repeated expositions is preferred but

not required, i.e. do not sort if the computational cost is prohibitive.

Each line must have a unique combination of a metric name and labels. Otherwise, the ingestion

behavior is undefined.

Histograms and summaries

The histogram and summary types are difficult to represent in the text format. The following conventions

apply:

10/09/24, 19:22 Exposition formats | Prometheus

https://prometheus.io/docs/instrumenting/exposition_formats/ 3/6

https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://golang.org/pkg/strconv/#ParseFloat
https://golang.org/pkg/strconv/#ParseFloat
https://golang.org/pkg/strconv/#ParseInt

The sample sum for a summary or histogram named x is given as a separate sample named

x_sum .

The sample count for a summary or histogram named x is given as a separate sample named

x_count .

Each quantile of a summary named x is given as a separate sample line with the same name x and

a label {quantile="y"} .

Each bucket count of a histogram named x is given as a separate sample line with the name

x_bucket and a label {le="y"} (where y is the upper bound of the bucket).

A histogram must have a bucket with {le="+Inf"} . Its value must be identical to the value of

x_count .

The buckets of a histogram and the quantiles of a summary must appear in increasing numerical

order of their label values (for the le or the quantile label, respectively).

Text format example

Below is an example of a full-fledged Prometheus metric exposition, including comments, HELP and

TYPE expressions, a histogram, a summary, character escaping examples, and more.

10/09/24, 19:22 Exposition formats | Prometheus

https://prometheus.io/docs/instrumenting/exposition_formats/ 4/6

HELP http_requests_total The total number of HTTP requests.
TYPE http_requests_total counter
http_requests_total{method="post",code="200"} 1027 1395066363000
http_requests_total{method="post",code="400"} 3 1395066363000

Escaping in label values:
msdos_file_access_time_seconds{path="C:\\DIR\\FILE.TXT",error="Cannot find file:\n\"FILE.TXT\""} 1.45825591

Minimalistic line:
metric_without_timestamp_and_labels 12.47

A weird metric from before the epoch:
something_weird{problem="division by zero"} +Inf -3982045

A histogram, which has a pretty complex representation in the text format:
HELP http_request_duration_seconds A histogram of the request duration.
TYPE http_request_duration_seconds histogram
http_request_duration_seconds_bucket{le="0.05"} 24054
http_request_duration_seconds_bucket{le="0.1"} 33444
http_request_duration_seconds_bucket{le="0.2"} 100392
http_request_duration_seconds_bucket{le="0.5"} 129389
http_request_duration_seconds_bucket{le="1"} 133988
http_request_duration_seconds_bucket{le="+Inf"} 144320
http_request_duration_seconds_sum 53423
http_request_duration_seconds_count 144320

Finally a summary, which has a complex representation, too:
HELP rpc_duration_seconds A summary of the RPC duration in seconds.
TYPE rpc_duration_seconds summary
rpc_duration_seconds{quantile="0.01"} 3102
rpc_duration_seconds{quantile="0.05"} 3272
rpc_duration_seconds{quantile="0.5"} 4773
rpc_duration_seconds{quantile="0.9"} 9001
rpc_duration_seconds{quantile="0.99"} 76656
rpc_duration_seconds_sum 1.7560473e+07
rpc_duration_seconds_count 2693

OpenMetrics Text Format

OpenMetrics (https://github.com/OpenObservability/OpenMetrics) is the an effort to standardize metric

wire formatting built off of Prometheus text format. It is possible to scrape targets and it is also available

to use for federating metrics since at least v2.23.0.

Exemplars (Experimental)

Utilizing the OpenMetrics format allows for the exposition and querying of Exemplars

(https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#exemplars).

Exemplars provide a point in time snapshot related to a metric set for an otherwise summarized

MetricFamily. Additionally they may have a Trace ID attached to them which when used to together with

a tracing system can provide more detailed information related to the specific service.

10/09/24, 19:22 Exposition formats | Prometheus

https://prometheus.io/docs/instrumenting/exposition_formats/ 5/6

https://github.com/OpenObservability/OpenMetrics
https://github.com/OpenObservability/OpenMetrics
https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#exemplars
https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#exemplars

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list of

trademarks of The Linux Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-usage) page.

To enable this experimental feature you must have at least version v2.26.0 and add --enable-

feature=exemplar-storage to your arguments.

Protobuf format

Earlier versions of Prometheus supported an exposition format based on Protocol Buffers

(https://developers.google.com/protocol-buffers/) (aka Protobuf) in addition to the current text-based

format. With Prometheus 2.0, the Protobuf format was marked as deprecated and Prometheus stopped

ingesting samples from said exposition format.

However, new experimental features were added to Prometheus where the Protobuf format was

considered the most viable option. Making Prometheus accept Protocol Buffers once again.

Here is a list of experimental features that, once enabled, will configure Prometheus to favor the

Protobuf exposition format:

feature flag version that introduced it

native-histograms 2.40.0

created-timestamp-zero-ingestion 2.50.0

Historical versions

For details on historical format versions, see the legacy Client Data Exposition Format

(https://docs.google.com/document/d/1ZjyKiKxZV83VI9ZKAXRGKaUKK2BIWCT7oiGBKDBpjEY/edit?

usp=sharing) document.

The current version of the original Protobuf format (with the recent extensions for native histograms) is

maintained in the prometheus/client_model repository (https://github.com/prometheus/client_model).

 This documentation is open-source (https://github.com/prometheus/docs#contributing-changes).

Please help improve it by filing issues or pull requests.

10/09/24, 19:22 Exposition formats | Prometheus

https://prometheus.io/docs/instrumenting/exposition_formats/ 6/6

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://docs.google.com/document/d/1ZjyKiKxZV83VI9ZKAXRGKaUKK2BIWCT7oiGBKDBpjEY/edit?usp=sharing
https://docs.google.com/document/d/1ZjyKiKxZV83VI9ZKAXRGKaUKK2BIWCT7oiGBKDBpjEY/edit?usp=sharing
https://docs.google.com/document/d/1ZjyKiKxZV83VI9ZKAXRGKaUKK2BIWCT7oiGBKDBpjEY/edit?usp=sharing
https://github.com/prometheus/client_model
https://github.com/prometheus/client_model
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

Automated security

scanners

Prometheus

Alertmanager

Pushgateway

SECURITY MODEL

Prometheus is a sophisticated system with

many components and many integrations with

other systems. It can be deployed in a variety

of trusted and untrusted environments.

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

Security (/docs/operating/security/)

Integrations (/docs/operating/integrations/)

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:22 Security | Prometheus

https://prometheus.io/docs/operating/security/ 1/9

https://prometheus.io/docs/operating/security/
https://prometheus.io/docs/operating/integrations/

Exporters

Client Libraries

Authentication,

Authorization, and

Encryption

API Security

Secrets

Denial of Service

Libraries

Build Process

Prometheus-

Community

External audits

This page describes the general security

assumptions of Prometheus and the attack

vectors that some configurations may enable.

As with any complex system, it is near certain

that bugs will be found, some of them

security-relevant. If you find a security bug
please report it privately to the maintainers

listed in the MAINTAINERS of the relevant

repository and CC prometheus-

team@googlegroups.com (mailto:prometheus-

team@googlegroups.com). We will fix the

issue as soon as possible and coordinate a

release date with you. You will be able to

choose if you want public acknowledgement of your effort and if you want to be

mentioned by name.

Automated security scanners

Special note for security scanner users: Please be mindful with the reports

produced. Most scanners are generic and produce lots of false positives. More

and more reports are being sent to us, and it takes a significant amount of work

to go through all of them and reply with the care you expect. This problem is

particularly bad with Go and NPM dependency scanners.

As a courtesy to us and our time, we would ask you not to submit raw reports.

Instead, please submit them with an analysis outlining which specific results are

applicable to us and why.

Prometheus is maintained by volunteers, not by a company. Therefore, fixing

security issues is done on a best-effort basis. We strive to release security fixes

within 7 days for: Prometheus, Alertmanager, Node Exporter, Blackbox

Exporter, and Pushgateway.

10/09/24, 19:22 Security | Prometheus

https://prometheus.io/docs/operating/security/ 2/9

mailto:prometheus-team@googlegroups.com
mailto:prometheus-team@googlegroups.com
mailto:prometheus-team@googlegroups.com
mailto:prometheus-team@googlegroups.com

Prometheus

It is presumed that untrusted users have access to the Prometheus HTTP

endpoint and logs. They have access to all time series information contained in

the database, plus a variety of operational/debugging information.

It is also presumed that only trusted users have the ability to change the

command line, configuration file, rule files and other aspects of the runtime

environment of Prometheus and other components.

Which targets Prometheus scrapes, how often and with what other settings is

determined entirely via the configuration file. The administrator may decide to

use information from service discovery systems, which combined with

relabelling may grant some of this control to anyone who can modify data in

that service discovery system.

Scraped targets may be run by untrusted users. It should not by default be

possible for a target to expose data that impersonates a different target. The

honor_labels option removes this protection, as can certain relabelling setups.

As of Prometheus 2.0, the --web.enable-admin-api flag controls access to the

administrative HTTP API which includes functionality such as deleting time

series. This is disabled by default. If enabled, administrative and mutating

functionality will be accessible under the /api/*/admin/ paths. The --

web.enable-lifecycle flag controls HTTP reloads and shutdowns of

Prometheus. This is also disabled by default. If enabled they will be accessible

under the /-/reload and /-/quit paths.

In Prometheus 1.x, /-/reload and using DELETE on /api/v1/series are

accessible to anyone with access to the HTTP API. The /-/quit endpoint is

disabled by default, but can be enabled with the -web.enable-remote-shutdown

flag.

The remote read feature allows anyone with HTTP access to send queries to the

remote read endpoint. If for example the PromQL queries were ending up

directly run against a relational database, then anyone with the ability to send

queries to Prometheus (such as via Grafana) can run arbitrary SQL against that

database.

10/09/24, 19:22 Security | Prometheus

https://prometheus.io/docs/operating/security/ 3/9

Alertmanager

Any user with access to the Alertmanager HTTP endpoint has access to its data.

They can create and resolve alerts. They can create, modify and delete silences.

Where notifications are sent to is determined by the configuration file. With

certain templating setups it is possible for notifications to end up at an alert-

defined destination. For example if notifications use an alert label as the

destination email address, anyone who can send alerts to the Alertmanager can

send notifications to any email address. If the alert-defined destination is a

templatable secret field, anyone with access to either Prometheus or

Alertmanager will be able to view the secrets.

Any secret fields which are templatable are intended for routing notifications in

the above use case. They are not intended as a way for secrets to be separated

out from the configuration files using the template file feature. Any secrets

stored in template files could be exfiltrated by anyone able to configure

receivers in the Alertmanager configuration file. For example in large setups,

each team might have an alertmanager configuration file fragment which they

fully control, that are then combined into the full final configuration file.

Pushgateway

Any user with access to the Pushgateway HTTP endpoint can create, modify and

delete the metrics contained within. As the Pushgateway is usually scraped with

honor_labels enabled, this means anyone with access to the Pushgateway can

create any time series in Prometheus.

The --web.enable-admin-api flag controls access to the administrative HTTP

API, which includes functionality such as wiping all the existing metric groups.

This is disabled by default. If enabled, administrative functionality will be

accessible under the /api/*/admin/ paths.

Exporters

Exporters generally only talk to one configured instance with a preset set of

commands/requests, which cannot be expanded via their HTTP endpoint.

10/09/24, 19:22 Security | Prometheus

https://prometheus.io/docs/operating/security/ 4/9

There are also exporters such as the SNMP and Blackbox exporters that take

their targets from URL parameters. Thus anyone with HTTP access to these

exporters can make them send requests to arbitrary endpoints. As they also

support client-side authentication, this could lead to a leak of secrets such as

HTTP Basic Auth passwords or SNMP community strings. Challenge-response

authentication mechanisms such as TLS are not affected by this.

Client Libraries

Client libraries are intended to be included in users' applications.

If using a client-library-provided HTTP handler, it should not be possible for

malicious requests that reach that handler to cause issues beyond those

resulting from additional load and failed scrapes.

Authentication, Authorization, and Encryption

Prometheus, and most exporters, support TLS. Including authentication of

clients via TLS client certificates. Details on configuring Prometheus are here

(https://prometheus.io/docs/guides/tls-encryption/).

The Go projects share the same TLS library, based on the Go crypto/tls

(https://golang.org/pkg/crypto/tls) library. We default to TLS 1.2 as minimum

version. Our policy regarding this is based on Qualys SSL Labs

(https://www.ssllabs.com/) recommendations, where we strive to achieve a

grade 'A' with a default configuration and correctly provided certificates, while

sticking as closely as possible to the upstream Go defaults. Achieving that grade

provides a balance between perfect security and usability.

TLS will be added to Java exporters in the future.

If you have special TLS needs, like a different cipher suite or older TLS version,

you can tune the minimum TLS version and the ciphers, as long as the cipher is

not marked as insecure

(https://golang.org/pkg/crypto/tls/#InsecureCipherSuites) in the crypto/tls

(https://golang.org/pkg/crypto/tls) library. If that still does not suit you, the

current TLS settings enable you to build a secure tunnel between the servers

and reverse proxies with more special requirements.

10/09/24, 19:22 Security | Prometheus

https://prometheus.io/docs/operating/security/ 5/9

https://prometheus.io/docs/guides/tls-encryption/
https://prometheus.io/docs/guides/tls-encryption/
https://golang.org/pkg/crypto/tls
https://golang.org/pkg/crypto/tls
https://www.ssllabs.com/
https://www.ssllabs.com/
https://golang.org/pkg/crypto/tls/#InsecureCipherSuites
https://golang.org/pkg/crypto/tls/#InsecureCipherSuites
https://golang.org/pkg/crypto/tls
https://golang.org/pkg/crypto/tls

HTTP Basic Authentication is also supported. Basic Authentication can be used

without TLS, but it will then expose usernames and passwords in cleartext over

the network.

On the server side, basic authentication passwords are stored as hashes with

the bcrypt (https://en.wikipedia.org/wiki/Bcrypt) algorithm. It is your

responsibility to pick the number of rounds that matches your security

standards. More rounds make brute-force more complicated at the cost of

more CPU power and more time to authenticate the requests.

Various Prometheus components support client-side authentication and

encryption. If TLS client support is offered, there is often also an option called

insecure_skip_verify which skips SSL verification.

API Security

As administrative and mutating endpoints are intended to be accessed via

simple tools such as cURL, there is no built in CSRF

(https://en.wikipedia.org/wiki/Cross-site_request_forgery) protection as that

would break such use cases. Accordingly when using a reverse proxy, you may

wish to block such paths to prevent CSRF.

For non-mutating endpoints, you may wish to set CORS headers

(https://fetch.spec.whatwg.org/#http-cors-protocol) such as Access-Control-

Allow-Origin in your reverse proxy to prevent XSS

(https://en.wikipedia.org/wiki/Cross-site_scripting).

If you are composing PromQL queries that include input from untrusted users

(e.g. URL parameters to console templates, or something you built yourself)

who are not meant to be able to run arbitrary PromQL queries make sure any

untrusted input is appropriately escaped to prevent injection attacks. For

example up{job="<user_input>"} would become up{job=""} or

some_metric{zzz=""} if the <user_input> was "} or some_metric{zzz=" .

For those using Grafana note that dashboard permissions are not data source

permissions (https://grafana.com/docs/grafana/latest/permissions/#data-

source-permissions), so do not limit a user's ability to run arbitrary queries in

proxy mode.

10/09/24, 19:22 Security | Prometheus

https://prometheus.io/docs/operating/security/ 6/9

https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://fetch.spec.whatwg.org/#http-cors-protocol
https://fetch.spec.whatwg.org/#http-cors-protocol
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_scripting
https://grafana.com/docs/grafana/latest/permissions/#data-source-permissions
https://grafana.com/docs/grafana/latest/permissions/#data-source-permissions
https://grafana.com/docs/grafana/latest/permissions/#data-source-permissions
https://grafana.com/docs/grafana/latest/permissions/#data-source-permissions

Secrets

Non-secret information or fields may be available via the HTTP API and/or logs.

In Prometheus, metadata retrieved from service discovery is not considered

secret. Throughout the Prometheus system, metrics are not considered secret.

Fields containing secrets in configuration files (marked explicitly as such in the

documentation) will not be exposed in logs or via the HTTP API. Secrets should

not be placed in other configuration fields, as it is common for components to

expose their configuration over their HTTP endpoint. It is the responsibility of

the user to protect files on disk from unwanted reads and writes.

Secrets from other sources used by dependencies (e.g. the AWS_SECRET_KEY

environment variable as used by EC2 service discovery) may end up exposed

due to code outside of our control or due to functionality that happens to

expose wherever it is stored.

Denial of Service

There are some mitigations in place for excess load or expensive queries.

However, if too many or too expensive queries/metrics are provided

components will fall over. It is more likely that a component will be accidentally

taken out by a trusted user than by malicious action.

It is the responsibility of the user to ensure they provide components with

sufficient resources including CPU, RAM, disk space, IOPS, file descriptors, and

bandwidth.

It is recommended to monitor all components for failure, and to have them

automatically restart on failure.

Libraries

This document considers vanilla binaries built from the stock source code.

Information presented here does not apply if you modify Prometheus source

code, or use Prometheus internals (beyond the official client library APIs) in

your own code.

10/09/24, 19:22 Security | Prometheus

https://prometheus.io/docs/operating/security/ 7/9

Build Process

The build pipeline for Prometheus runs on third-party providers to which many

members of the Prometheus development team and the staff of those

providers have access. If you are concerned about the exact provenance of

your binaries, it is recommended to build them yourself rather than relying on

the pre-built binaries provided by the project.

Prometheus-Community

The repositories under the Prometheus-Community

(https://github.com/prometheus-community) organization are supported by

third-party maintainers.

If you find a security bug in the Prometheus-Community

(https://github.com/prometheus-community) organization, please report it

privately to the maintainers listed in the MAINTAINERS of the relevant

repository and CC prometheus-team@googlegroups.com (mailto:prometheus-

team@googlegroups.com).

Some repositories under that organization might have a different security

model than the ones presented in this document. In such a case, please refer to

the documentation of those repositories.

External audits

In 2018, CNCF (https://cncf.io) sponsored an external security audit by

cure53 (https://cure53.de) which ran from April 2018 to June 2018. For

more details, please read the final report of the audit

(/assets/downloads/2018-06-11--cure53_security_audit.pdf).

In 2020, CNCF sponsored a second audit by cure53

(/assets/downloads/2020-07-21--

cure53_security_audit_node_exporter.pdf) of Node Exporter.

In 2023, CNCF sponsored a software supply chain security assessment of

Prometheus (/assets/downloads/2023-04-19--

chainguard_supply_chain_assessment.pdf) by Chainguard.

10/09/24, 19:22 Security | Prometheus

https://prometheus.io/docs/operating/security/ 8/9

https://github.com/prometheus-community
https://github.com/prometheus-community
https://github.com/prometheus-community
https://github.com/prometheus-community
mailto:prometheus-team@googlegroups.com
mailto:prometheus-team@googlegroups.com
mailto:prometheus-team@googlegroups.com
https://cncf.io/
https://cncf.io/
https://cure53.de/
https://cure53.de/
https://prometheus.io/assets/downloads/2018-06-11--cure53_security_audit.pdf
https://prometheus.io/assets/downloads/2018-06-11--cure53_security_audit.pdf
https://prometheus.io/assets/downloads/2020-07-21--cure53_security_audit_node_exporter.pdf
https://prometheus.io/assets/downloads/2020-07-21--cure53_security_audit_node_exporter.pdf
https://prometheus.io/assets/downloads/2020-07-21--cure53_security_audit_node_exporter.pdf
https://prometheus.io/assets/downloads/2023-04-19--chainguard_supply_chain_assessment.pdf
https://prometheus.io/assets/downloads/2023-04-19--chainguard_supply_chain_assessment.pdf
https://prometheus.io/assets/downloads/2023-04-19--chainguard_supply_chain_assessment.pdf
https://prometheus.io/assets/downloads/2023-04-19--chainguard_supply_chain_assessment.pdf

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:22 Security | Prometheus

https://prometheus.io/docs/operating/security/ 9/9

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

File Service Discovery

Remote Endpoints and Storage

Alertmanager Webhook Receiver

Management

Other

INTEGRATIONS

In addition to client libraries (/docs/instrumenting/clientlibs/) and

exporters and related libraries (/docs/instrumenting/exporters/), there

are numerous other generic integration points in Prometheus. This

page lists some of the integrations with these.

Not all integrations are listed here, due to overlapping functionality or

still being in development. The exporter default port

(https://github.com/prometheus/prometheus/wiki/Default-port-allocations) wiki page also happens to include a few non-

exporter integrations that fit in these categories.

File Service Discovery

For service discovery mechanisms not natively supported by Prometheus, file-based service discovery

(/docs/operating/configuration/#%3Cfile_sd_config%3E) provides an interface for integrating.

Kuma (https://github.com/kumahq/kuma/tree/master/app/kuma-prometheus-sd)

Lightsail (https://github.com/n888/prometheus-lightsail-sd)

Netbox (https://github.com/FlxPeters/netbox-prometheus-sd)

Packet (https://github.com/packethost/prometheus-packet-sd)

Scaleway (https://github.com/scaleway/prometheus-scw-sd)

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

Security (/docs/operating/security/)

Integrations (/docs/operating/integrations/)

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:22 Integrations | Prometheus

https://prometheus.io/docs/operating/integrations/ 1/3

https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/exporters/
https://github.com/prometheus/prometheus/wiki/Default-port-allocations
https://github.com/prometheus/prometheus/wiki/Default-port-allocations
https://prometheus.io/docs/operating/configuration/#%3Cfile_sd_config%3E
https://prometheus.io/docs/operating/configuration/#%3Cfile_sd_config%3E
https://github.com/kumahq/kuma/tree/master/app/kuma-prometheus-sd
https://github.com/kumahq/kuma/tree/master/app/kuma-prometheus-sd
https://github.com/n888/prometheus-lightsail-sd
https://github.com/n888/prometheus-lightsail-sd
https://github.com/FlxPeters/netbox-prometheus-sd
https://github.com/FlxPeters/netbox-prometheus-sd
https://github.com/packethost/prometheus-packet-sd
https://github.com/packethost/prometheus-packet-sd
https://github.com/scaleway/prometheus-scw-sd
https://github.com/scaleway/prometheus-scw-sd
https://prometheus.io/docs/operating/security/
https://prometheus.io/docs/operating/integrations/

Remote Endpoints and Storage

The remote write (/docs/operating/configuration/#remote_write) and remote read

(/docs/operating/configuration/#remote_read) features of Prometheus allow transparently sending and receiving

samples. This is primarily intended for long term storage. It is recommended that you perform careful evaluation of any

solution in this space to confirm it can handle your data volumes.

AppOptics (https://github.com/solarwinds/prometheus2appoptics): write

AWS Timestream (https://github.com/dpattmann/prometheus-timestream-adapter): read and write

Azure Data Explorer (https://github.com/cosh/PrometheusToAdx): read and write

Azure Event Hubs (https://github.com/bryanklewis/prometheus-eventhubs-adapter): write

Chronix (https://github.com/ChronixDB/chronix.ingester): write

Cortex (https://github.com/cortexproject/cortex): read and write

CrateDB (https://github.com/crate/crate_adapter): read and write

Elasticsearch (https://www.elastic.co/guide/en/beats/metricbeat/master/metricbeat-metricset-prometheus-

remote_write.html): write

Gnocchi (https://gnocchi.osci.io/prometheus.html): write

Google BigQuery (https://github.com/KohlsTechnology/prometheus_bigquery_remote_storage_adapter): read and

write

Google Cloud Spanner (https://github.com/google/truestreet): read and write

Grafana Mimir (https://github.com/grafana/mimir): read and write

Graphite

(https://github.com/prometheus/prometheus/tree/main/documentation/examples/remote_storage/remote_storage_ad

write

GreptimeDB (https://github.com/GreptimeTeam/greptimedb): read and write

InfluxDB (https://docs.influxdata.com/influxdb/v1.8/supported_protocols/prometheus): read and write

Instana (https://www.instana.com/docs/ecosystem/prometheus/#remote-write): write

IRONdb (https://github.com/circonus-labs/irondb-prometheus-adapter): read and write

Kafka (https://github.com/Telefonica/prometheus-kafka-adapter): write

M3DB (https://m3db.io/docs/integrations/prometheus/): read and write

Mezmo (https://docs.mezmo.com/telemetry-pipelines/prometheus-remote-write-pipeline-source): write

New Relic (https://docs.newrelic.com/docs/set-or-remove-your-prometheus-remote-write-integration): write

OpenTSDB

(https://github.com/prometheus/prometheus/tree/main/documentation/examples/remote_storage/remote_storage_ad

write

QuasarDB (https://doc.quasardb.net/master/user-guide/integration/prometheus.html): read and write

SignalFx (https://github.com/signalfx/metricproxy#prometheus): write

Splunk (https://github.com/kebe7jun/ropee): read and write

Sysdig Monitor (https://docs.sysdig.com/en/docs/installation/prometheus-remote-write/): write

TiKV (https://github.com/bragfoo/TiPrometheus): read and write

Thanos (https://github.com/thanos-io/thanos): read and write

VictoriaMetrics (https://github.com/VictoriaMetrics/VictoriaMetrics): write

Wavefront (https://github.com/wavefrontHQ/prometheus-storage-adapter): write

Prom-migrator (https://github.com/timescale/promscale/tree/master/migration-tool/cmd/prom-migrator) is a tool for

migrating data between remote storage systems.

Alertmanager Webhook Receiver

For notification mechanisms not natively supported by the Alertmanager, the webhook receiver

(/docs/alerting/configuration/#webhook_config) allows for integration.

alertmanager-webhook-logger (https://github.com/tomtom-international/alertmanager-webhook-logger): logs alerts

Alertsnitch (https://gitlab.com/yakshaving.art/alertsnitch): saves alerts to a MySQL database

Asana (https://gitlab.com/lupudu/alertmanager-asana-bridge)

AWS SNS (https://github.com/DataReply/alertmanager-sns-forwarder)

Better Uptime (https://docs.betteruptime.com/integrations/prometheus)

10/09/24, 19:22 Integrations | Prometheus

https://prometheus.io/docs/operating/integrations/ 2/3

https://prometheus.io/docs/operating/configuration/#remote_write
https://prometheus.io/docs/operating/configuration/#remote_write
https://prometheus.io/docs/operating/configuration/#remote_read
https://prometheus.io/docs/operating/configuration/#remote_read
https://github.com/solarwinds/prometheus2appoptics
https://github.com/solarwinds/prometheus2appoptics
https://github.com/dpattmann/prometheus-timestream-adapter
https://github.com/dpattmann/prometheus-timestream-adapter
https://github.com/cosh/PrometheusToAdx
https://github.com/cosh/PrometheusToAdx
https://github.com/bryanklewis/prometheus-eventhubs-adapter
https://github.com/bryanklewis/prometheus-eventhubs-adapter
https://github.com/ChronixDB/chronix.ingester
https://github.com/ChronixDB/chronix.ingester
https://github.com/cortexproject/cortex
https://github.com/cortexproject/cortex
https://github.com/crate/crate_adapter
https://github.com/crate/crate_adapter
https://www.elastic.co/guide/en/beats/metricbeat/master/metricbeat-metricset-prometheus-remote_write.html
https://www.elastic.co/guide/en/beats/metricbeat/master/metricbeat-metricset-prometheus-remote_write.html
https://www.elastic.co/guide/en/beats/metricbeat/master/metricbeat-metricset-prometheus-remote_write.html
https://gnocchi.osci.io/prometheus.html
https://gnocchi.osci.io/prometheus.html
https://github.com/KohlsTechnology/prometheus_bigquery_remote_storage_adapter
https://github.com/KohlsTechnology/prometheus_bigquery_remote_storage_adapter
https://github.com/google/truestreet
https://github.com/google/truestreet
https://github.com/grafana/mimir
https://github.com/grafana/mimir
https://github.com/prometheus/prometheus/tree/main/documentation/examples/remote_storage/remote_storage_adapter
https://github.com/prometheus/prometheus/tree/main/documentation/examples/remote_storage/remote_storage_adapter
https://github.com/GreptimeTeam/greptimedb
https://github.com/GreptimeTeam/greptimedb
https://docs.influxdata.com/influxdb/v1.8/supported_protocols/prometheus
https://docs.influxdata.com/influxdb/v1.8/supported_protocols/prometheus
https://www.instana.com/docs/ecosystem/prometheus/#remote-write
https://www.instana.com/docs/ecosystem/prometheus/#remote-write
https://github.com/circonus-labs/irondb-prometheus-adapter
https://github.com/circonus-labs/irondb-prometheus-adapter
https://github.com/Telefonica/prometheus-kafka-adapter
https://github.com/Telefonica/prometheus-kafka-adapter
https://m3db.io/docs/integrations/prometheus/
https://m3db.io/docs/integrations/prometheus/
https://docs.mezmo.com/telemetry-pipelines/prometheus-remote-write-pipeline-source
https://docs.mezmo.com/telemetry-pipelines/prometheus-remote-write-pipeline-source
https://docs.newrelic.com/docs/set-or-remove-your-prometheus-remote-write-integration
https://docs.newrelic.com/docs/set-or-remove-your-prometheus-remote-write-integration
https://github.com/prometheus/prometheus/tree/main/documentation/examples/remote_storage/remote_storage_adapter
https://github.com/prometheus/prometheus/tree/main/documentation/examples/remote_storage/remote_storage_adapter
https://doc.quasardb.net/master/user-guide/integration/prometheus.html
https://doc.quasardb.net/master/user-guide/integration/prometheus.html
https://github.com/signalfx/metricproxy#prometheus
https://github.com/signalfx/metricproxy#prometheus
https://github.com/kebe7jun/ropee
https://github.com/kebe7jun/ropee
https://docs.sysdig.com/en/docs/installation/prometheus-remote-write/
https://docs.sysdig.com/en/docs/installation/prometheus-remote-write/
https://github.com/bragfoo/TiPrometheus
https://github.com/bragfoo/TiPrometheus
https://github.com/thanos-io/thanos
https://github.com/thanos-io/thanos
https://github.com/VictoriaMetrics/VictoriaMetrics
https://github.com/VictoriaMetrics/VictoriaMetrics
https://github.com/wavefrontHQ/prometheus-storage-adapter
https://github.com/wavefrontHQ/prometheus-storage-adapter
https://github.com/timescale/promscale/tree/master/migration-tool/cmd/prom-migrator
https://github.com/timescale/promscale/tree/master/migration-tool/cmd/prom-migrator
https://prometheus.io/docs/alerting/configuration/#webhook_config
https://prometheus.io/docs/alerting/configuration/#webhook_config
https://github.com/tomtom-international/alertmanager-webhook-logger
https://github.com/tomtom-international/alertmanager-webhook-logger
https://gitlab.com/yakshaving.art/alertsnitch
https://gitlab.com/yakshaving.art/alertsnitch
https://gitlab.com/lupudu/alertmanager-asana-bridge
https://gitlab.com/lupudu/alertmanager-asana-bridge
https://github.com/DataReply/alertmanager-sns-forwarder
https://github.com/DataReply/alertmanager-sns-forwarder
https://docs.betteruptime.com/integrations/prometheus
https://docs.betteruptime.com/integrations/prometheus

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list of trademarks of The Linux

Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-usage) page.

Canopsis (https://git.canopsis.net/canopsis-connectors/connector-prometheus2canopsis)

DingTalk (https://github.com/timonwong/prometheus-webhook-dingtalk)

Discord (https://github.com/benjojo/alertmanager-discord)

GitLab (https://docs.gitlab.com/ee/operations/metrics/alerts.html#external-prometheus-instances)

Gotify (https://github.com/DRuggeri/alertmanager_gotify_bridge)

GELF (https://github.com/b-com-software-basis/alertmanager2gelf)

Heii On-Call (https://heiioncall.com/guides/prometheus-integration)

Icinga2 (https://github.com/vshn/signalilo)

iLert (https://docs.ilert.com/integrations/prometheus)

IRC Bot (https://github.com/multimfi/bot)

JIRAlert (https://github.com/free/jiralert)

Matrix (https://github.com/matrix-org/go-neb)

Phabricator / Maniphest (https://github.com/knyar/phalerts)

prom2teams (https://github.com/idealista/prom2teams): forwards notifications to Microsoft Teams

Ansible Tower (https://github.com/pja237/prom2tower): call Ansible Tower (AWX) API on alerts (launch jobs etc.)

Signal (https://github.com/dgl/alertmanager-webhook-signald)

SIGNL4 (https://www.signl4.com/blog/portfolio_item/prometheus-alertmanager-mobile-alert-notification-duty-

schedule-escalation)

SMS (https://github.com/messagebird/sachet): supports multiple providers

(https://github.com/messagebird/sachet/blob/master/examples/config.yaml)

SNMP traps (https://github.com/maxwo/snmp_notifier)

Squadcast (https://support.squadcast.com/docs/prometheus)

STOMP (https://github.com/thewillyhuman/alertmanager-stomp-forwarder)

Telegram bot (https://github.com/inCaller/prometheus_bot)

xMatters (https://github.com/xmatters/xm-labs-prometheus)

XMPP Bot (https://github.com/jelmer/prometheus-xmpp-alerts)

Zenduty (https://docs.zenduty.com/docs/prometheus/)

Zoom (https://github.com/Code2Life/nodess-apps/tree/master/src/zoom-alert-2.0)

Management

Prometheus does not include configuration management functionality, allowing you to integrate it with your existing

systems or build on top of it.

Prometheus Operator (https://github.com/coreos/prometheus-operator): Manages Prometheus on top of

Kubernetes

Promgen (https://github.com/line/promgen): Web UI and configuration generator for Prometheus and Alertmanager

Other

Alert analysis (https://github.com/m0nikasingh/am2ch): Stores alerts into a ClickHouse database and provides alert

analysis dashboards

karma (https://github.com/prymitive/karma): alert dashboard

PushProx (https://github.com/RobustPerception/PushProx): Proxy to transverse NAT and similar network setups

Promdump (https://github.com/ihcsim/promdump): kubectl plugin to dump and restore data blocks

Promregator (https://github.com/promregator/promregator): discovery and scraping for Cloud Foundry applications

pint (https://github.com/cloudflare/pint): Prometheus rule linter

 This documentation is open-source (https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:22 Integrations | Prometheus

https://prometheus.io/docs/operating/integrations/ 3/3

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://git.canopsis.net/canopsis-connectors/connector-prometheus2canopsis
https://git.canopsis.net/canopsis-connectors/connector-prometheus2canopsis
https://github.com/timonwong/prometheus-webhook-dingtalk
https://github.com/timonwong/prometheus-webhook-dingtalk
https://github.com/benjojo/alertmanager-discord
https://github.com/benjojo/alertmanager-discord
https://docs.gitlab.com/ee/operations/metrics/alerts.html#external-prometheus-instances
https://docs.gitlab.com/ee/operations/metrics/alerts.html#external-prometheus-instances
https://github.com/DRuggeri/alertmanager_gotify_bridge
https://github.com/DRuggeri/alertmanager_gotify_bridge
https://github.com/b-com-software-basis/alertmanager2gelf
https://github.com/b-com-software-basis/alertmanager2gelf
https://heiioncall.com/guides/prometheus-integration
https://heiioncall.com/guides/prometheus-integration
https://github.com/vshn/signalilo
https://github.com/vshn/signalilo
https://docs.ilert.com/integrations/prometheus
https://docs.ilert.com/integrations/prometheus
https://github.com/multimfi/bot
https://github.com/multimfi/bot
https://github.com/free/jiralert
https://github.com/free/jiralert
https://github.com/matrix-org/go-neb
https://github.com/matrix-org/go-neb
https://github.com/knyar/phalerts
https://github.com/knyar/phalerts
https://github.com/idealista/prom2teams
https://github.com/idealista/prom2teams
https://github.com/pja237/prom2tower
https://github.com/pja237/prom2tower
https://github.com/dgl/alertmanager-webhook-signald
https://github.com/dgl/alertmanager-webhook-signald
https://www.signl4.com/blog/portfolio_item/prometheus-alertmanager-mobile-alert-notification-duty-schedule-escalation
https://www.signl4.com/blog/portfolio_item/prometheus-alertmanager-mobile-alert-notification-duty-schedule-escalation
https://www.signl4.com/blog/portfolio_item/prometheus-alertmanager-mobile-alert-notification-duty-schedule-escalation
https://github.com/messagebird/sachet
https://github.com/messagebird/sachet
https://github.com/messagebird/sachet/blob/master/examples/config.yaml
https://github.com/messagebird/sachet/blob/master/examples/config.yaml
https://github.com/maxwo/snmp_notifier
https://github.com/maxwo/snmp_notifier
https://support.squadcast.com/docs/prometheus
https://support.squadcast.com/docs/prometheus
https://github.com/thewillyhuman/alertmanager-stomp-forwarder
https://github.com/thewillyhuman/alertmanager-stomp-forwarder
https://github.com/inCaller/prometheus_bot
https://github.com/inCaller/prometheus_bot
https://github.com/xmatters/xm-labs-prometheus
https://github.com/xmatters/xm-labs-prometheus
https://github.com/jelmer/prometheus-xmpp-alerts
https://github.com/jelmer/prometheus-xmpp-alerts
https://docs.zenduty.com/docs/prometheus/
https://docs.zenduty.com/docs/prometheus/
https://github.com/Code2Life/nodess-apps/tree/master/src/zoom-alert-2.0
https://github.com/Code2Life/nodess-apps/tree/master/src/zoom-alert-2.0
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/line/promgen
https://github.com/line/promgen
https://github.com/m0nikasingh/am2ch
https://github.com/m0nikasingh/am2ch
https://github.com/prymitive/karma
https://github.com/prymitive/karma
https://github.com/RobustPerception/PushProx
https://github.com/RobustPerception/PushProx
https://github.com/ihcsim/promdump
https://github.com/ihcsim/promdump
https://github.com/promregator/promregator
https://github.com/promregator/promregator
https://github.com/cloudflare/pint
https://github.com/cloudflare/pint
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

Version: latest (0.27)

Alerting overview (/docs/alerting/latest/overview/)

Alertmanager (/docs/alerting/latest/alertmanager/)

Configuration (/docs/alerting/latest/configuration/)

Clients (/docs/alerting/latest/clients/)

Notification template reference (/docs/alerting/latest/notifications/)

Notification template examples (/docs/alerting/latest/notification_examples/)

Management API (/docs/alerting/latest/management_api/)

HTTPS and authentication (/docs/alerting/latest/https/)

 BEST PRACTICES

 GUIDES

 TUTORIALS

10/09/24, 19:23 Alerting overview | Prometheus

https://prometheus.io/docs/alerting/latest/overview/ 1/2

https://prometheus.io/docs/alerting/latest/overview/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://prometheus.io/docs/alerting/latest/configuration/
https://prometheus.io/docs/alerting/latest/clients/
https://prometheus.io/docs/alerting/latest/notifications/
https://prometheus.io/docs/alerting/latest/notification_examples/
https://prometheus.io/docs/alerting/latest/management_api/
https://prometheus.io/docs/alerting/latest/https/

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

ALERTING OVERVIEW

Alerting with Prometheus is separated into two parts. Alerting rules in

Prometheus servers send alerts to an Alertmanager. The Alertmanager

(../alertmanager/) then manages those alerts, including silencing, inhibition,

aggregation and sending out notifications via methods such as email, on-call

notification systems, and chat platforms.

The main steps to setting up alerting and notifications are:

Setup and configure (../configuration/) the Alertmanager

Configure Prometheus

(/docs/prometheus/latest/configuration/configuration/#alertmanager_config)

to talk to the Alertmanager

Create alerting rules

(/docs/prometheus/latest/configuration/alerting_rules/) in Prometheus

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

 SPECIFICATIONS

10/09/24, 19:23 Alerting overview | Prometheus

https://prometheus.io/docs/alerting/latest/overview/ 2/2

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://prometheus.io/docs/alerting/latest/alertmanager/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://prometheus.io/docs/alerting/latest/configuration/
https://prometheus.io/docs/alerting/latest/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#alertmanager_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#alertmanager_config
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

Version: latest (0.27)

Alerting overview (/docs/alerting/latest/overview/)

Alertmanager (/docs/alerting/latest/alertmanager/)

Configuration (/docs/alerting/latest/configuration/)

Clients (/docs/alerting/latest/clients/)

Notification template reference (/docs/alerting/latest/notifications/)

Notification template examples (/docs/alerting/latest/notification_examples/)

Management API (/docs/alerting/latest/management_api/)

HTTPS and authentication (/docs/alerting/latest/https/)

 BEST PRACTICES

 GUIDES

 TUTORIALS

10/09/24, 19:23 Alertmanager | Prometheus

https://prometheus.io/docs/alerting/latest/alertmanager/ 1/4

https://prometheus.io/docs/alerting/latest/overview/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://prometheus.io/docs/alerting/latest/configuration/
https://prometheus.io/docs/alerting/latest/clients/
https://prometheus.io/docs/alerting/latest/notifications/
https://prometheus.io/docs/alerting/latest/notification_examples/
https://prometheus.io/docs/alerting/latest/management_api/
https://prometheus.io/docs/alerting/latest/https/

Grouping

Inhibition

Silences

Client behavior

High Availability

ALERTMANAGER

The Alertmanager

(https://github.com/prometheus/alertmanager) handles alerts sent by client

applications such as the Prometheus server. It takes care of deduplicating,

grouping, and routing them to the correct receiver integration such as email,

PagerDuty, or OpsGenie. It also takes care of silencing and inhibition of alerts.

The following describes the core concepts the Alertmanager implements.

Consult the configuration documentation (../configuration/) to learn how to use

them in more detail.

Grouping

Grouping categorizes alerts of similar nature into a single notification. This is

especially useful during larger outages when many systems fail at once and

hundreds to thousands of alerts may be firing simultaneously.

Example: Dozens or hundreds of instances of a service are running in your

cluster when a network partition occurs. Half of your service instances can no

longer reach the database. Alerting rules in Prometheus were configured to

send an alert for each service instance if it cannot communicate with the

database. As a result hundreds of alerts are sent to Alertmanager.

As a user, one only wants to get a single page while still being able to see

exactly which service instances were affected. Thus one can configure

Alertmanager to group alerts by their cluster and alertname so it sends a single

 SPECIFICATIONS

10/09/24, 19:23 Alertmanager | Prometheus

https://prometheus.io/docs/alerting/latest/alertmanager/ 2/4

https://github.com/prometheus/alertmanager
https://github.com/prometheus/alertmanager
https://prometheus.io/docs/alerting/latest/configuration/
https://prometheus.io/docs/alerting/latest/configuration/

compact notification.

Grouping of alerts, timing for the grouped notifications, and the receivers of

those notifications are configured by a routing tree in the configuration file.

Inhibition

Inhibition is a concept of suppressing notifications for certain alerts if certain

other alerts are already firing.

Example: An alert is firing that informs that an entire cluster is not reachable.

Alertmanager can be configured to mute all other alerts concerning this cluster

if that particular alert is firing. This prevents notifications for hundreds or

thousands of firing alerts that are unrelated to the actual issue.

Inhibitions are configured through the Alertmanager's configuration file.

Silences

Silences are a straightforward way to simply mute alerts for a given time. A

silence is configured based on matchers, just like the routing tree. Incoming

alerts are checked whether they match all the equality or regular expression

matchers of an active silence. If they do, no notifications will be sent out for

that alert.

Silences are configured in the web interface of the Alertmanager.

Client behavior

The Alertmanager has special requirements (../clients/) for behavior of its client.

Those are only relevant for advanced use cases where Prometheus is not used

to send alerts.

High Availability

Alertmanager supports configuration to create a cluster for high availability.

This can be configured using the --cluster-*

(https://github.com/prometheus/alertmanager#high-availability) flags.

10/09/24, 19:23 Alertmanager | Prometheus

https://prometheus.io/docs/alerting/latest/alertmanager/ 3/4

https://prometheus.io/docs/alerting/latest/clients/
https://prometheus.io/docs/alerting/latest/clients/
https://github.com/prometheus/alertmanager#high-availability
https://github.com/prometheus/alertmanager#high-availability

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

It's important not to load balance traffic between Prometheus and its

Alertmanagers, but instead, point Prometheus to a list of all Alertmanagers.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:23 Alertmanager | Prometheus

https://prometheus.io/docs/alerting/latest/alertmanager/ 4/4

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

Version: latest (0.27)

Alerting overview (/docs/alerting/latest/overview/)

Alertmanager (/docs/alerting/latest/alertmanager/)

Configuration (/docs/alerting/latest/configuration/)

Clients (/docs/alerting/latest/clients/)

Notification template reference (/docs/alerting/latest/notifications/)

Notification template examples (/docs/alerting/latest/notification_examples/)

Management API (/docs/alerting/latest/management_api/)

HTTPS and authentication (/docs/alerting/latest/https/)

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 1/47

https://prometheus.io/docs/alerting/latest/overview/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://prometheus.io/docs/alerting/latest/configuration/
https://prometheus.io/docs/alerting/latest/clients/
https://prometheus.io/docs/alerting/latest/notifications/
https://prometheus.io/docs/alerting/latest/notification_examples/
https://prometheus.io/docs/alerting/latest/management_api/
https://prometheus.io/docs/alerting/latest/https/

Configuration file

introduction

File layout and global

settings

Route-related settings

<route>

<time_interval>

Inhibition-related

settings

<inhibit_rule>

Label matchers

Alertmanager server

operational modes

Verification

<matcher>

General receiver-related

settings

<receiver>

<http_config>

Receiver integration

settings

<discord_config>

<email_config>

<msteams_config>

<opsgenie_config>

<pagerduty_config>

<pushover_config>

<slack_config>

<sns_config>

<telegram_config>

<victorops_config>

<webhook_config>

CONFIGURATION

Alertmanager

(https://github.com/prometheus/alertmanager)

is configured via command-line flags and a

configuration file. While the command-line flags

configure immutable system parameters, the

configuration file defines inhibition rules,

notification routing and notification receivers.

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 2/47

https://github.com/prometheus/alertmanager
https://github.com/prometheus/alertmanager

<wechat_config>

<webex_config>

The visual editor

(https://www.prometheus.io/webtools/alerting/routing-tree-editor) can assist in

building routing trees.

To view all available command-line flags, run alertmanager -h .

Alertmanager can reload its configuration at runtime. If the new configuration is

not well-formed, the changes will not be applied and an error is logged. A

configuration reload is triggered by sending a SIGHUP to the process or sending an

HTTP POST request to the /-/reload endpoint.

Configuration file introduction

To specify which configuration file to load, use the --config.file flag.

./alertmanager --config.file=alertmanager.yml

The file is written in the YAML format (https://en.wikipedia.org/wiki/YAML), defined

by the scheme described below. Brackets indicate that a parameter is optional. For

non-list parameters the value is set to the specified default.

Generic placeholders are defined as follows:

<duration> : a duration matching the regular expression ((([0-9]+)y)?(([0-

9]+)w)?(([0-9]+)d)?(([0-9]+)h)?(([0-9]+)m)?(([0-9]+)s)?(([0-9]+)ms)?|0) ,

e.g. 1d , 1h30m , 5m , 10s

<labelname> : a string matching the regular expression [a-zA-Z_][a-zA-Z0-

9_]*

<labelvalue> : a string of unicode characters

<filepath> : a valid path in the current working directory

<boolean> : a boolean that can take the values true or false

<string> : a regular string

<secret> : a regular string that is a secret, such as a password

<tmpl_string> : a string which is template-expanded before usage

<tmpl_secret> : a string which is template-expanded before usage that is a

secret

<int> : an integer value

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 3/47

https://www.prometheus.io/webtools/alerting/routing-tree-editor
https://www.prometheus.io/webtools/alerting/routing-tree-editor
https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/YAML

<regex> : any valid RE2 regular expression

(https://github.com/google/re2/wiki/Syntax) (The regex is anchored on both

ends. To un-anchor the regex, use .*<regex>.* .)

The other placeholders are specified separately.

A provided valid example file

(https://github.com/prometheus/alertmanager/blob/main/doc/examples/simple.yml)

shows usage in context.

File layout and global settings

The global configuration specifies parameters that are valid in all other

configuration contexts. They also serve as defaults for other configuration

sections. The other top-level sections are documented below on this page.

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 4/47

https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/prometheus/alertmanager/blob/main/doc/examples/simple.yml
https://github.com/prometheus/alertmanager/blob/main/doc/examples/simple.yml

global:
 # The default SMTP From header field.
 [smtp_from: <tmpl_string>]
 # The default SMTP smarthost used for sending emails, including port number.
 # Port number usually is 25, or 587 for SMTP over TLS (sometimes referred to as ST
 # Example: smtp.example.org:587
 [smtp_smarthost: <string>]
 # The default hostname to identify to the SMTP server.
 [smtp_hello: <string> | default = "localhost"]
 # SMTP Auth using CRAM-MD5, LOGIN and PLAIN. If empty, Alertmanager doesn't authen
 [smtp_auth_username: <string>]
 # SMTP Auth using LOGIN and PLAIN.
 [smtp_auth_password: <secret>]
 # SMTP Auth using LOGIN and PLAIN.
 [smtp_auth_password_file: <string>]
 # SMTP Auth using PLAIN.
 [smtp_auth_identity: <string>]
 # SMTP Auth using CRAM-MD5.
 [smtp_auth_secret: <secret>]
 # The default SMTP TLS requirement.
 # Note that Go does not support unencrypted connections to remote SMTP endpoints.
 [smtp_require_tls: <bool> | default = true]

 # The API URL to use for Slack notifications.
 [slack_api_url: <secret>]
 [slack_api_url_file: <filepath>]
 [victorops_api_key: <secret>]
 [victorops_api_key_file: <filepath>]
 [victorops_api_url: <string> | default = "https://alert.victorops.com/integration
 [pagerduty_url: <string> | default = "https://events.pagerduty.com/v2/enqueue"]
 [opsgenie_api_key: <secret>]
 [opsgenie_api_key_file: <filepath>]
 [opsgenie_api_url: <string> | default = "https://api.opsgenie.com/"]
 [wechat_api_url: <string> | default = "https://qyapi.weixin.qq.com/cgi-bin/"]
 [wechat_api_secret: <secret>]
 [wechat_api_corp_id: <string>]
 [telegram_api_url: <string> | default = "https://api.telegram.org"]
 [webex_api_url: <string> | default = "https://webexapis.com/v1/messages"]
 # The default HTTP client configuration
 [http_config: <http_config>]

 # ResolveTimeout is the default value used by alertmanager if the alert does
 # not include EndsAt, after this time passes it can declare the alert as resolved
 # This has no impact on alerts from Prometheus, as they always include EndsAt.

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 5/47

 [resolve_timeout: <duration> | default = 5m]

Files from which custom notification template definitions are read.
The last component may use a wildcard matcher, e.g. 'templates/*.tmpl'.
templates:
 [- <filepath> ...]

The root node of the routing tree.
route: <route>

A list of notification receivers.
receivers:
 - <receiver> ...

A list of inhibition rules.
inhibit_rules:
 [- <inhibit_rule> ...]

DEPRECATED: use time_intervals below.
A list of mute time intervals for muting routes.
mute_time_intervals:
 [- <mute_time_interval> ...]

A list of time intervals for muting/activating routes.
time_intervals:
 [- <time_interval> ...]

Route-related settings

Routing-related settings allow configuring how alerts are routed, aggregated,

throttled, and muted based on time.

<route>

A route block defines a node in a routing tree and its children. Its optional

configuration parameters are inherited from its parent node if not set.

Every alert enters the routing tree at the configured top-level route, which must

match all alerts (i.e. not have any configured matchers). It then traverses the child

nodes. If continue is set to false, it stops after the first matching child. If continue

is true on a matching node, the alert will continue matching against subsequent

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 6/47

siblings. If an alert does not match any children of a node (no matching child

nodes, or none exist), the alert is handled based on the configuration parameters

of the current node.

See Alertmanager concepts (/docs/alerting/alertmanager/#grouping) for more

information on grouping.

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 7/47

https://prometheus.io/docs/alerting/alertmanager/#grouping
https://prometheus.io/docs/alerting/alertmanager/#grouping

[receiver: <string>]
The labels by which incoming alerts are grouped together. For example,
multiple alerts coming in for cluster=A and alertname=LatencyHigh would
be batched into a single group.
#
To aggregate by all possible labels use the special value '...' as the sole label
group_by: ['...']
This effectively disables aggregation entirely, passing through all
alerts as-is. This is unlikely to be what you want, unless you have
a very low alert volume or your upstream notification system performs
its own grouping.
[group_by: '[' <labelname>, ... ']']

Whether an alert should continue matching subsequent sibling nodes.
[continue: <boolean> | default = false]

DEPRECATED: Use matchers below.
A set of equality matchers an alert has to fulfill to match the node.
match:
 [<labelname>: <labelvalue>, ...]

DEPRECATED: Use matchers below.
A set of regex-matchers an alert has to fulfill to match the node.
match_re:
 [<labelname>: <regex>, ...]

A list of matchers that an alert has to fulfill to match the node.
matchers:
 [- <matcher> ...]

How long to initially wait to send a notification for a group
of alerts. Allows to wait for an inhibiting alert to arrive or collect
more initial alerts for the same group. (Usually ~0s to few minutes.)
If omitted, child routes inherit the group_wait of the parent route.
[group_wait: <duration> | default = 30s]

How long to wait before sending a notification about new alerts that
are added to a group of alerts for which an initial notification has
already been sent. (Usually ~5m or more.) If omitted, child routes
inherit the group_interval of the parent route.
[group_interval: <duration> | default = 5m]

How long to wait before sending a notification again if it has already
been sent successfully for an alert. (Usually ~3h or more). If omitted,

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 8/47

child routes inherit the repeat_interval of the parent route.
Note that this parameter is implicitly bound by Alertmanager's
`--data.retention` configuration flag. Notifications will be resent after either
repeat_interval or the data retention period have passed, whichever
occurs first. `repeat_interval` should be a multiple of `group_interval`.
[repeat_interval: <duration> | default = 4h]

Times when the route should be muted. These must match the name of a
mute time interval defined in the mute_time_intervals section.
Additionally, the root node cannot have any mute times.
When a route is muted it will not send any notifications, but
otherwise acts normally (including ending the route-matching process
if the `continue` option is not set.)
mute_time_intervals:
 [- <string> ...]

Times when the route should be active. These must match the name of a
time interval defined in the time_intervals section. An empty value
means that the route is always active.
Additionally, the root node cannot have any active times.
The route will send notifications only when active, but otherwise
acts normally (including ending the route-matching process
if the `continue` option is not set).
active_time_intervals:
 [- <string> ...]

Zero or more child routes.
routes:
 [- <route> ...]

Example

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 9/47

The root route with all parameters, which are inherited by the child
routes if they are not overwritten.
route:
 receiver: 'default-receiver'
 group_wait: 30s
 group_interval: 5m
 repeat_interval: 4h
 group_by: [cluster, alertname]
 # All alerts that do not match the following child routes
 # will remain at the root node and be dispatched to 'default-receiver'.
 routes:
 # All alerts with service=mysql or service=cassandra
 # are dispatched to the database pager.
 - receiver: 'database-pager'
 group_wait: 10s
 matchers:
 - service=~"mysql|cassandra"
 # All alerts with the team=frontend label match this sub-route.
 # They are grouped by product and environment rather than cluster
 # and alertname.
 - receiver: 'frontend-pager'
 group_by: [product, environment]
 matchers:
 - team="frontend"

 # All alerts with the service=inhouse-service label match this sub-route.
 # the route will be muted during offhours and holidays time intervals.
 # even if it matches, it will continue to the next sub-route
 - receiver: 'dev-pager'
 matchers:
 - service="inhouse-service"
 mute_time_intervals:
 - offhours
 - holidays
 continue: true

 # All alerts with the service=inhouse-service label match this sub-route
 # the route will be active only during offhours and holidays time intervals.
 - receiver: 'on-call-pager'
 matchers:
 - service="inhouse-service"
 active_time_intervals:

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 10/47

 - offhours
 - holidays

<time_interval>

A time_interval specifies a named interval of time that may be referenced in the

routing tree to mute/activate particular routes for particular times of the day.

name: <string>
time_intervals:
 [- <time_interval_spec> ...]

<time_interval_spec>

A time_interval_spec contains the actual definition for an interval of time. The

syntax supports the following fields:

- times:
 [- <time_range> ...]
 weekdays:
 [- <weekday_range> ...]
 days_of_month:
 [- <days_of_month_range> ...]
 months:
 [- <month_range> ...]
 years:
 [- <year_range> ...]
 location: <string>

All fields are lists. Within each non-empty list, at least one element must be

satisfied to match the field. If a field is left unspecified, any value will match the

field. For an instant of time to match a complete time interval, all fields must

match. Some fields support ranges and negative indices, and are detailed below. If

a time zone is not specified, then the times are taken to be in UTC.

time_range : Ranges inclusive of the starting time and exclusive of the end time to

make it easy to represent times that start/end on hour boundaries. For example,

start_time: '17:00' and end_time: '24:00' will begin at 17:00 and finish

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 11/47

immediately before 24:00. They are specified like so:

 times:
 - start_time: HH:MM
 end_time: HH:MM

weekday_range : A list of days of the week, where the week begins on Sunday and

ends on Saturday. Days should be specified by name (e.g. 'Sunday'). For

convenience, ranges are also accepted of the form <start_day>:<end_day> and are

inclusive on both ends. For example: ['monday:wednesday','saturday', 'sunday']

days_of_month_range : A list of numerical days in the month. Days begin at 1.

Negative values are also accepted which begin at the end of the month, e.g. -1

during January would represent January 31. For example: ['1:5', '-3:-1'] .

Extending past the start or end of the month will cause it to be clamped. E.g.

specifying ['1:31'] during February will clamp the actual end date to 28 or 29

depending on leap years. Inclusive on both ends.

month_range : A list of calendar months identified by a case-insensitive name (e.g.

'January') or by number, where January = 1. Ranges are also accepted. For

example, ['1:3', 'may:august', 'december'] . Inclusive on both ends.

year_range : A numerical list of years. Ranges are accepted. For example,

['2020:2022', '2030'] . Inclusive on both ends.

location : A string that matches a location in the IANA time zone database. For

example, 'Australia/Sydney' . The location provides the time zone for the time

interval. For example, a time interval with a location of 'Australia/Sydney' that

contained something like:

 times:
 - start_time: 09:00
 end_time: 17:00
 weekdays: ['monday:friday']

would include any time that fell between the hours of 9:00AM and 5:00PM,

between Monday and Friday, using the local time in Sydney, Australia.

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 12/47

You may also use 'Local' as a location to use the local time of the machine where

Alertmanager is running, or 'UTC' for UTC time. If no timezone is provided, the

time interval is taken to be in UTC time.Note: On Windows, only Local or UTC are

supported unless you provide a custom time zone database using the ZONEINFO

environment variable.

Inhibition-related settings

Inhibition allows muting a set of alerts based on the presence of another set of

alerts. This allows establishing dependencies between systems or services such

that only the most relevant of a set of interconnected alerts are sent out during an

outage.

See Alertmanager concepts (/docs/alerting/alertmanager/#inhibition) for more

information on inhibition.

<inhibit_rule>

An inhibition rule mutes an alert (target) matching a set of matchers when an alert

(source) exists that matches another set of matchers. Both target and source alerts

must have the same label values for the label names in the equal list.

Semantically, a missing label and a label with an empty value are the same thing.

Therefore, if all the label names listed in equal are missing from both the source

and target alerts, the inhibition rule will apply.

To prevent an alert from inhibiting itself, an alert that matches both the target and

the source side of a rule cannot be inhibited by alerts for which the same is true

(including itself). However, we recommend to choose target and source matchers

in a way that alerts never match both sides. It is much easier to reason about and

does not trigger this special case.

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 13/47

https://prometheus.io/docs/alerting/alertmanager/#inhibition
https://prometheus.io/docs/alerting/alertmanager/#inhibition

DEPRECATED: Use target_matchers below.
Matchers that have to be fulfilled in the alerts to be muted.
target_match:
 [<labelname>: <labelvalue>, ...]
DEPRECATED: Use target_matchers below.
target_match_re:
 [<labelname>: <regex>, ...]

A list of matchers that have to be fulfilled by the target
alerts to be muted.
target_matchers:
 [- <matcher> ...]

DEPRECATED: Use source_matchers below.
Matchers for which one or more alerts have to exist for the
inhibition to take effect.
source_match:
 [<labelname>: <labelvalue>, ...]
DEPRECATED: Use source_matchers below.
source_match_re:
 [<labelname>: <regex>, ...]

A list of matchers for which one or more alerts have
to exist for the inhibition to take effect.
source_matchers:
 [- <matcher> ...]

Labels that must have an equal value in the source and target
alert for the inhibition to take effect.
[equal: '[' <labelname>, ... ']']

Label matchers

Label matchers match alerts to routes, silences, and inhibition rules.

Important: Prometheus is adding support for UTF-8 in labels and metrics. In order

to also support UTF-8 in the Alertmanager, Alertmanager versions 0.27 and later

have a new parser for matchers that has a number of backwards incompatible

changes. While most matchers will be forward-compatible, some will not.

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 14/47

Alertmanager is operating a transition period where it supports both UTF-8 and

classic matchers, and has provided a number of tools to help you prepare for the

transition.

If this is a new Alertmanager installation, we recommend enabling UTF-8 strict

mode before creating an Alertmanager configuration file. You can find instructions

on how to enable UTF-8 strict mode here.

If this is an existing Alertmanager installation, we recommend running the

Alertmanager in the default mode called fallback mode before enabling UTF-8

strict mode. In this mode, Alertmanager will log a warning if you need to make any

changes to your configuration file before UTF-8 strict mode can be enabled.

Alertmanager will make UTF-8 strict mode the default in the next two versions, so

it's important to transition as soon as possible.

Irrespective of whether an Alertmanager installation is a new or existing

installation, you can also use amtool to validate that an Alertmanager

configuration file is compatible with UTF-8 strict mode before enabling it in

Alertmanager server. You do not need a running Alertmanager server to do this.

You can find instructions on how to validate an Alertmanager configuration file

using amtool here.

Alertmanager server operational modes

During the transition period, Alertmanager supports three modes of operation.

These are known as fallback mode, UTF-8 strict mode and classic mode. Fallback

mode is the default mode.

Operators of Alertmanager servers should transition to UTF-8 strict mode before

the end of the transition period. Alertmanager will make UTF-8 strict mode the

default in the next two versions, so it's important to transition as soon as possible.

Fallback mode

Alertmanager runs in a special mode called fallback mode as its default mode. As

operators, you should not experience any difference in how your routes, silences

or inhibition rules work.

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 15/47

In fallback mode, configurations are first parsed as UTF-8 matchers, and if

incompatible with the UTF-8 parser, are then parsed as classic matchers. If your

Alertmanager configuration contains matchers that are incompatible with the UTF-

8 parser, Alertmanager will parse them as classic matchers and log a warning. This

warning also includes a suggestion on how to change the matchers from classic

matchers to UTF-8 matchers. For example:

ts=2024-02-11T10:00:00Z caller=parse.go:176 level=warn

msg="Alertmanager is moving to a new parser for labels and

matchers, and this input is incompatible. Alertmanager has instead

parsed the input using the classic matchers parser as a fallback. To

make this input compatible with the UTF-8 matchers parser please

make sure all regular expressions and values are double-quoted. If

you are still seeing this message please open an issue." input="foo="

origin=config err="end of input: expected label value"

suggestion="foo=\"\""

Here the matcher foo= can be made into a valid UTF-8 matcher by double quoting

the right hand side of the expression to give foo="" . These two matchers are

equivalent, however with UTF-8 matchers the right hand side of the matcher is a

required field.

In rare cases, a configuration can cause disagreement between the UTF-8 and

classic parser. This happens when a matcher is valid in both parsers, but due to

added support for UTF-8, results in different parsings depending on which parser

is used. If your Alertmanager configuration has disagreement, Alertmanager will

use the classic parser and log a warning. For example:

ts=2024-02-11T10:00:00Z caller=parse.go:183 level=warn

msg="Matchers input has disagreement"

input="qux=\"\xf0\x9f\x99\x82\"\n" origin=config

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 16/47

Any occurrences of disagreement should be looked at on a case by case basis as

depending on the nature of the disagreement, the configuration might not need

updating before enabling UTF-8 strict mode. For example \xf0\x9f\x99\x82 is the

byte sequence for the 🙂 emoji. If the intention is to match a literal 🙂 emoji then

no change is required. However, if the intention is to match the literal

\xf0\x9f\x99\x82 then the matcher should be changed to

qux="\\xf0\\x9f\\x99\\x82" .

UTF-8 strict mode

In UTF-8 strict mode, Alertmanager disables support for classic matchers:

alertmanager --config.file=config.yml --enable-feature="utf8-strict-

mode"

This mode should be enabled for new Alertmanager installations, and existing

Alertmanager installations once all warnings of incompatible matchers have been

resolved. Alertmanager will not start in UTF-8 strict mode until all the warnings of

incompatible matchers have been resolved:

ts=2024-02-11T10:00:00Z caller=coordinator.go:118 level=error

component=configuration msg="Loading configuration file failed"

file=config.yml err="end of input: expected label value"

UTF-8 strict mode will be the default mode of Alertmanager at the end of the

transition period.

Classic mode

Classic mode is equivalent to Alertmanager versions 0.26.0 and older:

alertmanager --config.file=config.yml --enable-feature="classic-mode"

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 17/47

You can use this mode if you suspect there is an issue with fallback mode or UTF-8

strict mode. In such cases, please open an issue on GitHub with as much

information as possible.

Verification

You can use amtool to validate that an Alertmanager configuration file is

compatible with UTF-8 strict mode before enabling it in Alertmanager server. You

do not need a running Alertmanager server to do this.

Just like Alertmanager server, amtool will log a warning if the configuration is

incompatible or contains disagreement:

amtool check-config config.yml
Checking 'config.yml'
level=warn msg="Alertmanager is moving to a new parser for labels and matchers, and
level=warn msg="Matchers input has disagreement" input="qux=\"\\xf0\\x9f\\x99\\x82\"
 SUCCESS
Found:
 - global config
 - route
 - 2 inhibit rules
 - 2 receivers
 - 0 templates

You will know if a configuration is compatible with UTF-8 strict mode when no

warnings are logged in amtool :

amtool check-config config.yml
Checking 'config.yml' SUCCESS
Found:
 - global config
 - route
 - 2 inhibit rules
 - 2 receivers
 - 0 templates

You can also use amtool in UTF-8 strict mode as an additional level of verification.

You will know that a configuration is invalid because the command will fail:

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 18/47

amtool check-config config.yml --enable-feature="utf8-strict-mode"
level=warn msg="UTF-8 mode enabled"
Checking 'config.yml' FAILED: end of input: expected label value

amtool: error: failed to validate 1 file(s)

You will know that a configuration is valid because the command will succeed:

amtool check-config config.yml --enable-feature="utf8-strict-mode"
level=warn msg="UTF-8 mode enabled"
Checking 'config.yml' SUCCESS
Found:
 - global config
 - route
 - 2 inhibit rules
 - 2 receivers
 - 0 templates

<matcher>

UTF-8 matchers

A UTF-8 matcher consists of three tokens:

An unquoted literal or a double-quoted string for the label name.

One of = , != , =~ , or !~ . = means equals, != means not equal, =~ means

matches the regular expression and !~ means doesn't match the regular

expression.

An unquoted literal or a double-quoted string for the regular expression or

label value.

Unquoted literals can contain all UTF-8 characters other than the reserved

characters. These are whitespace, and all characters in { } ! = ~ , \ " ' ` . For

example, foo , [a-zA-Z]+ , and Προμηθεύς (Prometheus in Greek) are all examples

of valid unquoted literals. However, foo! is not a valid literal as ! is a reserved

character.

Double-quoted strings can contain all UTF-8 characters. Unlike unquoted literals,

there are no reserved characters. You can even use UTF-8 code points. For

example, "foo!" , "bar,baz" , "\"baz qux\"" and "\xf0\x9f\x99\x82" are valid

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 19/47

double-quoted strings.

Classic matchers

A classic matcher is a string with a syntax inspired by PromQL and OpenMetrics.

The syntax of a classic matcher consists of three tokens:

A valid Prometheus label name.

One of = , != , =~ , or !~ . = means equals, != means that the strings are

not equal, =~ is used for equality of regex expressions and !~ is used for

un-equality of regex expressions. They have the same meaning as known

from PromQL selectors.

A UTF-8 string, which may be enclosed in double quotes. Before or after each

token, there may be any amount of whitespace.

The 3rd token may be the empty string. Within the 3rd token, OpenMetrics

escaping rules apply: \" for a double-quote, \n for a line feed, \\ for a literal

backslash. Unescaped " must not occur inside the 3rd token (only as the 1st or

last character). However, literal line feed characters are tolerated, as are single \

characters not followed by \ , n , or " . They act as a literal backslash in that case.

Composition of matchers

You can compose matchers to create complex match expressions. When

composed, all matchers must match for the entire expression to match. For

example, the expression {alertname="Watchdog", severity=~"warning|critical"}

will match an alert with labels alertname=Watchdog, severity=critical but not an

alert with labels alertname=Watchdog, severity=none as while the alertname is

Watchdog the severity is neither warning nor critical.

You can compose matchers into expressions with a YAML list:

matchers:
 - alertname = Watchdog
 - severity =~ "warning|critical"

or as a PromQL inspired expression where each matcher is comma separated:

{alertname="Watchdog", severity=~"warning|critical"}

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 20/47

A single trailing comma is permitted:

{alertname="Watchdog", severity=~"warning|critical",}

The open { and close } brace are optional:

alertname="Watchdog", severity=~"warning|critical"

However, both must be either present or omitted. You cannot have incomplete

open or close braces:

{alertname="Watchdog", severity=~"warning|critical"

alertname="Watchdog", severity=~"warning|critical"}

You cannot have duplicate open or close braces either:

{{alertname="Watchdog", severity=~"warning|critical",}}

Whitespace (spaces, tabs and newlines) is permitted outside double quotes and

has no effect on the matchers themselves. For example:

{
 alertname = "Watchdog",
 severity =~ "warning|critical",
}

is equivalent to:

{alertname="Watchdog",severity=~"warning|critical"}

More examples

Here are some more examples:

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 21/47

1. Two equals matchers composed as a YAML list:

matchers:
 - foo = bar
 - dings != bums

2. Two matchers combined composed as a short-form YAML list:

matchers: [foo = bar, dings != bums]

As shown below, in the short-form, it's better to use double quotes to avoid

problems with special characters like commas:

 matchers: ["foo = \"bar,baz\"", "dings != bums"]

1. You can also put both matchers into one PromQL-like string. Single quotes

work best here:

matchers: ['{foo="bar", dings!="bums"}']

2. To avoid issues with escaping and quoting rules in YAML, you can also use a

YAML block:

matchers:
 - |
 {quote=~"She said: \"Hi, all!(How're you…)?\""}

General receiver-related settings

These receiver settings allow configuring notification destinations (receivers) and

HTTP client options for HTTP-based receivers.

<receiver>

Receiver is a named configuration of one or more notification integrations.

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 22/47

Note: As part of lifting the past moratorium on new receivers it was agreed that, in

addition to the existing requirements, new notification integrations will be

required to have a committed maintainer with push access.

The unique name of the receiver.
name: <string>

Configurations for several notification integrations.
discord_configs:
 [- <discord_config>, ...]
email_configs:
 [- <email_config>, ...]
msteams_configs:
 [- <msteams_config>, ...]
opsgenie_configs:
 [- <opsgenie_config>, ...]
pagerduty_configs:
 [- <pagerduty_config>, ...]
pushover_configs:
 [- <pushover_config>, ...]
slack_configs:
 [- <slack_config>, ...]
sns_configs:
 [- <sns_config>, ...]
telegram_configs:
 [- <telegram_config>, ...]
victorops_configs:
 [- <victorops_config>, ...]
webex_configs:
 [- <webex_config>, ...]
webhook_configs:
 [- <webhook_config>, ...]
wechat_configs:
 [- <wechat_config>, ...]

<http_config>

An http_config allows configuring the HTTP client that the receiver uses to

communicate with HTTP-based API services.

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 23/47

Note that `basic_auth` and `authorization` options are mutually exclusive.

Sets the `Authorization` header with the configured username and password.
password and password_file are mutually exclusive.
basic_auth:
 [username: <string>]
 [password: <secret>]
 [password_file: <string>]

Optional the `Authorization` header configuration.
authorization:
 # Sets the authentication type.
 [type: <string> | default: Bearer]
 # Sets the credentials. It is mutually exclusive with
 # `credentials_file`.
 [credentials: <secret>]
 # Sets the credentials with the credentials read from the configured file.
 # It is mutually exclusive with `credentials`.
 [credentials_file: <filename>]

Optional OAuth 2.0 configuration.
Cannot be used at the same time as basic_auth or authorization.
oauth2:
 [<oauth2>]

Whether to enable HTTP2.
[enable_http2: <bool> | default: true]

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, http_proxy, HTTPS_PR
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

Configure whether HTTP requests follow HTTP 3xx redirects.
[follow_redirects: <bool> | default = true]

Configures the TLS settings.

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 24/47

tls_config:
 [<tls_config>]

<oauth2>

OAuth 2.0 authentication using the client credentials grant type. Alertmanager

fetches an access token from the specified endpoint with the given client access

and secret keys.

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 25/47

client_id: <string>
[client_secret: <secret>]

Read the client secret from a file.
It is mutually exclusive with `client_secret`.
[client_secret_file: <filename>]

Scopes for the token request.
scopes:
 [- <string> ...]

The URL to fetch the token from.
token_url: <string>

Optional parameters to append to the token URL.
endpoint_params:
 [<string>: <string> ...]

Configures the token request's TLS settings.
tls_config:
 [<tls_config>]

Optional proxy URL.
[proxy_url: <string>]
Comma-separated string that can contain IPs, CIDR notation, domain names
that should be excluded from proxying. IP and domain names can
contain port numbers.
[no_proxy: <string>]
Use proxy URL indicated by environment variables (HTTP_PROXY, https_proxy, HTTPs_P
[proxy_from_environment: <boolean> | default: false]
Specifies headers to send to proxies during CONNECT requests.
[proxy_connect_header:
 [<string>: [<secret>, ...]]]

<tls_config>

A tls_config allows configuring TLS connections.

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 26/47

CA certificate to validate the server certificate with.
[ca_file: <filepath>]

Certificate and key files for client cert authentication to the server.
[cert_file: <filepath>]
[key_file: <filepath>]

ServerName extension to indicate the name of the server.
http://tools.ietf.org/html/rfc4366#section-3.1
[server_name: <string>]

Disable validation of the server certificate.
[insecure_skip_verify: <boolean> | default = false]

Minimum acceptable TLS version. Accepted values: TLS10 (TLS 1.0), TLS11 (TLS
1.1), TLS12 (TLS 1.2), TLS13 (TLS 1.3).
If unset, Prometheus will use Go default minimum version, which is TLS 1.2.
See MinVersion in https://pkg.go.dev/crypto/tls#Config.
[min_version: <string>]
Maximum acceptable TLS version. Accepted values: TLS10 (TLS 1.0), TLS11 (TLS
1.1), TLS12 (TLS 1.2), TLS13 (TLS 1.3).
If unset, Prometheus will use Go default maximum version, which is TLS 1.3.
See MaxVersion in https://pkg.go.dev/crypto/tls#Config.
[max_version: <string>]

Receiver integration settings

These settings allow configuring specific receiver integrations.

<discord_config>

Discord notifications are sent via the Discord webhook API

(https://discord.com/developers/docs/resources/webhook). See Discord's "Intro to

Webhooks" article (https://support.discord.com/hc/en-us/articles/228383668-

Intro-to-Webhooks) to learn how to configure a webhook integration for a channel.

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 27/47

https://discord.com/developers/docs/resources/webhook
https://discord.com/developers/docs/resources/webhook
https://support.discord.com/hc/en-us/articles/228383668-Intro-to-Webhooks
https://support.discord.com/hc/en-us/articles/228383668-Intro-to-Webhooks
https://support.discord.com/hc/en-us/articles/228383668-Intro-to-Webhooks
https://support.discord.com/hc/en-us/articles/228383668-Intro-to-Webhooks

Whether to notify about resolved alerts.
[send_resolved: <boolean> | default = true]

The Discord webhook URL.
webhook_url and webhook_url_file are mutually exclusive.
webhook_url: <secret>
webhook_url_file: <filepath>

Message title template.
[title: <tmpl_string> | default = '{{ template "discord.default.title" . }}']

Message body template.
[message: <tmpl_string> | default = '{{ template "discord.default.message" . }}']

The HTTP client's configuration.
[http_config: <http_config> | default = global.http_config]

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 28/47

<email_config>

Whether to notify about resolved alerts.
[send_resolved: <boolean> | default = false]

The email address to send notifications to.
to: <tmpl_string>

The sender's address.
[from: <tmpl_string> | default = global.smtp_from]

The SMTP host through which emails are sent.
[smarthost: <string> | default = global.smtp_smarthost]

The hostname to identify to the SMTP server.
[hello: <string> | default = global.smtp_hello]

SMTP authentication information.
auth_password and auth_password_file are mutually exclusive.
[auth_username: <string> | default = global.smtp_auth_username]
[auth_password: <secret> | default = global.smtp_auth_password]
[auth_password_file: <string> | default = global.smtp_auth_password_file]
[auth_secret: <secret> | default = global.smtp_auth_secret]
[auth_identity: <string> | default = global.smtp_auth_identity]

The SMTP TLS requirement.
Note that Go does not support unencrypted connections to remote SMTP endpoints.
[require_tls: <bool> | default = global.smtp_require_tls]

TLS configuration.
tls_config:
 [<tls_config>]

The HTML body of the email notification.
[html: <tmpl_string> | default = '{{ template "email.default.html" . }}']
The text body of the email notification.
[text: <tmpl_string>]

Further headers email header key/value pairs. Overrides any headers
previously set by the notification implementation.
[headers: { <string>: <tmpl_string>, ... }]

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 29/47

<msteams_config>

Microsoft Teams notifications are sent via the Incoming Webhooks

(https://learn.microsoft.com/en-us/microsoftteams/platform/webhooks-and-

connectors/what-are-webhooks-and-connectors) API endpoint.

Whether to notify about resolved alerts.
[send_resolved: <boolean> | default = true]

The incoming webhook URL.
webhook_url and webhook_url_file are mutually exclusive.
[webhook_url: <secret>]
[webhook_url_file: <filepath>]

Message title template.
[title: <tmpl_string> | default = '{{ template "msteams.default.title" . }}']

Message summary template.
[summary: <tmpl_string> | default = '{{ template "msteams.default.summary" . }}']

Message body template.
[text: <tmpl_string> | default = '{{ template "msteams.default.text" . }}']

The HTTP client's configuration.
[http_config: <http_config> | default = global.http_config]

<opsgenie_config>

OpsGenie notifications are sent via the OpsGenie API

(https://docs.opsgenie.com/docs/alert-api).

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 30/47

https://learn.microsoft.com/en-us/microsoftteams/platform/webhooks-and-connectors/what-are-webhooks-and-connectors
https://learn.microsoft.com/en-us/microsoftteams/platform/webhooks-and-connectors/what-are-webhooks-and-connectors
https://learn.microsoft.com/en-us/microsoftteams/platform/webhooks-and-connectors/what-are-webhooks-and-connectors
https://docs.opsgenie.com/docs/alert-api
https://docs.opsgenie.com/docs/alert-api

Whether to notify about resolved alerts.
[send_resolved: <boolean> | default = true]

The API key to use when talking to the OpsGenie API.
[api_key: <secret> | default = global.opsgenie_api_key]

The filepath to API key to use when talking to the OpsGenie API. Conflicts with ap
[api_key_file: <filepath> | default = global.opsgenie_api_key_file]

The host to send OpsGenie API requests to.
[api_url: <string> | default = global.opsgenie_api_url]

Alert text limited to 130 characters.
[message: <tmpl_string> | default = '{{ template "opsgenie.default.message" . }}']

A description of the alert.
[description: <tmpl_string> | default = '{{ template "opsgenie.default.description"

A backlink to the sender of the notification.
[source: <tmpl_string> | default = '{{ template "opsgenie.default.source" . }}']

A set of arbitrary key/value pairs that provide further detail
about the alert.
All common labels are included as details by default.
[details: { <string>: <tmpl_string>, ... }]

List of responders responsible for notifications.
responders:
 [- <responder> ...]

Comma separated list of tags attached to the notifications.
[tags: <tmpl_string>]

Additional alert note.
[note: <tmpl_string>]

Priority level of alert. Possible values are P1, P2, P3, P4, and P5.
[priority: <tmpl_string>]

Whether to update message and description of the alert in OpsGenie if it already e
By default, the alert is never updated in OpsGenie, the new message only appears i
[update_alerts: <boolean> | default = false]

Optional field that can be used to specify which domain alert is related to.

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 31/47

[entity: <tmpl_string>]

Comma separated list of actions that will be available for the alert.
[actions: <tmpl_string>]

The HTTP client's configuration.
[http_config: <http_config> | default = global.http_config]

<responder>

Exactly one of these fields should be defined.
[id: <tmpl_string>]
[name: <tmpl_string>]
[username: <tmpl_string>]

"team", "teams", "user", "escalation" or "schedule".
type: <tmpl_string>

<pagerduty_config>

PagerDuty notifications are sent via the PagerDuty API

(https://developer.pagerduty.com/documentation/integration/events). PagerDuty

provides documentation (https://www.pagerduty.com/docs/guides/prometheus-

integration-guide/) on how to integrate. There are important differences with

Alertmanager's v0.11 and greater support of PagerDuty's Events API v2.

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 32/47

https://developer.pagerduty.com/documentation/integration/events
https://developer.pagerduty.com/documentation/integration/events
https://www.pagerduty.com/docs/guides/prometheus-integration-guide/
https://www.pagerduty.com/docs/guides/prometheus-integration-guide/
https://www.pagerduty.com/docs/guides/prometheus-integration-guide/

Whether to notify about resolved alerts.
[send_resolved: <boolean> | default = true]

The routing and service keys are mutually exclusive.
The PagerDuty integration key (when using PagerDuty integration type `Events API v
It is mutually exclusive with `routing_key_file`.
routing_key: <tmpl_secret>
Read the Pager Duty routing key from a file.
It is mutually exclusive with `routing_key`.
routing_key_file: <filepath>
The PagerDuty integration key (when using PagerDuty integration type `Prometheus`)
It is mutually exclusive with `service_key_file`.
service_key: <tmpl_secret>
Read the Pager Duty service key from a file.
It is mutually exclusive with `service_key`.
service_key_file: <filepath>

The URL to send API requests to
[url: <string> | default = global.pagerduty_url]

The client identification of the Alertmanager.
[client: <tmpl_string> | default = '{{ template "pagerduty.default.client" . }}']
A backlink to the sender of the notification.
[client_url: <tmpl_string> | default = '{{ template "pagerduty.default.clientURL"

A description of the incident.
[description: <tmpl_string> | default = '{{ template "pagerduty.default.description

Severity of the incident.
[severity: <tmpl_string> | default = 'error']

Unique location of the affected system.
[source: <tmpl_string> | default = client]

A set of arbitrary key/value pairs that provide further detail
about the incident.
[details: { <string>: <tmpl_string>, ... } | default = {
 firing: '{{ template "pagerduty.default.instances" .Alerts.Firing }}'
 resolved: '{{ template "pagerduty.default.instances" .Alerts.Resolved }}'
 num_firing: '{{ .Alerts.Firing | len }}'
 num_resolved: '{{ .Alerts.Resolved | len }}'
}]

Images to attach to the incident.

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 33/47

images:
 [<image_config> ...]

Links to attach to the incident.
links:
 [<link_config> ...]

The part or component of the affected system that is broken.
[component: <tmpl_string>]

A cluster or grouping of sources.
[group: <tmpl_string>]

The class/type of the event.
[class: <tmpl_string>]

The HTTP client's configuration.
[http_config: <http_config> | default = global.http_config]

<image_config>

The fields are documented in the PagerDuty API documentation

(https://developer.pagerduty.com/docs/events-api-v2/trigger-events/#the-images-

property).

href: <tmpl_string>
src: <tmpl_string>
alt: <tmpl_string>

<link_config>

The fields are documented in the PagerDuty API documentation

(https://developer.pagerduty.com/docs/events-api-v2/trigger-events/#the-links-

property).

href: <tmpl_string>
text: <tmpl_string>

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 34/47

https://developer.pagerduty.com/docs/events-api-v2/trigger-events/#the-images-property
https://developer.pagerduty.com/docs/events-api-v2/trigger-events/#the-images-property
https://developer.pagerduty.com/docs/events-api-v2/trigger-events/#the-images-property
https://developer.pagerduty.com/docs/events-api-v2/trigger-events/#the-links-property
https://developer.pagerduty.com/docs/events-api-v2/trigger-events/#the-links-property
https://developer.pagerduty.com/docs/events-api-v2/trigger-events/#the-links-property

<pushover_config>

Pushover notifications are sent via the Pushover API (https://pushover.net/api).

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 35/47

https://pushover.net/api
https://pushover.net/api

Whether to notify about resolved alerts.
[send_resolved: <boolean> | default = true]

The recipient user's key.
user_key and user_key_file are mutually exclusive.
user_key: <secret>
user_key_file: <filepath>

Your registered application's API token, see https://pushover.net/apps
You can also register a token by cloning this Prometheus app:
https://pushover.net/apps/clone/prometheus
token and token_file are mutually exclusive.
token: <secret>
token_file: <filepath>

Notification title.
[title: <tmpl_string> | default = '{{ template "pushover.default.title" . }}']

Notification message.
[message: <tmpl_string> | default = '{{ template "pushover.default.message" . }}']

A supplementary URL shown alongside the message.
[url: <tmpl_string> | default = '{{ template "pushover.default.url" . }}']

Optional device to send notification to, see https://pushover.net/api#device
[device: <string>]

Optional sound to use for notification, see https://pushover.net/api#sound
[sound: <string>]

Priority, see https://pushover.net/api#priority
[priority: <tmpl_string> | default = '{{ if eq .Status "firing" }}2{{ else }}0{{ en

How often the Pushover servers will send the same notification to the user.
Must be at least 30 seconds.
[retry: <duration> | default = 1m]

How long your notification will continue to be retried for, unless the user
acknowledges the notification.
[expire: <duration> | default = 1h]

Optional time to live (TTL) to use for notification, see https://pushover.net/api#
[ttl: <duration>]

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 36/47

The HTTP client's configuration.
[http_config: <http_config> | default = global.http_config]

<slack_config>

Slack notifications can be sent via Incoming webhooks

(https://api.slack.com/messaging/webhooks) or Bot tokens

(https://api.slack.com/authentication/token-types).

If using an incoming webhook then api_url must be set to the URL of the

incoming webhook, or written to the file referenced in api_url_file .

If using Bot tokens then api_url must be set to

https://slack.com/api/chat.postMessage

(https://api.slack.com/methods/chat.postMessage), the bot token must be set as

the authorization credentials in http_config , and channel must contain either the

name of the channel or Channel ID to send notifications to. If using the name of

the channel the # is optional.

The notification contains an attachment

(https://api.slack.com/messaging/composing/layouts#attachments).

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 37/47

https://api.slack.com/messaging/webhooks
https://api.slack.com/messaging/webhooks
https://api.slack.com/authentication/token-types
https://api.slack.com/authentication/token-types
https://api.slack.com/methods/chat.postMessage
https://api.slack.com/methods/chat.postMessage
https://api.slack.com/messaging/composing/layouts#attachments
https://api.slack.com/messaging/composing/layouts#attachments

Whether to notify about resolved alerts.
[send_resolved: <boolean> | default = false]

The Slack webhook URL. Either api_url or api_url_file should be set.
Defaults to global settings if none are set here.
[api_url: <secret> | default = global.slack_api_url]
[api_url_file: <filepath> | default = global.slack_api_url_file]

The channel or user to send notifications to.
channel: <tmpl_string>

API request data as defined by the Slack webhook API.
[icon_emoji: <tmpl_string>]
[icon_url: <tmpl_string>]
[link_names: <boolean> | default = false]
[username: <tmpl_string> | default = '{{ template "slack.default.username" . }}']
The following parameters define the attachment.
actions:
 [<action_config> ...]
[callback_id: <tmpl_string> | default = '{{ template "slack.default.callbackid" . }
[color: <tmpl_string> | default = '{{ if eq .Status "firing" }}danger{{ else }}good
[fallback: <tmpl_string> | default = '{{ template "slack.default.fallback" . }}']
fields:
 [<field_config> ...]
[footer: <tmpl_string> | default = '{{ template "slack.default.footer" . }}']
[mrkdwn_in: '[' <string>, ... ']' | default = ["fallback", "pretext", "text"]]
[pretext: <tmpl_string> | default = '{{ template "slack.default.pretext" . }}']
[short_fields: <boolean> | default = false]
[text: <tmpl_string> | default = '{{ template "slack.default.text" . }}']
[title: <tmpl_string> | default = '{{ template "slack.default.title" . }}']
[title_link: <tmpl_string> | default = '{{ template "slack.default.titlelink" . }}'
[image_url: <tmpl_string>]
[thumb_url: <tmpl_string>]

The HTTP client's configuration.
[http_config: <http_config> | default = global.http_config]

<action_config>

The fields are documented in the Slack API documentation for message

attachments (https://api.slack.com/messaging/composing/layouts#attachments)

and interactive messages (https://api.slack.com/legacy/interactive-message-field-

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 38/47

https://api.slack.com/messaging/composing/layouts#attachments
https://api.slack.com/messaging/composing/layouts#attachments
https://api.slack.com/messaging/composing/layouts#attachments
https://api.slack.com/legacy/interactive-message-field-guide#action_fields
https://api.slack.com/legacy/interactive-message-field-guide#action_fields

guide#action_fields).

text: <tmpl_string>
type: <tmpl_string>
Either url or name and value are mandatory.
[url: <tmpl_string>]
[name: <tmpl_string>]
[value: <tmpl_string>]

[confirm: <action_confirm_field_config>]
[style: <tmpl_string> | default = '']

<action_confirm_field_config>

The fields are documented in the Slack API documentation

(https://api.slack.com/legacy/interactive-message-field-guide#confirmation_fields).

text: <tmpl_string>
[dismiss_text: <tmpl_string> | default '']
[ok_text: <tmpl_string> | default '']
[title: <tmpl_string> | default '']

<field_config>

The fields are documented in the Slack API documentation

(https://api.slack.com/messaging/composing/layouts#attachments).

title: <tmpl_string>
value: <tmpl_string>
[short: <boolean> | default = slack_config.short_fields]

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 39/47

https://api.slack.com/legacy/interactive-message-field-guide#action_fields
https://api.slack.com/legacy/interactive-message-field-guide#confirmation_fields
https://api.slack.com/legacy/interactive-message-field-guide#confirmation_fields
https://api.slack.com/messaging/composing/layouts#attachments
https://api.slack.com/messaging/composing/layouts#attachments

<sns_config>

Whether to notify about resolved alerts.
[send_resolved: <boolean> | default = true]

The SNS API URL i.e. https://sns.us-east-2.amazonaws.com.
If not specified, the SNS API URL from the SNS SDK will be used.
[api_url: <tmpl_string>]

Configures AWS's Signature Verification 4 signing process to sign requests.
sigv4:
 [<sigv4_config>]

SNS topic ARN, i.e. arn:aws:sns:us-east-2:698519295917:My-Topic
If you don't specify this value, you must specify a value for the phone_number or
If you are using a FIFO SNS topic you should set a message group interval longer t
to prevent messages with the same group key being deduplicated by the SNS default
[topic_arn: <tmpl_string>]

Subject line when the message is delivered to email endpoints.
[subject: <tmpl_string> | default = '{{ template "sns.default.subject" .}}']

Phone number if message is delivered via SMS in E.164 format.
If you don't specify this value, you must specify a value for the topic_arn or tar
[phone_number: <tmpl_string>]

The mobile platform endpoint ARN if message is delivered via mobile notifications
If you don't specify this value, you must specify a value for the topic_arn or pho
[target_arn: <tmpl_string>]

The message content of the SNS notification.
[message: <tmpl_string> | default = '{{ template "sns.default.message" .}}']

SNS message attributes.
attributes:
 [<string>: <string> ...]

The HTTP client's configuration.
[http_config: <http_config> | default = global.http_config]

<sigv4_config>

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 40/47

The AWS region. If blank, the region from the default credentials chain is used.
[region: <string>]

The AWS API keys. Both access_key and secret_key must be supplied or both must be
If blank the environment variables `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY`
[access_key: <string>]
[secret_key: <secret>]

Named AWS profile used to authenticate.
[profile: <string>]

AWS Role ARN, an alternative to using AWS API keys.
[role_arn: <string>]

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 41/47

<telegram_config>

Whether to notify about resolved alerts.
[send_resolved: <boolean> | default = true]

The Telegram API URL i.e. https://api.telegram.org.
If not specified, default API URL will be used.
[api_url: <string> | default = global.telegram_api_url]

Telegram bot token. It is mutually exclusive with `bot_token_file`.
[bot_token: <secret>]

Read the Telegram bot token from a file. It is mutually exclusive with `bot_token`
[bot_token_file: <filepath>]

ID of the chat where to send the messages.
[chat_id: <int>]

Message template.
[message: <tmpl_string> default = '{{ template "telegram.default.message" .}}']

Disable telegram notifications
[disable_notifications: <boolean> | default = false]

Parse mode for telegram message, supported values are MarkdownV2, Markdown, HTML a
[parse_mode: <string> | default = "HTML"]

The HTTP client's configuration.
[http_config: <http_config> | default = global.http_config]

<victorops_config>

VictorOps notifications are sent out via the VictorOps API

(https://help.victorops.com/knowledge-base/rest-endpoint-integration-guide/)

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 42/47

https://help.victorops.com/knowledge-base/rest-endpoint-integration-guide/
https://help.victorops.com/knowledge-base/rest-endpoint-integration-guide/

Whether to notify about resolved alerts.
[send_resolved: <boolean> | default = true]

The API key to use when talking to the VictorOps API.
It is mutually exclusive with `api_key_file`.
[api_key: <secret> | default = global.victorops_api_key]

Reads the API key to use when talking to the VictorOps API from a file.
It is mutually exclusive with `api_key`.
[api_key_file: <filepath> | default = global.victorops_api_key_file]

The VictorOps API URL.
[api_url: <string> | default = global.victorops_api_url]

A key used to map the alert to a team.
routing_key: <tmpl_string>

Describes the behavior of the alert (CRITICAL, WARNING, INFO).
[message_type: <tmpl_string> | default = 'CRITICAL']

Contains summary of the alerted problem.
[entity_display_name: <tmpl_string> | default = '{{ template "victorops.default.ent

Contains long explanation of the alerted problem.
[state_message: <tmpl_string> | default = '{{ template "victorops.default.state_mes

The monitoring tool the state message is from.
[monitoring_tool: <tmpl_string> | default = '{{ template "victorops.default.monitor

The HTTP client's configuration.
[http_config: <http_config> | default = global.http_config]

<webhook_config>

The webhook receiver allows configuring a generic receiver.

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 43/47

Whether to notify about resolved alerts.
[send_resolved: <boolean> | default = true]

The endpoint to send HTTP POST requests to.
url and url_file are mutually exclusive.
url: <secret>
url_file: <filepath>

The HTTP client's configuration.
[http_config: <http_config> | default = global.http_config]

The maximum number of alerts to include in a single webhook message. Alerts
above this threshold are truncated. When leaving this at its default value of
0, all alerts are included.
[max_alerts: <int> | default = 0]

The Alertmanager will send HTTP POST requests in the following JSON format to

the configured endpoint:

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 44/47

{
 "version": "4",
 "groupKey": <string>, // key identifying the group of alerts (e.g. to
 "truncatedAlerts": <int>, // how many alerts have been truncated due to "
 "status": "<resolved|firing>",
 "receiver": <string>,
 "groupLabels": <object>,
 "commonLabels": <object>,
 "commonAnnotations": <object>,
 "externalURL": <string>, // backlink to the Alertmanager.
 "alerts": [
 {
 "status": "<resolved|firing>",
 "labels": <object>,
 "annotations": <object>,
 "startsAt": "<rfc3339>",
 "endsAt": "<rfc3339>",
 "generatorURL": <string>, // identifies the entity that caused the alert
 "fingerprint": <string> // fingerprint to identify the alert
 },
 ...
]
}

There is a list of integrations (/docs/operating/integrations/#alertmanager-

webhook-receiver) with this feature.

<wechat_config>

WeChat notifications are sent via the WeChat API

(http://admin.wechat.com/wiki/index.php?title=Customer_Service_Messages).

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 45/47

https://prometheus.io/docs/operating/integrations/#alertmanager-webhook-receiver
https://prometheus.io/docs/operating/integrations/#alertmanager-webhook-receiver
https://prometheus.io/docs/operating/integrations/#alertmanager-webhook-receiver
http://admin.wechat.com/wiki/index.php?title=Customer_Service_Messages
http://admin.wechat.com/wiki/index.php?title=Customer_Service_Messages

Whether to notify about resolved alerts.
[send_resolved: <boolean> | default = false]

The API key to use when talking to the WeChat API.
[api_secret: <secret> | default = global.wechat_api_secret]

The WeChat API URL.
[api_url: <string> | default = global.wechat_api_url]

The corp id for authentication.
[corp_id: <string> | default = global.wechat_api_corp_id]

API request data as defined by the WeChat API.
[message: <tmpl_string> | default = '{{ template "wechat.default.message" . }}']
Type of the message type, supported values are `text` and `markdown`.
[message_type: <string> | default = 'text']
[agent_id: <string> | default = '{{ template "wechat.default.agent_id" . }}']
[to_user: <string> | default = '{{ template "wechat.default.to_user" . }}']
[to_party: <string> | default = '{{ template "wechat.default.to_party" . }}']
[to_tag: <string> | default = '{{ template "wechat.default.to_tag" . }}']

<webex_config>

Whether to notify about resolved alerts.
[send_resolved: <boolean> | default = true]

The Webex Teams API URL i.e. https://webexapis.com/v1/messages
If not specified, default API URL will be used.
[api_url: <string> | default = global.webex_api_url]

ID of the Webex Teams room where to send the messages.
room_id: <string>

Message template.
[message: <tmpl_string> default = '{{ template "webex.default.message" .}}']

The HTTP client's configuration. You must use this configuration to supply the bot
[http_config: <http_config> | default = global.http_config]

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 46/47

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses

trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:23 Configuration | Prometheus

https://prometheus.io/docs/alerting/latest/configuration/ 47/47

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

Version: latest (0.27)

Alerting overview (/docs/alerting/latest/overview/)

Alertmanager (/docs/alerting/latest/alertmanager/)

Configuration (/docs/alerting/latest/configuration/)

Clients (/docs/alerting/latest/clients/)

Notification template reference (/docs/alerting/latest/notifications/)

Notification template examples (/docs/alerting/latest/notification_examples/)

Management API (/docs/alerting/latest/management_api/)

HTTPS and authentication (/docs/alerting/latest/https/)

 BEST PRACTICES

 GUIDES

 TUTORIALS

10/09/24, 19:23 Clients | Prometheus

https://prometheus.io/docs/alerting/latest/clients/ 1/3

https://prometheus.io/docs/alerting/latest/overview/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://prometheus.io/docs/alerting/latest/configuration/
https://prometheus.io/docs/alerting/latest/clients/
https://prometheus.io/docs/alerting/latest/notifications/
https://prometheus.io/docs/alerting/latest/notification_examples/
https://prometheus.io/docs/alerting/latest/management_api/
https://prometheus.io/docs/alerting/latest/https/

SENDING ALERTS

Disclaimer: Prometheus automatically takes care of sending alerts

generated by its configured alerting rules

(/docs/prometheus/latest/configuration/alerting_rules/). It is highly

recommended to configure alerting rules in Prometheus based on time

series data rather than implementing a direct client.

The Alertmanager has two APIs, v1 and v2, both listening for alerts. The scheme

for v1 is described in the code snipped below. The scheme for v2 is specified as

an OpenAPI specification that can be found in the Alertmanager repository

(https://github.com/prometheus/alertmanager/blob/master/api/v2/openapi.yaml).

Clients are expected to continuously re-send alerts as long as they are still active

(usually on the order of 30 seconds to 3 minutes). Clients can push a list of

alerts to Alertmanager via a POST request.

The labels of each alert are used to identify identical instances of an alert and to

perform deduplication. The annotations are always set to those received most

recently and are not identifying an alert.

Both startsAt and endsAt timestamp are optional. If startsAt is omitted, the

current time is assigned by the Alertmanager. endsAt is only set if the end time

of an alert is known. Otherwise it will be set to a configurable timeout period

from the time since the alert was last received.

The generatorURL field is a unique back-link which identifies the causing entity

of this alert in the client.

 SPECIFICATIONS

10/09/24, 19:23 Clients | Prometheus

https://prometheus.io/docs/alerting/latest/clients/ 2/3

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://github.com/prometheus/alertmanager/blob/master/api/v2/openapi.yaml
https://github.com/prometheus/alertmanager/blob/master/api/v2/openapi.yaml

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

[
 {
 "labels": {
 "alertname": "<requiredAlertName>",
 "<labelname>": "<labelvalue>",
 ...
 },
 "annotations": {
 "<labelname>": "<labelvalue>",
 },
 "startsAt": "<rfc3339>",
 "endsAt": "<rfc3339>",
 "generatorURL": "<generator_url>"
 },
 ...
]

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:23 Clients | Prometheus

https://prometheus.io/docs/alerting/latest/clients/ 3/3

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

NOTIFICATION TEMPLATE REFERENCE

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

Version: latest (0.27)

Alerting overview (/docs/alerting/latest/overview/)

Alertmanager (/docs/alerting/latest/alertmanager/)

Configuration (/docs/alerting/latest/configuration/)

Clients (/docs/alerting/latest/clients/)

Notification template reference (/docs/alerting/latest/notifications/)

Notification template examples (/docs/alerting/latest/notification_examples/)

Management API (/docs/alerting/latest/management_api/)

HTTPS and authentication (/docs/alerting/latest/https/)

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:23 Notification template reference | Prometheus

https://prometheus.io/docs/alerting/latest/notifications/ 1/5

https://prometheus.io/docs/alerting/latest/overview/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://prometheus.io/docs/alerting/latest/configuration/
https://prometheus.io/docs/alerting/latest/clients/
https://prometheus.io/docs/alerting/latest/notifications/
https://prometheus.io/docs/alerting/latest/notification_examples/
https://prometheus.io/docs/alerting/latest/management_api/
https://prometheus.io/docs/alerting/latest/https/

Data

Alert

KV

KV methods

Strings

Prometheus creates and sends alerts to the

Alertmanager which then sends notifications out to

different receivers based on their labels. A receiver can

be one of many integrations including: Slack, PagerDuty,

email, or a custom integration via the generic webhook

interface.

The notifications sent to receivers are constructed via templates. The Alertmanager comes with

default templates but they can also be customized. To avoid confusion it's important to note that

the Alertmanager templates differ from templating in Prometheus

(/docs/visualization/template_reference/), however Prometheus templating also includes the

templating in alert rule labels/annotations.

The Alertmanager's notification templates are based on the Go templating

(https://golang.org/pkg/text/template) system. Note that some fields are evaluated as text, and

others as HTML which will affect escaping.

DATA STRUCTURES

Data

Data is the structure passed to notification templates and webhook pushes.

Name Type Notes

Receiver string Defines the receiver's name that the notification will be sent to

(slack, email etc.).

Status string Defined as firing if at least one alert is firing, otherwise

resolved.

Alerts Alert List of all alert objects in this group (see below).

GroupLabels KV The labels these alerts were grouped by.

CommonLabels KV The labels common to all of the alerts.

CommonAnnotations KV Set of common annotations to all of the alerts. Used for longer

additional strings of information about the alert.

ExternalURL string Backlink to the Alertmanager that sent the notification.

The Alerts type exposes functions for filtering alerts:

Alerts.Firing returns a list of currently firing alert objects in this group

10/09/24, 19:23 Notification template reference | Prometheus

https://prometheus.io/docs/alerting/latest/notifications/ 2/5

https://prometheus.io/docs/visualization/template_reference/
https://prometheus.io/docs/visualization/template_reference/
https://golang.org/pkg/text/template
https://golang.org/pkg/text/template

Alerts.Resolved returns a list of resolved alert objects in this group

Alert

Alert holds one alert for notification templates.

Name Type Notes

Status string Defines whether or not the alert is resolved or currently firing.

Labels KV A set of labels to be attached to the alert.

Annotations KV A set of annotations for the alert.

StartsAt time.Time The time the alert started firing. If omitted, the current time is

assigned by the Alertmanager.

EndsAt time.Time Only set if the end time of an alert is known. Otherwise set to a

configurable timeout period from the time since the last alert

was received.

GeneratorURL string A backlink which identifies the causing entity of this alert.

Fingerprint string Fingerprint that can be used to identify the alert.

KV

KV is a set of key/value string pairs used to represent labels and annotations.

type KV map[string]string

Annotation example containing two annotations:

{
 summary: "alert summary",
 description: "alert description",
}

In addition to direct access of data (labels and annotations) stored as KV, there are also methods

for sorting, removing, and viewing the LabelSets:

10/09/24, 19:23 Notification template reference | Prometheus

https://prometheus.io/docs/alerting/latest/notifications/ 3/5

KV methods

Name Arguments Returns Notes

SortedPairs - Pairs (list of key/value

string pairs.)

Returns a sorted list of key/value pairs.

Remove []string KV Returns a copy of the key/value map

without the given keys.

Names - []string Returns the names of the label names

in the LabelSet.

Values - []string Returns a list of the values in the

LabelSet.

FUNCTIONS

Note the default functions (https://golang.org/pkg/text/template/#hdr-Functions) also provided

by Go templating.

Strings

Name Arguments Returns Notes

title string strings.Title (https://golang.org/pkg/strings/#Title),

capitalises first character of each word.

toUpper string strings.ToUpper

(https://golang.org/pkg/strings/#ToUpper), converts all

characters to upper case.

toLower string strings.ToLower

(https://golang.org/pkg/strings/#ToLower), converts all

characters to lower case.

trimSpace string strings.TrimSpace

(https://pkg.go.dev/strings#TrimSpace), removes leading

and trailing white spaces.

match pattern,

string

Regexp.MatchString

(https://golang.org/pkg/regexp/#MatchString). Match a

string using Regexp.

10/09/24, 19:23 Notification template reference | Prometheus

https://prometheus.io/docs/alerting/latest/notifications/ 4/5

https://golang.org/pkg/text/template/#hdr-Functions
https://golang.org/pkg/text/template/#hdr-Functions
https://golang.org/pkg/strings/#Title
https://golang.org/pkg/strings/#Title
https://golang.org/pkg/strings/#ToUpper
https://golang.org/pkg/strings/#ToUpper
https://golang.org/pkg/strings/#ToLower
https://golang.org/pkg/strings/#ToLower
https://pkg.go.dev/strings#TrimSpace
https://pkg.go.dev/strings#TrimSpace
https://golang.org/pkg/regexp/#MatchString
https://golang.org/pkg/regexp/#MatchString

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a

list of trademarks of The Linux Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-usage)

page.

Name Arguments Returns Notes

reReplaceAll pattern,

replacement,

text

Regexp.ReplaceAllString

(https://golang.org/pkg/regexp/#Regexp.ReplaceAllString)

Regexp substitution, unanchored.

join sep string, s

[]string

strings.Join (https://golang.org/pkg/strings/#Join),

concatenates the elements of s to create a single string.

The separator string sep is placed between elements in

the resulting string. (note: argument order inverted for

easier pipelining in templates.)

safeHtml text string html/template.HTML

(https://golang.org/pkg/html/template/#HTML), Marks

string as HTML not requiring auto-escaping.

stringSlice ...string Returns the passed strings as a slice of strings.

 This documentation is open-source (https://github.com/prometheus/docs#contributing-

changes). Please help improve it by filing issues or pull requests.

10/09/24, 19:23 Notification template reference | Prometheus

https://prometheus.io/docs/alerting/latest/notifications/ 5/5

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://golang.org/pkg/regexp/#Regexp.ReplaceAllString
https://golang.org/pkg/regexp/#Regexp.ReplaceAllString
https://golang.org/pkg/strings/#Join
https://golang.org/pkg/strings/#Join
https://golang.org/pkg/html/template/#HTML
https://golang.org/pkg/html/template/#HTML
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

Version: latest (0.27)

Alerting overview (/docs/alerting/latest/overview/)

Alertmanager (/docs/alerting/latest/alertmanager/)

Configuration (/docs/alerting/latest/configuration/)

Clients (/docs/alerting/latest/clients/)

Notification template reference (/docs/alerting/latest/notifications/)

Notification template examples (/docs/alerting/latest/notification_examples/)

Management API (/docs/alerting/latest/management_api/)

HTTPS and authentication (/docs/alerting/latest/https/)

 BEST PRACTICES

 GUIDES

 TUTORIALS

10/09/24, 19:24 Notification template examples | Prometheus

https://prometheus.io/docs/alerting/latest/notification_examples/ 1/5

https://prometheus.io/docs/alerting/latest/overview/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://prometheus.io/docs/alerting/latest/configuration/
https://prometheus.io/docs/alerting/latest/clients/
https://prometheus.io/docs/alerting/latest/notifications/
https://prometheus.io/docs/alerting/latest/notification_examples/
https://prometheus.io/docs/alerting/latest/management_api/
https://prometheus.io/docs/alerting/latest/https/

Customizing Slack

notifications

Accessing annotations

in CommonAnnotations

Ranging over all

received Alerts

Defining reusable

templates

NOTIFICATION TEMPLATE EXAMPLES

The following are all different examples of

alerts and corresponding Alertmanager

configuration file setups (alertmanager.yml).

Each use the Go templating

(https://golang.org/pkg/text/template/)

system.

Customizing Slack notifications

In this example we've customised our Slack

notification to send a URL to our organisation's wiki on how to deal with the

particular alert that's been sent.

global:
 # Also possible to place this URL in a file.
 # Ex: `slack_api_url_file: '/etc/alertmanager/slack_url'`
 slack_api_url: '<slack_webhook_url>'

route:
 receiver: 'slack-notifications'
 group_by: [alertname, datacenter, app]

receivers:
- name: 'slack-notifications'
 slack_configs:
 - channel: '#alerts'
 text: 'https://internal.myorg.net/wiki/alerts/{{ .GroupLabels.app }}/{{ .Grou

 SPECIFICATIONS

10/09/24, 19:24 Notification template examples | Prometheus

https://prometheus.io/docs/alerting/latest/notification_examples/ 2/5

https://golang.org/pkg/text/template/
https://golang.org/pkg/text/template/

Accessing annotations in CommonAnnotations

In this example we again customize the text sent to our Slack receiver accessing

the summary and description stored in the CommonAnnotations of the data sent

by the Alertmanager.

Alert

groups:
- name: Instances
 rules:
 - alert: InstanceDown
 expr: up == 0
 for: 5m
 labels:
 severity: page
 # Prometheus templates apply here in the annotation and label fields of the a
 annotations:
 description: '{{ $labels.instance }} of job {{ $labels.job }} has been down
 summary: 'Instance {{ $labels.instance }} down'

Receiver

- name: 'team-x'
 slack_configs:
 - channel: '#alerts'
 # Alertmanager templates apply here.
 text: "<!channel> \nsummary: {{ .CommonAnnotations.summary }}\ndescription: {

Ranging over all received Alerts

Finally, assuming the same alert as the previous example, we customize our

receiver to range over all of the alerts received from the Alertmanager, printing

their respective annotation summaries and descriptions on new lines.

Receiver

10/09/24, 19:24 Notification template examples | Prometheus

https://prometheus.io/docs/alerting/latest/notification_examples/ 3/5

- name: 'default-receiver'
 slack_configs:
 - channel: '#alerts'
 title: "{{ range .Alerts }}{{ .Annotations.summary }}\n{{ end }}"
 text: "{{ range .Alerts }}{{ .Annotations.description }}\n{{ end }}"

Defining reusable templates

Going back to our first example, we can also provide a file containing named

templates which are then loaded by Alertmanager in order to avoid complex

templates that span many lines. Create a file under

/alertmanager/template/myorg.tmpl and create a template in it named

"slack.myorg.text":

{{ define "slack.myorg.text" }}https://internal.myorg.net/wiki/alerts/{{ .GroupLa

The configuration now loads the template with the given name for the "text"

field and we provide a path to our custom template file:

global:
 slack_api_url: '<slack_webhook_url>'

route:
 receiver: 'slack-notifications'
 group_by: [alertname, datacenter, app]

receivers:
- name: 'slack-notifications'
 slack_configs:
 - channel: '#alerts'
 text: '{{ template "slack.myorg.text" . }}'

templates:
- '/etc/alertmanager/templates/myorg.tmpl'

10/09/24, 19:24 Notification template examples | Prometheus

https://prometheus.io/docs/alerting/latest/notification_examples/ 4/5

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

This example is explained in further detail in this blogpost

(/blog/2016/03/03/custom-alertmanager-templates/).

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:24 Notification template examples | Prometheus

https://prometheus.io/docs/alerting/latest/notification_examples/ 5/5

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://prometheus.io/blog/2016/03/03/custom-alertmanager-templates/
https://prometheus.io/blog/2016/03/03/custom-alertmanager-templates/
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

Version: latest (0.27)

Alerting overview (/docs/alerting/latest/overview/)

Alertmanager (/docs/alerting/latest/alertmanager/)

Configuration (/docs/alerting/latest/configuration/)

Clients (/docs/alerting/latest/clients/)

Notification template reference (/docs/alerting/latest/notifications/)

Notification template examples (/docs/alerting/latest/notification_examples/)

Management API (/docs/alerting/latest/management_api/)

HTTPS and authentication (/docs/alerting/latest/https/)

 BEST PRACTICES

 GUIDES

 TUTORIALS

10/09/24, 19:24 Management API | Prometheus

https://prometheus.io/docs/alerting/latest/management_api/ 1/3

https://prometheus.io/docs/alerting/latest/overview/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://prometheus.io/docs/alerting/latest/configuration/
https://prometheus.io/docs/alerting/latest/clients/
https://prometheus.io/docs/alerting/latest/notifications/
https://prometheus.io/docs/alerting/latest/notification_examples/
https://prometheus.io/docs/alerting/latest/management_api/
https://prometheus.io/docs/alerting/latest/https/

Health check

Readiness check

Reload

MANAGEMENT API

Alertmanager provides a set of management

API to ease automation and integrations.

Health check

GET /-/healthy
HEAD /-/healthy

This endpoint always returns 200 and should be used to check Alertmanager

health.

Readiness check

GET /-/ready
HEAD /-/ready

This endpoint returns 200 when Alertmanager is ready to serve traffic (i.e.

respond to queries).

Reload

POST /-/reload

This endpoint triggers a reload of the Alertmanager configuration file.

An alternative way to trigger a configuration reload is by sending a SIGHUP to

the Alertmanager process.

 SPECIFICATIONS

10/09/24, 19:24 Management API | Prometheus

https://prometheus.io/docs/alerting/latest/management_api/ 2/3

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:24 Management API | Prometheus

https://prometheus.io/docs/alerting/latest/management_api/ 3/3

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

Version: latest (0.27)

Alerting overview (/docs/alerting/latest/overview/)

Alertmanager (/docs/alerting/latest/alertmanager/)

Configuration (/docs/alerting/latest/configuration/)

Clients (/docs/alerting/latest/clients/)

Notification template reference (/docs/alerting/latest/notifications/)

Notification template examples (/docs/alerting/latest/notification_examples/)

Management API (/docs/alerting/latest/management_api/)

HTTPS and authentication (/docs/alerting/latest/https/)

 BEST PRACTICES

 GUIDES

 TUTORIALS

10/09/24, 19:24 HTTPS and authentication | Prometheus

https://prometheus.io/docs/alerting/latest/https/ 1/6

https://prometheus.io/docs/alerting/latest/overview/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://prometheus.io/docs/alerting/latest/configuration/
https://prometheus.io/docs/alerting/latest/clients/
https://prometheus.io/docs/alerting/latest/notifications/
https://prometheus.io/docs/alerting/latest/notification_examples/
https://prometheus.io/docs/alerting/latest/management_api/
https://prometheus.io/docs/alerting/latest/https/

HTTP Traffic

Gossip Traffic

HTTPS AND AUTHENTICATION

Alertmanager supports basic authentication

and TLS. This is experimental and might

change in the future.

Currently TLS is supported for the HTTP traffic and gossip traffic.

HTTP Traffic

To specify which web configuration file to load, use the --web.config.file flag.

The file is written in YAML format (https://en.wikipedia.org/wiki/YAML), defined

by the scheme described below. Brackets indicate that a parameter is optional.

For non-list parameters the value is set to the specified default.

The file is read upon every http request, such as any change in the

configuration and the certificates is picked up immediately.

Generic placeholders are defined as follows:

<boolean> : a boolean that can take the values true or false

<filename> : a valid path in the current working directory

<secret> : a regular string that is a secret, such as a password

<string> : a regular string

 SPECIFICATIONS

10/09/24, 19:24 HTTPS and authentication | Prometheus

https://prometheus.io/docs/alerting/latest/https/ 2/6

https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/YAML

tls_server_config:
 # Certificate and key files for server to use to authenticate to client.
 cert_file: <filename>
 key_file: <filename>

 # Server policy for client authentication. Maps to ClientAuth Policies.
 # For more detail on clientAuth options:
 # https://golang.org/pkg/crypto/tls/#ClientAuthType
 #
 # NOTE: If you want to enable client authentication, you need to use
 # RequireAndVerifyClientCert. Other values are insecure.
 [client_auth_type: <string> | default = "NoClientCert"]

 # CA certificate for client certificate authentication to the server.
 [client_ca_file: <filename>]

 # Minimum TLS version that is acceptable.
 [min_version: <string> | default = "TLS12"]

 # Maximum TLS version that is acceptable.
 [max_version: <string> | default = "TLS13"]

 # List of supported cipher suites for TLS versions up to TLS 1.2. If empty,
 # Go default cipher suites are used. Available cipher suites are documented
 # in the go documentation:
 # https://golang.org/pkg/crypto/tls/#pkg-constants
 #
 # Note that only the cipher returned by the following function are supported:
 # https://pkg.go.dev/crypto/tls#CipherSuites
 [cipher_suites:
 [- <string>]]

 # prefer_server_cipher_suites controls whether the server selects the
 # client's most preferred ciphersuite, or the server's most preferred
 # ciphersuite. If true then the server's preference, as expressed in
 # the order of elements in cipher_suites, is used.
 [prefer_server_cipher_suites: <bool> | default = true]

 # Elliptic curves that will be used in an ECDHE handshake, in preference
 # order. Available curves are documented in the go documentation:
 # https://golang.org/pkg/crypto/tls/#CurveID
 [curve_preferences:
 [- <string>]]

10/09/24, 19:24 HTTPS and authentication | Prometheus

https://prometheus.io/docs/alerting/latest/https/ 3/6

http_server_config:
 # Enable HTTP/2 support. Note that HTTP/2 is only supported with TLS.
 # This can not be changed on the fly.
 [http2: <boolean> | default = true]
 # List of headers that can be added to HTTP responses.
 [headers:
 # Set the Content-Security-Policy header to HTTP responses.
 # Unset if blank.
 [Content-Security-Policy: <string>]
 # Set the X-Frame-Options header to HTTP responses.
 # Unset if blank. Accepted values are deny and sameorigin.
 # https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
 [X-Frame-Options: <string>]
 # Set the X-Content-Type-Options header to HTTP responses.
 # Unset if blank. Accepted value is nosniff.
 # https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Op
 [X-Content-Type-Options: <string>]
 # Set the X-XSS-Protection header to all responses.
 # Unset if blank.
 # https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
 [X-XSS-Protection: <string>]
 # Set the Strict-Transport-Security header to HTTP responses.
 # Unset if blank.
 # Please make sure that you use this with care as this header might force
 # browsers to load Prometheus and the other applications hosted on the same
 # domain and subdomains over HTTPS.
 # https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-
 [Strict-Transport-Security: <string>]]

Usernames and hashed passwords that have full access to the web
server via basic authentication. If empty, no basic authentication is
required. Passwords are hashed with bcrypt.
basic_auth_users:
 [<string>: <secret> ...]

Gossip Traffic

To specify whether to use mutual TLS for gossip, use the --cluster.tls-config

flag.

The server and client sides of the gossip are configurable.

10/09/24, 19:24 HTTPS and authentication | Prometheus

https://prometheus.io/docs/alerting/latest/https/ 4/6

tls_server_config:
 # Certificate and key files for server to use to authenticate to client.
 cert_file: <filename>
 key_file: <filename>

 # Server policy for client authentication. Maps to ClientAuth Policies.
 # For more detail on clientAuth options:
 # https://golang.org/pkg/crypto/tls/#ClientAuthType
 [client_auth_type: <string> | default = "NoClientCert"]

 # CA certificate for client certificate authentication to the server.
 [client_ca_file: <filename>]

 # Minimum TLS version that is acceptable.
 [min_version: <string> | default = "TLS12"]

 # Maximum TLS version that is acceptable.
 [max_version: <string> | default = "TLS13"]

 # List of supported cipher suites for TLS versions up to TLS 1.2. If empty,
 # Go default cipher suites are used. Available cipher suites are documented
 # in the go documentation:
 # https://golang.org/pkg/crypto/tls/#pkg-constants
 [cipher_suites:
 [- <string>]]

 # prefer_server_cipher_suites controls whether the server selects the
 # client's most preferred ciphersuite, or the server's most preferred
 # ciphersuite. If true then the server's preference, as expressed in
 # the order of elements in cipher_suites, is used.
 [prefer_server_cipher_suites: <bool> | default = true]

 # Elliptic curves that will be used in an ECDHE handshake, in preference
 # order. Available curves are documented in the go documentation:
 # https://golang.org/pkg/crypto/tls/#CurveID
 [curve_preferences:
 [- <string>]]

tls_client_config:
 # Path to the CA certificate with which to validate the server certificate.
 [ca_file: <filepath>]

 # Certificate and key files for client cert authentication to the server.

10/09/24, 19:24 HTTPS and authentication | Prometheus

https://prometheus.io/docs/alerting/latest/https/ 5/6

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

 [cert_file: <filepath>]
 [key_file: <filepath>]

 # Server name extension to indicate the name of the server.
 # http://tools.ietf.org/html/rfc4366#section-3.1
 [server_name: <string>]

 # Disable validation of the server certificate.
 [insecure_skip_verify: <boolean> | default = false]

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:24 HTTPS and authentication | Prometheus

https://prometheus.io/docs/alerting/latest/https/ 6/6

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

Metric and label naming (/docs/practices/naming/)

Consoles and dashboards (/docs/practices/consoles/)

Instrumentation (/docs/practices/instrumentation/)

Histograms and summaries (/docs/practices/histograms/)

Alerting (/docs/practices/alerting/)

Recording rules (/docs/practices/rules/)

When to use the Pushgateway (/docs/practices/pushing/)

Remote write tuning (/docs/practices/remote_write/)

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:24 Metric and label naming | Prometheus

https://prometheus.io/docs/practices/naming/ 1/5

https://prometheus.io/docs/practices/naming/
https://prometheus.io/docs/practices/consoles/
https://prometheus.io/docs/practices/instrumentation/
https://prometheus.io/docs/practices/histograms/
https://prometheus.io/docs/practices/alerting/
https://prometheus.io/docs/practices/rules/
https://prometheus.io/docs/practices/pushing/
https://prometheus.io/docs/practices/remote_write/

Metric names

Labels

Base units

METRIC AND LABEL NAMING

The metric and label conventions presented in

this document are not required for using

Prometheus, but can serve as both a style-

guide and a collection of best practices.

Individual organizations may want to

approach some of these practices, e.g. naming conventions, differently.

Metric names

A metric name...

...must comply with the data model (/docs/concepts/data_model/#metric-

names-and-labels) for valid characters.

...should have a (single-word) application prefix relevant to the domain the

metric belongs to. The prefix is sometimes referred to as namespace by

client libraries. For metrics specific to an application, the prefix is usually

the application name itself. Sometimes, however, metrics are more

generic, like standardized metrics exported by client libraries. Examples:

prometheus_notifications_total (specific to the Prometheus server)

process_cpu_seconds_total (exported by many client libraries)

http_request_duration_seconds (for all HTTP requests)

...must have a single unit (i.e. do not mix seconds with milliseconds, or

seconds with bytes).

...should use base units (e.g. seconds, bytes, meters - not milliseconds,

megabytes, kilometers). See below for a list of base units.

...should have a suffix describing the unit, in plural form. Note that an

accumulating count has total as a suffix, in addition to the unit if

applicable.

http_request_duration_seconds

node_memory_usage_bytes

http_requests_total (for a unit-less accumulating count)

process_cpu_seconds_total (for an accumulating count with unit)

10/09/24, 19:24 Metric and label naming | Prometheus

https://prometheus.io/docs/practices/naming/ 2/5

https://prometheus.io/docs/concepts/data_model/#metric-names-and-labels
https://prometheus.io/docs/concepts/data_model/#metric-names-and-labels
https://prometheus.io/docs/concepts/data_model/#metric-names-and-labels

foobar_build_info (for a pseudo-metric that provides metadata

(https://www.robustperception.io/exposing-the-software-version-to-

prometheus) about the running binary)

data_pipeline_last_record_processed_timestamp_seconds (for a

timestamp that tracks the time of the latest record processed in a

data processing pipeline)

...should represent the same logical thing-being-measured across all label

dimensions.

request duration

bytes of data transfer

instantaneous resource usage as a percentage

As a rule of thumb, either the sum() or the avg() over all dimensions of a

given metric should be meaningful (though not necessarily useful). If it is not

meaningful, split the data up into multiple metrics. For example, having the

capacity of various queues in one metric is good, while mixing the capacity of a

queue with the current number of elements in the queue is not.

Labels

Use labels to differentiate the characteristics of the thing that is being

measured:

api_http_requests_total - differentiate request types:

operation="create|update|delete"

api_request_duration_seconds - differentiate request stages:

stage="extract|transform|load"

Do not put the label names in the metric name, as this introduces redundancy

and will cause confusion if the respective labels are aggregated away.

10/09/24, 19:24 Metric and label naming | Prometheus

https://prometheus.io/docs/practices/naming/ 3/5

https://www.robustperception.io/exposing-the-software-version-to-prometheus
https://www.robustperception.io/exposing-the-software-version-to-prometheus
https://www.robustperception.io/exposing-the-software-version-to-prometheus

CAUTION: Remember that every unique combination of key-value label

pairs represents a new time series, which can dramatically increase the

amount of data stored. Do not use labels to store dimensions with high

cardinality (many different label values), such as user IDs, email addresses,

or other unbounded sets of values.

Base units

Prometheus does not have any units hard coded. For better compatibility, base

units should be used. The following lists some metrics families with their base

unit. The list is not exhaustive.

Family

Base

unit Remark

Time seconds

Temperature celsius celsius is preferred over kelvin for practical

reasons. kelvin is acceptable as a base unit in

special cases like color temperature or where

temperature has to be absolute.

Length meters

Bytes bytes

Bits bytes To avoid confusion combining different metrics,

always use bytes, even where bits appear more

common.

Percent ratio Values are 0–1 (rather than 0–100). ratio is only

used as a suffix for names like disk_usage_ratio .

The usual metric name follows the pattern

A_per_B .

Voltage volts

10/09/24, 19:24 Metric and label naming | Prometheus

https://prometheus.io/docs/practices/naming/ 4/5

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

Family

Base

unit Remark

Electric

current

amperes

Energy joules

Power Prefer exporting a counter of joules, then

rate(joules[5m]) gives you power in Watts.

Mass grams grams is preferred over kilograms to avoid issues

with the kilo prefix.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:24 Metric and label naming | Prometheus

https://prometheus.io/docs/practices/naming/ 5/5

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

Metric and label naming (/docs/practices/naming/)

Consoles and dashboards (/docs/practices/consoles/)

Instrumentation (/docs/practices/instrumentation/)

Histograms and summaries (/docs/practices/histograms/)

Alerting (/docs/practices/alerting/)

Recording rules (/docs/practices/rules/)

When to use the Pushgateway (/docs/practices/pushing/)

Remote write tuning (/docs/practices/remote_write/)

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:24 Consoles and dashboards | Prometheus

https://prometheus.io/docs/practices/consoles/ 1/3

https://prometheus.io/docs/practices/naming/
https://prometheus.io/docs/practices/consoles/
https://prometheus.io/docs/practices/instrumentation/
https://prometheus.io/docs/practices/histograms/
https://prometheus.io/docs/practices/alerting/
https://prometheus.io/docs/practices/rules/
https://prometheus.io/docs/practices/pushing/
https://prometheus.io/docs/practices/remote_write/

CONSOLES AND DASHBOARDS

It can be tempting to display as much data as possible on a dashboard,

especially when a system like Prometheus offers the ability to have such rich

instrumentation of your applications. This can lead to consoles that are

impenetrable due to having too much information, that even an expert in the

system would have difficulty drawing meaning from.

Instead of trying to represent every piece of data you have, for operational

consoles think of what are the most likely failure modes and how you would

use the consoles to differentiate them. Take advantage of the structure of your

services. For example, if you have a big tree of services in an online-serving

system, latency in some lower service is a typical problem. Rather than showing

every service's information on a single large dashboard, build separate

dashboards for each service that include the latency and errors for each service

they talk to. You can then start at the top and work your way down to the

problematic service.

We have found the following guidelines very effective:

Have no more than 5 graphs on a console.

Have no more than 5 plots (lines) on each graph. You can get away with

more if it is a stacked/area graph.

When using the provided console template examples, avoid more than 20-

30 entries in the right-hand-side table.

If you find yourself exceeding these, it could make sense to demote the visibility

of less important information, possibly splitting out some subsystems to a new

console. For example, you could graph aggregated rather than broken-down

data, move it to the right-hand-side table, or even remove data completely if it

is rarely useful - you can always look at it in the expression browser

(/docs/visualization/browser/)!

10/09/24, 19:24 Consoles and dashboards | Prometheus

https://prometheus.io/docs/practices/consoles/ 2/3

https://prometheus.io/docs/visualization/browser/
https://prometheus.io/docs/visualization/browser/

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

Finally, it is difficult for a set of consoles to serve more than one master. What

you want to know when oncall (what is broken?) tends to be very different from

what you want when developing features (how many people hit corner case X?).

In such cases, two separate sets of consoles can be useful.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:24 Consoles and dashboards | Prometheus

https://prometheus.io/docs/practices/consoles/ 3/3

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

Metric and label naming (/docs/practices/naming/)

Consoles and dashboards (/docs/practices/consoles/)

Instrumentation (/docs/practices/instrumentation/)

Histograms and summaries (/docs/practices/histograms/)

Alerting (/docs/practices/alerting/)

Recording rules (/docs/practices/rules/)

When to use the Pushgateway (/docs/practices/pushing/)

Remote write tuning (/docs/practices/remote_write/)

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:24 Instrumentation | Prometheus

https://prometheus.io/docs/practices/instrumentation/ 1/9

https://prometheus.io/docs/practices/naming/
https://prometheus.io/docs/practices/consoles/
https://prometheus.io/docs/practices/instrumentation/
https://prometheus.io/docs/practices/histograms/
https://prometheus.io/docs/practices/alerting/
https://prometheus.io/docs/practices/rules/
https://prometheus.io/docs/practices/pushing/
https://prometheus.io/docs/practices/remote_write/

How to instrument

The three types of

services

Subsystems

Things to watch out for

Use labels

Do not overuse

labels

Counter vs. gauge,

summary vs.

histogram

Timestamps, not

time since

Inner loops

Avoid missing

metrics

INSTRUMENTATION

This page provides an opinionated set of

guidelines for instrumenting your code.

How to instrument

The short answer is to instrument everything.

Every library, subsystem and service should

have at least a few metrics to give you a rough

idea of how it is performing.

Instrumentation should be an integral part of

your code. Instantiate the metric classes in the

same file you use them. This makes going from

alert to console to code easy when you are

chasing an error.

The three types of services

For monitoring purposes, services can

generally be broken down into three types: online-serving, offline-processing,

and batch jobs. There is overlap between them, but every service tends to fit

well into one of these categories.

Online-serving systems

An online-serving system is one where a human or another system is expecting

an immediate response. For example, most database and HTTP requests fall into

this category.

The key metrics in such a system are the number of performed queries, errors,

and latency. The number of in-progress requests can also be useful.

For counting failed queries, see section Failures below.

Online-serving systems should be monitored on both the client and server side.

If the two sides see different behaviors, that is very useful information for

debugging. If a service has many clients, it is not practical for the service to track

10/09/24, 19:24 Instrumentation | Prometheus

https://prometheus.io/docs/practices/instrumentation/ 2/9

them individually, so they have to rely on their own stats.

Be consistent in whether you count queries when they start or when they end.

When they end is suggested, as it will line up with the error and latency stats,

and tends to be easier to code.

Offline processing

For offline processing, no one is actively waiting for a response, and batching of

work is common. There may also be multiple stages of processing.

For each stage, track the items coming in, how many are in progress, the last

time you processed something, and how many items were sent out. If batching,

you should also track batches going in and out.

Knowing the last time that a system processed something is useful for detecting

if it has stalled, but it is very localised information. A better approach is to send a

heartbeat through the system: some dummy item that gets passed all the way

through and includes the timestamp when it was inserted. Each stage can export

the most recent heartbeat timestamp it has seen, letting you know how long

items are taking to propagate through the system. For systems that do not have

quiet periods where no processing occurs, an explicit heartbeat may not be

needed.

Batch jobs

There is a fuzzy line between offline-processing and batch jobs, as offline

processing may be done in batch jobs. Batch jobs are distinguished by the fact

that they do not run continuously, which makes scraping them difficult.

The key metric of a batch job is the last time it succeeded. It is also useful to

track how long each major stage of the job took, the overall runtime and the last

time the job completed (successful or failed). These are all gauges, and should

be pushed to a PushGateway (/docs/instrumenting/pushing/). There are

generally also some overall job-specific statistics that would be useful to track,

such as the total number of records processed.

10/09/24, 19:24 Instrumentation | Prometheus

https://prometheus.io/docs/practices/instrumentation/ 3/9

https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/

For batch jobs that take more than a few minutes to run, it is useful to also

scrape them using pull-based monitoring. This lets you track the same metrics

over time as for other types of jobs, such as resource usage and latency when

talking to other systems. This can aid debugging if the job starts to get slow.

For batch jobs that run very often (say, more often than every 15 minutes), you

should consider converting them into daemons and handling them as offline-

processing jobs.

Subsystems

In addition to the three main types of services, systems have sub-parts that

should also be monitored.

Libraries

Libraries should provide instrumentation with no additional configuration

required by users.

If it is a library used to access some resource outside of the process (for

example, network, disk, or IPC), track the overall query count, errors (if errors

are possible) and latency at a minimum.

Depending on how heavy the library is, track internal errors and latency within

the library itself, and any general statistics you think may be useful.

A library may be used by multiple independent parts of an application against

different resources, so take care to distinguish uses with labels where

appropriate. For example, a database connection pool should distinguish the

databases it is talking to, whereas there is no need to differentiate between

users of a DNS client library.

Logging

As a general rule, for every line of logging code you should also have a counter

that is incremented. If you find an interesting log message, you want to be able

to see how often it has been happening and for how long.

10/09/24, 19:24 Instrumentation | Prometheus

https://prometheus.io/docs/practices/instrumentation/ 4/9

If there are multiple closely-related log messages in the same function (for

example, different branches of an if or switch statement), it can sometimes

make sense to increment a single counter for all of them.

It is also generally useful to export the total number of info/error/warning lines

that were logged by the application as a whole, and check for significant

differences as part of your release process.

Failures

Failures should be handled similarly to logging. Every time there is a failure, a

counter should be incremented. Unlike logging, the error may also bubble up to

a more general error counter depending on how your code is structured.

When reporting failures, you should generally have some other metric

representing the total number of attempts. This makes the failure ratio easy to

calculate.

Threadpools

For any sort of threadpool, the key metrics are the number of queued requests,

the number of threads in use, the total number of threads, the number of tasks

processed, and how long they took. It is also useful to track how long things

were waiting in the queue.

Caches

The key metrics for a cache are total queries, hits, overall latency and then the

query count, errors and latency of whatever online-serving system the cache is

in front of.

Collectors

When implementing a non-trivial custom metrics collector, it is advised to export

a gauge for how long the collection took in seconds and another for the number

of errors encountered.

This is one of the two cases when it is okay to export a duration as a gauge

rather than a summary or a histogram, the other being batch job durations. This

is because both represent information about that particular push/scrape, rather

10/09/24, 19:24 Instrumentation | Prometheus

https://prometheus.io/docs/practices/instrumentation/ 5/9

than tracking multiple durations over time.

Things to watch out for

There are some general things to be aware of when doing monitoring, and also

Prometheus-specific ones in particular.

Use labels

Few monitoring systems have the notion of labels and an expression language

to take advantage of them, so it takes a bit of getting used to.

When you have multiple metrics that you want to add/average/sum, they should

usually be one metric with labels rather than multiple metrics.

For example, rather than http_responses_500_total and

http_responses_403_total , create a single metric called http_responses_total

with a code label for the HTTP response code. You can then process the entire

metric as one in rules and graphs.

As a rule of thumb, no part of a metric name should ever be procedurally

generated (use labels instead). The one exception is when proxying metrics from

another monitoring/instrumentation system.

See also the naming (/docs/practices/naming/) section.

Do not overuse labels

Each labelset is an additional time series that has RAM, CPU, disk, and network

costs. Usually the overhead is negligible, but in scenarios with lots of metrics and

hundreds of labelsets across hundreds of servers, this can add up quickly.

As a general guideline, try to keep the cardinality of your metrics below 10, and

for metrics that exceed that, aim to limit them to a handful across your whole

system. The vast majority of your metrics should have no labels.

If you have a metric that has a cardinality over 100 or the potential to grow that

large, investigate alternate solutions such as reducing the number of dimensions

or moving the analysis away from monitoring and to a general-purpose

processing system.

10/09/24, 19:24 Instrumentation | Prometheus

https://prometheus.io/docs/practices/instrumentation/ 6/9

https://prometheus.io/docs/practices/naming/
https://prometheus.io/docs/practices/naming/

To give you a better idea of the underlying numbers, let's look at node_exporter.

node_exporter exposes metrics for every mounted filesystem. Every node will

have in the tens of timeseries for, say, node_filesystem_avail . If you have

10,000 nodes, you will end up with roughly 100,000 timeseries for

node_filesystem_avail , which is fine for Prometheus to handle.

If you were to now add quota per user, you would quickly reach a double digit

number of millions with 10,000 users on 10,000 nodes. This is too much for the

current implementation of Prometheus. Even with smaller numbers, there's an

opportunity cost as you can't have other, potentially more useful metrics on this

machine any more.

If you are unsure, start with no labels and add more labels over time as concrete

use cases arise.

Counter vs. gauge, summary vs. histogram

It is important to know which of the four main metric types to use for a given

metric.

To pick between counter and gauge, there is a simple rule of thumb: if the value

can go down, it is a gauge.

Counters can only go up (and reset, such as when a process restarts). They are

useful for accumulating the number of events, or the amount of something at

each event. For example, the total number of HTTP requests, or the total

number of bytes sent in HTTP requests. Raw counters are rarely useful. Use the

rate() function to get the per-second rate at which they are increasing.

Gauges can be set, go up, and go down. They are useful for snapshots of state,

such as in-progress requests, free/total memory, or temperature. You should

never take a rate() of a gauge.

Summaries and histograms are more complex metric types discussed in their

own section (/docs/practices/histograms/).

10/09/24, 19:24 Instrumentation | Prometheus

https://prometheus.io/docs/practices/instrumentation/ 7/9

https://prometheus.io/docs/practices/histograms/
https://prometheus.io/docs/practices/histograms/
https://prometheus.io/docs/practices/histograms/

Timestamps, not time since

If you want to track the amount of time since something happened, export the

Unix timestamp at which it happened - not the time since it happened.

With the timestamp exported, you can use the expression time() -

my_timestamp_metric to calculate the time since the event, removing the need

for update logic and protecting you against the update logic getting stuck.

Inner loops

In general, the additional resource cost of instrumentation is far outweighed by

the benefits it brings to operations and development.

For code which is performance-critical or called more than 100k times a second

inside a given process, you may wish to take some care as to how many metrics

you update.

A Java counter takes 12-17ns

(https://github.com/prometheus/client_java/blob/master/benchmark/README.md)

to increment depending on contention. Other languages will have similar

performance. If that amount of time is significant for your inner loop, limit the

number of metrics you increment in the inner loop and avoid labels (or cache

the result of the label lookup, for example, the return value of With() in Go or

labels() in Java) where possible.

Beware also of metric updates involving time or durations, as getting the time

may involve a syscall. As with all matters involving performance-critical code,

benchmarks are the best way to determine the impact of any given change.

Avoid missing metrics

Time series that are not present until something happens are difficult to deal

with, as the usual simple operations are no longer sufficient to correctly handle

them. To avoid this, export a default value such as 0 for any time series you

know may exist in advance.

Most Prometheus client libraries (including Go, Java, and Python) will

automatically export a 0 for you for metrics with no labels.

10/09/24, 19:24 Instrumentation | Prometheus

https://prometheus.io/docs/practices/instrumentation/ 8/9

https://github.com/prometheus/client_java/blob/master/benchmark/README.md
https://github.com/prometheus/client_java/blob/master/benchmark/README.md

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:24 Instrumentation | Prometheus

https://prometheus.io/docs/practices/instrumentation/ 9/9

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

Library support

Count and sum of observations

Apdex score

Quantiles

Errors of quantile estimation

What can I do if my client library does

not support the metric type I need?

NOTE: This document predates native histograms (added as an experimental feature in Prometheus v2.40). Once

native histograms are closer to becoming a stable feature, this document will be thoroughly updated.

HISTOGRAMS AND SUMMARIES

Histograms and summaries are more complex metric types. Not only

does a single histogram or summary create a multitude of time series, it

is also more difficult to use these metric types correctly. This section

helps you to pick and configure the appropriate metric type for your

use case.

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

Metric and label naming (/docs/practices/naming/)

Consoles and dashboards (/docs/practices/consoles/)

Instrumentation (/docs/practices/instrumentation/)

Histograms and summaries (/docs/practices/histograms/)

Alerting (/docs/practices/alerting/)

Recording rules (/docs/practices/rules/)

When to use the Pushgateway (/docs/practices/pushing/)

Remote write tuning (/docs/practices/remote_write/)

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:24 Histograms and summaries | Prometheus

https://prometheus.io/docs/practices/histograms/ 1/5

https://prometheus.io/docs/practices/naming/
https://prometheus.io/docs/practices/consoles/
https://prometheus.io/docs/practices/instrumentation/
https://prometheus.io/docs/practices/histograms/
https://prometheus.io/docs/practices/alerting/
https://prometheus.io/docs/practices/rules/
https://prometheus.io/docs/practices/pushing/
https://prometheus.io/docs/practices/remote_write/

Library support

First of all, check the library support for histograms (/docs/concepts/metric_types/#histogram) and summaries

(/docs/concepts/metric_types/#summary).

Some libraries support only one of the two types, or they support summaries only in a limited fashion (lacking quantile

calculation).

Count and sum of observations

Histograms and summaries both sample observations, typically request durations or response sizes. They track the

number of observations and the sum of the observed values, allowing you to calculate the average of the observed values.

Note that the number of observations (showing up in Prometheus as a time series with a _count suffix) is inherently a

counter (as described above, it only goes up). The sum of observations (showing up as a time series with a _sum suffix)

behaves like a counter, too, as long as there are no negative observations. Obviously, request durations or response sizes

are never negative. In principle, however, you can use summaries and histograms to observe negative values (e.g.

temperatures in centigrade). In that case, the sum of observations can go down, so you cannot apply rate() to it

anymore. In those rare cases where you need to apply rate() and cannot avoid negative observations, you can use two

separate summaries, one for positive and one for negative observations (the latter with inverted sign), and combine the

results later with suitable PromQL expressions.

To calculate the average request duration during the last 5 minutes from a histogram or summary called

http_request_duration_seconds , use the following expression:

 rate(http_request_duration_seconds_sum[5m])
/
 rate(http_request_duration_seconds_count[5m])

Apdex score

A straight-forward use of histograms (but not summaries) is to count observations falling into particular buckets of

observation values.

You might have an SLO to serve 95% of requests within 300ms. In that case, configure a histogram to have a bucket with

an upper limit of 0.3 seconds. You can then directly express the relative amount of requests served within 300ms and

easily alert if the value drops below 0.95. The following expression calculates it by job for the requests served in the last 5

minutes. The request durations were collected with a histogram called http_request_duration_seconds .

 sum(rate(http_request_duration_seconds_bucket{le="0.3"}[5m])) by (job)
/
 sum(rate(http_request_duration_seconds_count[5m])) by (job)

You can approximate the well-known Apdex score (https://en.wikipedia.org/wiki/Apdex) in a similar way. Configure a

bucket with the target request duration as the upper bound and another bucket with the tolerated request duration

(usually 4 times the target request duration) as the upper bound. Example: The target request duration is 300ms. The

tolerable request duration is 1.2s. The following expression yields the Apdex score for each job over the last 5 minutes:

(
 sum(rate(http_request_duration_seconds_bucket{le="0.3"}[5m])) by (job)
+
 sum(rate(http_request_duration_seconds_bucket{le="1.2"}[5m])) by (job)
) / 2 / sum(rate(http_request_duration_seconds_count[5m])) by (job)

Note that we divide the sum of both buckets. The reason is that the histogram buckets are cumulative

(https://en.wikipedia.org/wiki/Histogram#Cumulative_histogram). The le="0.3" bucket is also contained in the le="1.2"

bucket; dividing it by 2 corrects for that.

10/09/24, 19:24 Histograms and summaries | Prometheus

https://prometheus.io/docs/practices/histograms/ 2/5

https://prometheus.io/docs/concepts/metric_types/#histogram
https://prometheus.io/docs/concepts/metric_types/#histogram
https://prometheus.io/docs/concepts/metric_types/#summary
https://prometheus.io/docs/concepts/metric_types/#summary
https://en.wikipedia.org/wiki/Apdex
https://en.wikipedia.org/wiki/Apdex
https://en.wikipedia.org/wiki/Histogram#Cumulative_histogram
https://en.wikipedia.org/wiki/Histogram#Cumulative_histogram

The calculation does not exactly match the traditional Apdex score, as it includes errors in the satisfied and tolerable

parts of the calculation.

Quantiles

You can use both summaries and histograms to calculate so-called φ-quantiles, where 0 ≤ φ ≤ 1. The φ-quantile is the

observation value that ranks at number φ*N among the N observations. Examples for φ-quantiles: The 0.5-quantile is

known as the median. The 0.95-quantile is the 95th percentile.

The essential difference between summaries and histograms is that summaries calculate streaming φ-quantiles on the

client side and expose them directly, while histograms expose bucketed observation counts and the calculation of

quantiles from the buckets of a histogram happens on the server side using the histogram_quantile() function

(/docs/prometheus/latest/querying/functions/#histogram_quantile).

The two approaches have a number of different implications:

Histogram Summary

Required

configuration

Pick buckets suitable for the expected range of observed values. Pick desired φ-quantiles and sliding w

and sliding windows cannot be calcu

Client

performance

Observations are very cheap as they only need to increment

counters.

Observations are expensive due to t

calculation.

Server

performance

The server has to calculate quantiles. You can use recording rules

(/docs/prometheus/latest/configuration/recording_rules/#recording-

rules) should the ad-hoc calculation take too long (e.g. in a large

dashboard).

Low server-side cost.

Number of

time series

(in addition

to the _sum

and _count

series)

One time series per configured bucket. One time series per configured quan

Quantile

error (see

below for

details)

Error is limited in the dimension of observed values by the width of

the relevant bucket.

Error is limited in the dimension of φ

Specification

of φ-quantile

and sliding

time-window

Ad-hoc with Prometheus expressions

(/docs/prometheus/latest/querying/functions/#histogram_quantile).

Preconfigured by the client.

Aggregation Ad-hoc with Prometheus expressions

(/docs/prometheus/latest/querying/functions/#histogram_quantile).

In general not aggregatable

(http://latencytipoftheday.blogspot.d

you-cant-average.html).

Note the importance of the last item in the table. Let us return to the SLO of serving 95% of requests within 300ms. This

time, you do not want to display the percentage of requests served within 300ms, but instead the 95th percentile, i.e. the

request duration within which you have served 95% of requests. To do that, you can either configure a summary with a

0.95-quantile and (for example) a 5-minute decay time, or you configure a histogram with a few buckets around the

300ms mark, e.g. {le="0.1"} , {le="0.2"} , {le="0.3"} , and {le="0.45"} . If your service runs replicated with a number

of instances, you will collect request durations from every single one of them, and then you want to aggregate everything

into an overall 95th percentile. However, aggregating the precomputed quantiles from a summary rarely makes sense. In

this particular case, averaging the quantiles yields statistically nonsensical values.

10/09/24, 19:24 Histograms and summaries | Prometheus

https://prometheus.io/docs/practices/histograms/ 3/5

https://prometheus.io/docs/prometheus/latest/querying/functions/#histogram_quantile
https://prometheus.io/docs/prometheus/latest/querying/functions/#histogram_quantile
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/#recording-rules
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/#recording-rules
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/#recording-rules
https://prometheus.io/docs/prometheus/latest/querying/functions/#histogram_quantile
https://prometheus.io/docs/prometheus/latest/querying/functions/#histogram_quantile
https://prometheus.io/docs/prometheus/latest/querying/functions/#histogram_quantile
https://prometheus.io/docs/prometheus/latest/querying/functions/#histogram_quantile
http://latencytipoftheday.blogspot.de/2014/06/latencytipoftheday-you-cant-average.html
http://latencytipoftheday.blogspot.de/2014/06/latencytipoftheday-you-cant-average.html
http://latencytipoftheday.blogspot.de/2014/06/latencytipoftheday-you-cant-average.html

avg(http_request_duration_seconds{quantile="0.95"}) // BAD!

Using histograms, the aggregation is perfectly possible with the histogram_quantile() function

(/docs/prometheus/latest/querying/functions/#histogram_quantile).

histogram_quantile(0.95, sum(rate(http_request_duration_seconds_bucket[5m])) by (le)) // GOOD.

Furthermore, should your SLO change and you now want to plot the 90th percentile, or you want to take into account the

last 10 minutes instead of the last 5 minutes, you only have to adjust the expression above and you do not need to

reconfigure the clients.

Errors of quantile estimation

Quantiles, whether calculated client-side or server-side, are estimated. It is important to understand the errors of that

estimation.

Continuing the histogram example from above, imagine your usual request durations are almost all very close to 220ms,

or in other words, if you could plot the "true" histogram, you would see a very sharp spike at 220ms. In the Prometheus

histogram metric as configured above, almost all observations, and therefore also the 95th percentile, will fall into the

bucket labeled {le="0.3"} , i.e. the bucket from 200ms to 300ms. The histogram implementation guarantees that the

true 95th percentile is somewhere between 200ms and 300ms. To return a single value (rather than an interval), it applies

linear interpolation, which yields 295ms in this case. The calculated quantile gives you the impression that you are close

to breaching the SLO, but in reality, the 95th percentile is a tiny bit above 220ms, a quite comfortable distance to your

SLO.

Next step in our thought experiment: A change in backend routing adds a fixed amount of 100ms to all request durations.

Now the request duration has its sharp spike at 320ms and almost all observations will fall into the bucket from 300ms to

450ms. The 95th percentile is calculated to be 442.5ms, although the correct value is close to 320ms. While you are only a

tiny bit outside of your SLO, the calculated 95th quantile looks much worse.

A summary would have had no problem calculating the correct percentile value in both cases, at least if it uses an

appropriate algorithm on the client side (like the one used by the Go client

(http://dimacs.rutgers.edu/%7Egraham/pubs/slides/bquant-long.pdf)). Unfortunately, you cannot use a summary if you

need to aggregate the observations from a number of instances.

Luckily, due to your appropriate choice of bucket boundaries, even in this contrived example of very sharp spikes in the

distribution of observed values, the histogram was able to identify correctly if you were within or outside of your SLO.

Also, the closer the actual value of the quantile is to our SLO (or in other words, the value we are actually most interested

in), the more accurate the calculated value becomes.

Let us now modify the experiment once more. In the new setup, the distributions of request durations has a spike at

150ms, but it is not quite as sharp as before and only comprises 90% of the observations. 10% of the observations are

evenly spread out in a long tail between 150ms and 450ms. With that distribution, the 95th percentile happens to be

exactly at our SLO of 300ms. With the histogram, the calculated value is accurate, as the value of the 95th percentile

happens to coincide with one of the bucket boundaries. Even slightly different values would still be accurate as the

(contrived) even distribution within the relevant buckets is exactly what the linear interpolation within a bucket assumes.

The error of the quantile reported by a summary gets more interesting now. The error of the quantile in a summary is

configured in the dimension of φ. In our case we might have configured 0.95±0.01, i.e. the calculated value will be

between the 94th and 96th percentile. The 94th quantile with the distribution described above is 270ms, the 96th

quantile is 330ms. The calculated value of the 95th percentile reported by the summary can be anywhere in the interval

between 270ms and 330ms, which unfortunately is all the difference between clearly within the SLO vs. clearly outside

the SLO.

10/09/24, 19:24 Histograms and summaries | Prometheus

https://prometheus.io/docs/practices/histograms/ 4/5

https://prometheus.io/docs/prometheus/latest/querying/functions/#histogram_quantile
https://prometheus.io/docs/prometheus/latest/querying/functions/#histogram_quantile
http://dimacs.rutgers.edu/%7Egraham/pubs/slides/bquant-long.pdf
http://dimacs.rutgers.edu/%7Egraham/pubs/slides/bquant-long.pdf

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list of trademarks of The Linux

Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-usage) page.

The bottom line is: If you use a summary, you control the error in the dimension of φ. If you use a histogram, you control

the error in the dimension of the observed value (via choosing the appropriate bucket layout). With a broad distribution,

small changes in φ result in large deviations in the observed value. With a sharp distribution, a small interval of observed

values covers a large interval of φ.

Two rules of thumb:

1. If you need to aggregate, choose histograms.

2. Otherwise, choose a histogram if you have an idea of the range and distribution of values that will be observed.

Choose a summary if you need an accurate quantile, no matter what the range and distribution of the values is.

What can I do if my client library does not support the metric type I need?

Implement it! Code contributions are welcome (/community/). In general, we expect histograms to be more urgently

needed than summaries. Histograms are also easier to implement in a client library, so we recommend to implement

histograms first, if in doubt.

 This documentation is open-source (https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:24 Histograms and summaries | Prometheus

https://prometheus.io/docs/practices/histograms/ 5/5

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://prometheus.io/community/
https://prometheus.io/community/
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

Naming

What to alert on

Online serving systems

Offline processing

Batch jobs

Capacity

Metamonitoring

ALERTING

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

Metric and label naming (/docs/practices/naming/)

Consoles and dashboards (/docs/practices/consoles/)

Instrumentation (/docs/practices/instrumentation/)

Histograms and summaries (/docs/practices/histograms/)

Alerting (/docs/practices/alerting/)

Recording rules (/docs/practices/rules/)

When to use the Pushgateway (/docs/practices/pushing/)

Remote write tuning (/docs/practices/remote_write/)

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:25 Alerting | Prometheus

https://prometheus.io/docs/practices/alerting/ 1/3

https://prometheus.io/docs/practices/naming/
https://prometheus.io/docs/practices/consoles/
https://prometheus.io/docs/practices/instrumentation/
https://prometheus.io/docs/practices/histograms/
https://prometheus.io/docs/practices/alerting/
https://prometheus.io/docs/practices/rules/
https://prometheus.io/docs/practices/pushing/
https://prometheus.io/docs/practices/remote_write/

We recommend that you read My Philosophy on Alerting

(https://docs.google.com/a/boxever.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit)

based on Rob Ewaschuk's observations at Google.

To summarize: keep alerting simple, alert on symptoms, have good consoles to allow pinpointing causes, and

avoid having pages where there is nothing to do.

Naming

There are no strict restrictions regarding the naming of alerting rules, as alert names may contain any number

of Unicode characters, just like any other label value. However, the community has rallied around

(https://monitoring.mixins.dev/) using Camel Case (https://en.wikipedia.org/wiki/Camel_case) for their alert

names.

What to alert on

Aim to have as few alerts as possible, by alerting on symptoms that are associated with end-user pain rather

than trying to catch every possible way that pain could be caused. Alerts should link to relevant consoles and

make it easy to figure out which component is at fault.

Allow for slack in alerting to accommodate small blips.

Online serving systems

Typically alert on high latency and error rates as high up in the stack as possible.

Only page on latency at one point in a stack. If a lower-level component is slower than it should be, but the

overall user latency is fine, then there is no need to page.

For error rates, page on user-visible errors. If there are errors further down the stack that will cause such a

failure, there is no need to page on them separately. However, if some failures are not user-visible, but are

otherwise severe enough to require human involvement (for example, you are losing a lot of money), add pages

to be sent on those.

You may need alerts for different types of request if they have different characteristics, or problems in a low-

traffic type of request would be drowned out by high-traffic requests.

Offline processing

For offline processing systems, the key metric is how long data takes to get through the system, so page if that

gets high enough to cause user impact.

Batch jobs

For batch jobs it makes sense to page if the batch job has not succeeded recently enough, and this will cause

user-visible problems.

This should generally be at least enough time for 2 full runs of the batch job. For a job that runs every 4 hours

and takes an hour, 10 hours would be a reasonable threshold. If you cannot withstand a single run failing, run

the job more frequently, as a single failure should not require human intervention.

Capacity

While not a problem causing immediate user impact, being close to capacity often requires human intervention

to avoid an outage in the near future.

10/09/24, 19:25 Alerting | Prometheus

https://prometheus.io/docs/practices/alerting/ 2/3

https://docs.google.com/a/boxever.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit
https://docs.google.com/a/boxever.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit
https://monitoring.mixins.dev/
https://monitoring.mixins.dev/
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list of trademarks of

The Linux Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-usage) page.

Metamonitoring

It is important to have confidence that monitoring is working. Accordingly, have alerts to ensure that

Prometheus servers, Alertmanagers, PushGateways, and other monitoring infrastructure are available and

running correctly.

As always, if it is possible to alert on symptoms rather than causes, this helps to reduce noise. For example, a

blackbox test that alerts are getting from PushGateway to Prometheus to Alertmanager to email is better than

individual alerts on each.

Supplementing the whitebox monitoring of Prometheus with external blackbox monitoring can catch problems

that are otherwise invisible, and also serves as a fallback in case internal systems completely fail.

 This documentation is open-source (https://github.com/prometheus/docs#contributing-changes). Please

help improve it by filing issues or pull requests.

10/09/24, 19:25 Alerting | Prometheus

https://prometheus.io/docs/practices/alerting/ 3/3

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

Metric and label naming (/docs/practices/naming/)

Consoles and dashboards (/docs/practices/consoles/)

Instrumentation (/docs/practices/instrumentation/)

Histograms and summaries (/docs/practices/histograms/)

Alerting (/docs/practices/alerting/)

Recording rules (/docs/practices/rules/)

When to use the Pushgateway (/docs/practices/pushing/)

Remote write tuning (/docs/practices/remote_write/)

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:25 Recording rules | Prometheus

https://prometheus.io/docs/practices/rules/ 1/6

https://prometheus.io/docs/practices/naming/
https://prometheus.io/docs/practices/consoles/
https://prometheus.io/docs/practices/instrumentation/
https://prometheus.io/docs/practices/histograms/
https://prometheus.io/docs/practices/alerting/
https://prometheus.io/docs/practices/rules/
https://prometheus.io/docs/practices/pushing/
https://prometheus.io/docs/practices/remote_write/

Naming

Aggregation

Examples

RECORDING RULES

A consistent naming scheme for recording

rules

(/docs/prometheus/latest/configuration/recording_rules/) makes it easier to

interpret the meaning of a rule at a glance. It also avoids mistakes by making

incorrect or meaningless calculations stand out.

This page documents proper naming conventions and aggregation for

recording rules.

Naming

Recording rules should be of the general form level:metric:operations .

level represents the aggregation level and labels of the rule output.

metric is the metric name and should be unchanged other than stripping

_total off counters when using rate() or irate() .

operations is a list of operations that were applied to the metric, newest

operation first.

Keeping the metric name unchanged makes it easy to know what a metric is

and easy to find in the codebase.

To keep the operations clean, _sum is omitted if there are other operations, as

sum() . Associative operations can be merged (for example min_min is the same

as min).

If there is no obvious operation to use, use sum . When taking a ratio by doing

division, separate the metrics using _per_ and call the operation ratio .

10/09/24, 19:25 Recording rules | Prometheus

https://prometheus.io/docs/practices/rules/ 2/6

https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/

Aggregation

When aggregating up ratios, aggregate up the numerator and

denominator separately and then divide.

Do not take the average of a ratio or average of an average, as that is not

statistically valid.

When aggregating up the _count and _sum of a Summary and dividing to

calculate average observation size, treating it as a ratio would be

unwieldy. Instead keep the metric name without the _count or _sum

suffix and replace the rate in the operation with mean . This represents

the average observation size over that time period.

Always specify a without clause with the labels you are aggregating away.

This is to preserve all the other labels such as job , which will avoid

conflicts and give you more useful metrics and alerts.

Examples

Note the indentation style with outdented operators on their own line between two
vectors. To make this style possible in Yaml, block quotes with an indentation
indicator (https://yaml.org/spec/1.2/spec.html#style/block/scalar) (e.g. |2) are

used.

Aggregating up requests per second that has a path label:

- record: instance_path:requests:rate5m
 expr: rate(requests_total{job="myjob"}[5m])

- record: path:requests:rate5m
 expr: sum without (instance)(instance_path:requests:rate5m{job="myjob"})

Calculating a request failure ratio and aggregating up to the job-level failure

ratio:

10/09/24, 19:25 Recording rules | Prometheus

https://prometheus.io/docs/practices/rules/ 3/6

https://yaml.org/spec/1.2/spec.html#style/block/scalar
https://yaml.org/spec/1.2/spec.html#style/block/scalar
https://yaml.org/spec/1.2/spec.html#style/block/scalar

- record: instance_path:request_failures:rate5m
 expr: rate(request_failures_total{job="myjob"}[5m])

- record: instance_path:request_failures_per_requests:ratio_rate5m
 expr: |2
 instance_path:request_failures:rate5m{job="myjob"}
 /
 instance_path:requests:rate5m{job="myjob"}

Aggregate up numerator and denominator, then divide to get path-level ratio.
- record: path:request_failures_per_requests:ratio_rate5m
 expr: |2
 sum without (instance)(instance_path:request_failures:rate5m{job="myjob"})
 /
 sum without (instance)(instance_path:requests:rate5m{job="myjob"})

No labels left from instrumentation or distinguishing instances,
so we use 'job' as the level.
- record: job:request_failures_per_requests:ratio_rate5m
 expr: |2
 sum without (instance, path)(instance_path:request_failures:rate5m{job="myj
 /
 sum without (instance, path)(instance_path:requests:rate5m{job="myjob"})

Calculating average latency over a time period from a Summary:

10/09/24, 19:25 Recording rules | Prometheus

https://prometheus.io/docs/practices/rules/ 4/6

- record: instance_path:request_latency_seconds_count:rate5m
 expr: rate(request_latency_seconds_count{job="myjob"}[5m])

- record: instance_path:request_latency_seconds_sum:rate5m
 expr: rate(request_latency_seconds_sum{job="myjob"}[5m])

- record: instance_path:request_latency_seconds:mean5m
 expr: |2
 instance_path:request_latency_seconds_sum:rate5m{job="myjob"}
 /
 instance_path:request_latency_seconds_count:rate5m{job="myjob"}

Aggregate up numerator and denominator, then divide.
- record: path:request_latency_seconds:mean5m
 expr: |2
 sum without (instance)(instance_path:request_latency_seconds_sum:rate5m{job
 /
 sum without (instance)(instance_path:request_latency_seconds_count:rate5m{j

Calculating the average query rate across instances and paths is done using the

avg() function:

- record: job:request_latency_seconds_count:avg_rate5m
 expr: avg without (instance, path)(instance:request_latency_seconds_count:rate5

Notice that when aggregating that the labels in the without clause are

removed from the level of the output metric name compared to the input

metric names. When there is no aggregation, the levels always match. If this is

not the case a mistake has likely been made in the rules.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:25 Recording rules | Prometheus

https://prometheus.io/docs/practices/rules/ 5/6

https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

10/09/24, 19:25 Recording rules | Prometheus

https://prometheus.io/docs/practices/rules/ 6/6

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

Metric and label naming (/docs/practices/naming/)

Consoles and dashboards (/docs/practices/consoles/)

Instrumentation (/docs/practices/instrumentation/)

Histograms and summaries (/docs/practices/histograms/)

Alerting (/docs/practices/alerting/)

Recording rules (/docs/practices/rules/)

When to use the Pushgateway (/docs/practices/pushing/)

Remote write tuning (/docs/practices/remote_write/)

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:25 When to use the Pushgateway | Prometheus

https://prometheus.io/docs/practices/pushing/ 1/3

https://prometheus.io/docs/practices/naming/
https://prometheus.io/docs/practices/consoles/
https://prometheus.io/docs/practices/instrumentation/
https://prometheus.io/docs/practices/histograms/
https://prometheus.io/docs/practices/alerting/
https://prometheus.io/docs/practices/rules/
https://prometheus.io/docs/practices/pushing/
https://prometheus.io/docs/practices/remote_write/

Should I be using the

Pushgateway?

Alternative strategies

WHEN TO USE THE PUSHGATEWAY

The Pushgateway is an intermediary service

which allows you to push metrics from jobs

which cannot be scraped. For details, see

Pushing metrics

(/docs/instrumenting/pushing/).

Should I be using the Pushgateway? 

We only recommend using the Pushgateway in certain limited cases. There

are several pitfalls when blindly using the Pushgateway instead of

Prometheus's usual pull model for general metrics collection:

When monitoring multiple instances through a single Pushgateway, the

Pushgateway becomes both a single point of failure and a potential

bottleneck.

You lose Prometheus's automatic instance health monitoring via the up

metric (generated on every scrape).

The Pushgateway never forgets series pushed to it and will expose them

to Prometheus forever unless those series are manually deleted via the

Pushgateway's API.

The latter point is especially relevant when multiple instances of a job

differentiate their metrics in the Pushgateway via an instance label or similar.

Metrics for an instance will then remain in the Pushgateway even if the

originating instance is renamed or removed. This is because the lifecycle of the

Pushgateway as a metrics cache is fundamentally separate from the lifecycle of

the processes that push metrics to it. Contrast this to Prometheus's usual pull-

style monitoring: when an instance disappears (intentional or not), its metrics

will automatically disappear along with it. When using the Pushgateway, this is

not the case, and you would now have to delete any stale metrics manually or

automate this lifecycle synchronization yourself.

10/09/24, 19:25 When to use the Pushgateway | Prometheus

https://prometheus.io/docs/practices/pushing/ 2/3

https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

Usually, the only valid use case for the Pushgateway is for capturing the

outcome of a service-level batch job. A "service-level" batch job is one which

is not semantically related to a specific machine or job instance (for example, a

batch job that deletes a number of users for an entire service). Such a job's

metrics should not include a machine or instance label to decouple the lifecycle

of specific machines or instances from the pushed metrics. This decreases the

burden for managing stale metrics in the Pushgateway. See also the best

practices for monitoring batch jobs (/docs/practices/instrumentation/#batch-

jobs).

Alternative strategies

If an inbound firewall or NAT is preventing you from pulling metrics from

targets, consider moving the Prometheus server behind the network barrier as

well. We generally recommend running Prometheus servers on the same

network as the monitored instances. Otherwise, consider PushProx

(https://github.com/RobustPerception/PushProx), which allows Prometheus to

traverse a firewall or NAT.

For batch jobs that are related to a machine (such as automatic security update

cronjobs or configuration management client runs), expose the resulting

metrics using the Node Exporter's

(https://github.com/prometheus/node_exporter) textfile collector

(https://github.com/prometheus/node_exporter#textfile-collector) instead of

the Pushgateway.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:25 When to use the Pushgateway | Prometheus

https://prometheus.io/docs/practices/pushing/ 3/3

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://prometheus.io/docs/practices/instrumentation/#batch-jobs
https://prometheus.io/docs/practices/instrumentation/#batch-jobs
https://prometheus.io/docs/practices/instrumentation/#batch-jobs
https://prometheus.io/docs/practices/instrumentation/#batch-jobs
https://github.com/RobustPerception/PushProx
https://github.com/RobustPerception/PushProx
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter#textfile-collector
https://github.com/prometheus/node_exporter#textfile-collector
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

Metric and label naming (/docs/practices/naming/)

Consoles and dashboards (/docs/practices/consoles/)

Instrumentation (/docs/practices/instrumentation/)

Histograms and summaries (/docs/practices/histograms/)

Alerting (/docs/practices/alerting/)

Recording rules (/docs/practices/rules/)

When to use the Pushgateway (/docs/practices/pushing/)

Remote write tuning (/docs/practices/remote_write/)

 GUIDES

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:25 Remote write tuning | Prometheus

https://prometheus.io/docs/practices/remote_write/ 1/5

https://prometheus.io/docs/practices/naming/
https://prometheus.io/docs/practices/consoles/
https://prometheus.io/docs/practices/instrumentation/
https://prometheus.io/docs/practices/histograms/
https://prometheus.io/docs/practices/alerting/
https://prometheus.io/docs/practices/rules/
https://prometheus.io/docs/practices/pushing/
https://prometheus.io/docs/practices/remote_write/

Remote write

characteristics

Resource usage

Parameters

capacity

max_shards

min_shards

max_samples_per_send

batch_send_deadline

min_backoff

max_backoff

REMOTE WRITE TUNING

Prometheus implements sane defaults for

remote write, but many users have different

requirements and would like to optimize their

remote settings.

This page describes the tuning parameters

available via the remote write configuration.

(/docs/prometheus/latest/configuration/configuration/#remote_write)

Remote write characteristics

Each remote write destination starts a queue which reads from the write-ahead

log (WAL), writes the samples into an in memory queue owned by a shard,

which then sends a request to the configured endpoint. The flow of data looks

like:

 |--> queue (shard_1) --> remote endpoint
WAL --|--> queue (shard_...) --> remote endpoint
 |--> queue (shard_n) --> remote endpoint

When one shard backs up and fills its queue, Prometheus will block reading

from the WAL into any shards. Failures will be retried without loss of data

unless the remote endpoint remains down for more than 2 hours. After 2

hours, the WAL will be compacted and data that has not been sent will be lost.

10/09/24, 19:25 Remote write tuning | Prometheus

https://prometheus.io/docs/practices/remote_write/ 2/5

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#remote_write
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#remote_write

During operation, Prometheus will continuously calculate the optimal number

of shards to use based on the incoming sample rate, number of outstanding

samples not sent, and time taken to send each sample.

Resource usage

Using remote write increases the memory footprint of Prometheus. Most users

report ~25% increased memory usage, but that number is dependent on the

shape of the data. For each series in the WAL, the remote write code caches a

mapping of series ID to label values, causing large amounts of series churn to

significantly increase memory usage.

In addition to the series cache, each shard and its queue increases memory

usage. Shard memory is proportional to the number of shards * (capacity +

max_samples_per_send) . When tuning, consider reducing max_shards alongside

increases to capacity and max_samples_per_send to avoid inadvertently

running out of memory. The default values for capacity: 10000 and

max_samples_per_send: 2000 will constrain shard memory usage to less than 2

MB per shard.

Remote write will also increase CPU and network usage. However, for the same

reasons as above, it is difficult to predict by how much. It is generally a good

practice to check for CPU and network saturation if your Prometheus server

falls behind sending samples via remote write

(prometheus_remote_storage_samples_pending).

Parameters

All the relevant parameters are found under the queue_config section of the

remote write configuration.

capacity

Capacity controls how many samples are queued in memory per shard before

blocking reading from the WAL. Once the WAL is blocked, samples cannot be

appended to any shards and all throughput will cease.

10/09/24, 19:25 Remote write tuning | Prometheus

https://prometheus.io/docs/practices/remote_write/ 3/5

Capacity should be high enough to avoid blocking other shards in most cases,

but too much capacity can cause excess memory consumption and longer

times to clear queues during resharding. It is recommended to set capacity to

3-10 times max_samples_per_send .

max_shards

Max shards configures the maximum number of shards, or parallelism,

Prometheus will use for each remote write queue. Prometheus will try not to

use too many shards, but if the queue falls behind the remote write component

will increase the number of shards up to max shards to increase throughput.

Unless remote writing to a very slow endpoint, it is unlikely that max_shards

should be increased beyond the default. However, it may be necessary to

reduce max shards if there is potential to overwhelm the remote endpoint, or

to reduce memory usage when data is backed up.

min_shards

Min shards configures the minimum number of shards used by Prometheus,

and is the number of shards used when remote write starts. If remote write

falls behind, Prometheus will automatically scale up the number of shards so

most users do not have to adjust this parameter. However, increasing min

shards will allow Prometheus to avoid falling behind at the beginning while

calculating the required number of shards.

max_samples_per_send

Max samples per send can be adjusted depending on the backend in use. Many

systems work very well by sending more samples per batch without a

significant increase in latency. Other backends will have issues if trying to send

a large number of samples in each request. The default value is small enough

to work for most systems.

batch_send_deadline

Batch send deadline sets the maximum amount of time between sends for a

single shard. Even if the queued shards has not reached max_samples_per_send ,

a request will be sent. Batch send deadline can be increased for low volume

10/09/24, 19:25 Remote write tuning | Prometheus

https://prometheus.io/docs/practices/remote_write/ 4/5

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

systems that are not latency sensitive in order to increase request efficiency.

min_backoff

Min backoff controls the minimum amount of time to wait before retrying a

failed request. Increasing the backoff spreads out requests when a remote

endpoint comes back online. The backoff interval is doubled for each failed

requests up to max_backoff .

max_backoff

Max backoff controls the maximum amount of time to wait before retrying a

failed request.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:25 Remote write tuning | Prometheus

https://prometheus.io/docs/practices/remote_write/ 5/5

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

Basic auth (/docs/guides/basic-auth/)

Monitoring Docker container metrics using cAdvisor (/docs/guides/cadvisor/)

Use file-based service discovery to discover scrape targets (/docs/guides/file-sd/)

Instrumenting a Go application (/docs/guides/go-application/)

Understanding and using the multi-target exporter pattern (/docs/guides/multi-target-

exporter/)

Monitoring Linux host metrics with the Node Exporter (/docs/guides/node-exporter/)

OpenTelemetry (/docs/guides/opentelemetry/)

Docker Swarm (/docs/guides/dockerswarm/)

Query Log (/docs/guides/query-log/)

TLS encryption (/docs/guides/tls-encryption/)

10/09/24, 19:25 Basic auth | Prometheus

https://prometheus.io/docs/guides/basic-auth/ 1/5

https://prometheus.io/docs/guides/basic-auth/
https://prometheus.io/docs/guides/cadvisor/
https://prometheus.io/docs/guides/file-sd/
https://prometheus.io/docs/guides/go-application/
https://prometheus.io/docs/guides/multi-target-exporter/
https://prometheus.io/docs/guides/node-exporter/
https://prometheus.io/docs/guides/opentelemetry/
https://prometheus.io/docs/guides/dockerswarm/
https://prometheus.io/docs/guides/query-log/
https://prometheus.io/docs/guides/tls-encryption/

Hashing a password

Creating web.yml

Launching Prometheus

Testing

Summary

SECURING PROMETHEUS API AND UI

ENDPOINTS USING BASIC AUTH

Prometheus supports basic authentication

(https://en.wikipedia.org/wiki/Basic_access_authentication) (aka "basic auth")

for connections to the Prometheus expression browser

(/docs/visualization/browser) and HTTP API

(/docs/prometheus/latest/querying/api).

NOTE: This tutorial covers basic auth connections to Prometheus instances.

Basic auth is also supported for connections from Prometheus instances to

scrape targets

(../../prometheus/latest/configuration/configuration/#scrape_config).

Hashing a password

Let's say that you want to require a username and password from all users

accessing the Prometheus instance. For this example, use admin as the

username and choose any password you'd like.

First, generate a bcrypt (https://en.wikipedia.org/wiki/Bcrypt) hash of the

password. To generate a hashed password, we will use python3-bcrypt.

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:25 Basic auth | Prometheus

https://prometheus.io/docs/guides/basic-auth/ 2/5

https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/Basic_access_authentication
https://prometheus.io/docs/visualization/browser
https://prometheus.io/docs/visualization/browser
https://prometheus.io/docs/prometheus/latest/querying/api
https://prometheus.io/docs/prometheus/latest/querying/api
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config
https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Bcrypt

Let's install it by running apt install python3-bcrypt , assuming you are

running a debian-like distribution. Other alternatives exist to generate hashed

passwords; for testing you can also use bcrypt generators on the web

(https://bcrypt-generator.com/).

Here is a python script which uses python3-bcrypt to prompt for a password

and hash it:

import getpass
import bcrypt

password = getpass.getpass("password: ")
hashed_password = bcrypt.hashpw(password.encode("utf-8"), bcrypt.gensalt())
print(hashed_password.decode())

Save that script as gen-pass.py and run it:

$ python3 gen-pass.py

That should prompt you for a password:

password:
$2b$12$hNf2lSsxfm0.i4a.1kVpSOVyBCfIB51VRjgBUyv6kdnyTlgWj81Ay

In this example, I used "test" as password.

Save that password somewhere, we will use it in the next steps!

Creating web.yml

Let's create a web.yml file (documentation

(https://prometheus.io/docs/prometheus/latest/configuration/https/)), with the

following content:

basic_auth_users:
 admin: $2b$12$hNf2lSsxfm0.i4a.1kVpSOVyBCfIB51VRjgBUyv6kdnyTlgWj81Ay

10/09/24, 19:25 Basic auth | Prometheus

https://prometheus.io/docs/guides/basic-auth/ 3/5

https://bcrypt-generator.com/
https://bcrypt-generator.com/
https://prometheus.io/docs/prometheus/latest/configuration/https/
https://prometheus.io/docs/prometheus/latest/configuration/https/

You can validate that file with promtool check web-config web.yml

$ promtool check web-config web.yml
web.yml SUCCESS

You can add multiple users to the file.

Launching Prometheus

You can launch prometheus with the web configuration file as follows:

$ prometheus --web.config.file=web.yml

Testing

You can use cURL to interact with your setup. Try this request:

curl --head http://localhost:9090/graph

This will return a 401 Unauthorized response because you've failed to supply a

valid username and password.

To successfully access Prometheus endpoints using basic auth, for example the

/metrics endpoint, supply the proper username using the -u flag and supply

the password when prompted:

curl -u admin http://localhost:9090/metrics
Enter host password for user 'admin':

That should return Prometheus metrics output, which should look something

like this:

10/09/24, 19:25 Basic auth | Prometheus

https://prometheus.io/docs/guides/basic-auth/ 4/5

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

HELP go_gc_duration_seconds A summary of the GC invocation durations.
TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 0.0001343
go_gc_duration_seconds{quantile="0.25"} 0.0002032
go_gc_duration_seconds{quantile="0.5"} 0.0004485
...

Summary

In this guide, you stored a username and a hashed password in a web.yml file,

launched prometheus with the parameter required to use the credentials in

that file to authenticate users accessing Prometheus' HTTP endpoints.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:25 Basic auth | Prometheus

https://prometheus.io/docs/guides/basic-auth/ 5/5

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

Prometheus configuration

Docker Compose configuration

Exploring the cAdvisor web UI

Exploring metrics in the expression

browser

Other expressions

Summary

MONITORING DOCKER CONTAINER METRICS USING

CADVISOR

cAdvisor (https://github.com/google/cadvisor) (short for container

Advisor) analyzes and exposes resource usage and performance data

from running containers. cAdvisor exposes Prometheus metrics out of

the box. In this guide, we will:

create a local multi-container Docker Compose

(https://docs.docker.com/compose/) installation that includes

containers running Prometheus, cAdvisor, and a Redis

(https://redis.io/) server, respectively

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

Basic auth (/docs/guides/basic-auth/)

Monitoring Docker container metrics using cAdvisor (/docs/guides/cadvisor/)

Use file-based service discovery to discover scrape targets (/docs/guides/file-sd/)

Instrumenting a Go application (/docs/guides/go-application/)

Understanding and using the multi-target exporter pattern (/docs/guides/multi-target-exporter/)

Monitoring Linux host metrics with the Node Exporter (/docs/guides/node-exporter/)

OpenTelemetry (/docs/guides/opentelemetry/)

Docker Swarm (/docs/guides/dockerswarm/)

Query Log (/docs/guides/query-log/)

TLS encryption (/docs/guides/tls-encryption/)

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:26 Monitoring Docker container metrics using cAdvisor | Prometheus

https://prometheus.io/docs/guides/cadvisor/ 1/4

https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://redis.io/
https://redis.io/
https://prometheus.io/docs/guides/basic-auth/
https://prometheus.io/docs/guides/cadvisor/
https://prometheus.io/docs/guides/file-sd/
https://prometheus.io/docs/guides/go-application/
https://prometheus.io/docs/guides/multi-target-exporter/
https://prometheus.io/docs/guides/node-exporter/
https://prometheus.io/docs/guides/opentelemetry/
https://prometheus.io/docs/guides/dockerswarm/
https://prometheus.io/docs/guides/query-log/
https://prometheus.io/docs/guides/tls-encryption/

examine some container metrics produced by the Redis container, collected by cAdvisor, and scraped by

Prometheus

Prometheus configuration

First, you'll need to configure Prometheus (/docs/prometheus/latest/configuration/configuration) to scrape metrics from

cAdvisor. Create a prometheus.yml file and populate it with this configuration:

scrape_configs:
- job_name: cadvisor
 scrape_interval: 5s
 static_configs:
 - targets:
 - cadvisor:8080

Docker Compose configuration

Now we'll need to create a Docker Compose configuration (https://docs.docker.com/compose/compose-file/) that

specifies which containers are part of our installation as well as which ports are exposed by each container, which

volumes are used, and so on.

In the same folder where you created the prometheus.yml file, create a docker-compose.yml file and populate it with this

Docker Compose configuration:

version: '3.2'
services:
 prometheus:
 image: prom/prometheus:latest
 container_name: prometheus
 ports:
 - 9090:9090
 command:
 - --config.file=/etc/prometheus/prometheus.yml
 volumes:
 - ./prometheus.yml:/etc/prometheus/prometheus.yml:ro
 depends_on:
 - cadvisor
 cadvisor:
 image: gcr.io/cadvisor/cadvisor:latest
 container_name: cadvisor
 ports:
 - 8080:8080
 volumes:
 - /:/rootfs:ro
 - /var/run:/var/run:rw
 - /sys:/sys:ro
 - /var/lib/docker/:/var/lib/docker:ro
 depends_on:
 - redis
 redis:
 image: redis:latest
 container_name: redis
 ports:
 - 6379:6379

This configuration instructs Docker Compose to run three services, each of which corresponds to a Docker

(https://docker.com) container:

1. The prometheus service uses the local prometheus.yml configuration file (imported into the container by the

volumes parameter).

10/09/24, 19:26 Monitoring Docker container metrics using cAdvisor | Prometheus

https://prometheus.io/docs/guides/cadvisor/ 2/4

https://prometheus.io/docs/prometheus/latest/configuration/configuration
https://prometheus.io/docs/prometheus/latest/configuration/configuration
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docker.com/
https://docker.com/

2. The cadvisor service exposes port 8080 (the default port for cAdvisor metrics) and relies on a variety of local

volumes (/ , /var/run , etc.).

3. The redis service is a standard Redis server. cAdvisor will gather container metrics from this container

automatically, i.e. without any further configuration.

To run the installation:

docker-compose up

If Docker Compose successfully starts up all three containers, you should see output like this:

prometheus | level=info ts=2018-07-12T22:02:40.5195272Z caller=main.go:500 msg="Server is ready to receive web requests."

You can verify that all three containers are running using the ps (https://docs.docker.com/compose/reference/ps/)

command:

docker-compose ps

Your output will look something like this:

 Name Command State Ports
--
cadvisor /usr/bin/cadvisor -logtostderr Up 8080/tcp
prometheus /bin/prometheus --config.f ... Up 0.0.0.0:9090->9090/tcp
redis docker-entrypoint.sh redis ... Up 0.0.0.0:6379->6379/tcp

Exploring the cAdvisor web UI

You can access the cAdvisor web UI (https://github.com/google/cadvisor/blob/master/docs/web.md) at

http://localhost:8080 . You can explore stats and graphs for specific Docker containers in our installation at

http://localhost:8080/docker/<container> . Metrics for the Redis container, for example, can be accessed at

http://localhost:8080/docker/redis , Prometheus at http://localhost:8080/docker/prometheus , and so on.

Exploring metrics in the expression browser

cAdvisor's web UI is a useful interface for exploring the kinds of things that cAdvisor monitors, but it doesn't provide an

interface for exploring container metrics. For that we'll need the Prometheus expression browser

(/docs/visualization/browser), which is available at http://localhost:9090/graph . You can enter Prometheus expressions

into the expression bar, which looks like this:

Let's start by exploring the container_start_time_seconds metric, which records the start time of containers (in seconds).

You can select for specific containers by name using the name="<container_name>" expression. The container name

corresponds to the container_name parameter in the Docker Compose configuration. The

10/09/24, 19:26 Monitoring Docker container metrics using cAdvisor | Prometheus

https://prometheus.io/docs/guides/cadvisor/ 3/4

https://docs.docker.com/compose/reference/ps/
https://github.com/google/cadvisor/blob/master/docs/web.md
https://github.com/google/cadvisor/blob/master/docs/web.md
https://prometheus.io/docs/visualization/browser
https://prometheus.io/docs/visualization/browser

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list of trademarks of The Linux

Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-usage) page.

container_start_time_seconds{name="redis"} (http://localhost:9090/graph?

g0.range_input=1h&g0.expr=container_start_time_seconds%7Bname%3D%22redis%22%7D&g0.tab=1) expression, for

example, shows the start time for the redis container.

NOTE: A full listing of cAdvisor-gathered container metrics exposed to Prometheus can be found in the cAdvisor

documentation (https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md).

Other expressions

The table below lists some other example expressions

Expression

rate(container_cpu_usage_seconds_total{name="redis"}[1m]) (http://localhost:9090/graph?

g0.range_input=1h&g0.expr=rate(container_cpu_usage_seconds_total%7Bname%3D%22redis%22%7D%5B1m%5D)&g0.tab

container_memory_usage_bytes{name="redis"} (http://localhost:9090/graph?

g0.range_input=1h&g0.expr=container_memory_usage_bytes%7Bname%3D%22redis%22%7D&g0.tab=1)

rate(container_network_transmit_bytes_total[1m]) (http://localhost:9090/graph?

g0.range_input=1h&g0.expr=rate(container_network_transmit_bytes_total%5B1m%5D)&g0.tab=1)

rate(container_network_receive_bytes_total[1m]) (http://localhost:9090/graph?

g0.range_input=1h&g0.expr=rate(container_network_receive_bytes_total%5B1m%5D)&g0.tab=1)

Summary

In this guide, we ran three separate containers in a single installation using Docker Compose: a Prometheus container

scraped metrics from a cAdvisor container which, in turns, gathered metrics produced by a Redis container. We then

explored a handful of cAdvisor container metrics using the Prometheus expression browser.

 This documentation is open-source (https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:26 Monitoring Docker container metrics using cAdvisor | Prometheus

https://prometheus.io/docs/guides/cadvisor/ 4/4

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
http://localhost:9090/graph?g0.range_input=1h&g0.expr=container_start_time_seconds%7Bname%3D%22redis%22%7D&g0.tab=1
http://localhost:9090/graph?g0.range_input=1h&g0.expr=container_start_time_seconds%7Bname%3D%22redis%22%7D&g0.tab=1
https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md
https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md
https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md
http://localhost:9090/graph?g0.range_input=1h&g0.expr=rate(container_cpu_usage_seconds_total%7Bname%3D%22redis%22%7D%5B1m%5D)&g0.tab=1
http://localhost:9090/graph?g0.range_input=1h&g0.expr=rate(container_cpu_usage_seconds_total%7Bname%3D%22redis%22%7D%5B1m%5D)&g0.tab=1
http://localhost:9090/graph?g0.range_input=1h&g0.expr=container_memory_usage_bytes%7Bname%3D%22redis%22%7D&g0.tab=1
http://localhost:9090/graph?g0.range_input=1h&g0.expr=container_memory_usage_bytes%7Bname%3D%22redis%22%7D&g0.tab=1
http://localhost:9090/graph?g0.range_input=1h&g0.expr=rate(container_network_transmit_bytes_total%5B1m%5D)&g0.tab=1
http://localhost:9090/graph?g0.range_input=1h&g0.expr=rate(container_network_transmit_bytes_total%5B1m%5D)&g0.tab=1
http://localhost:9090/graph?g0.range_input=1h&g0.expr=rate(container_network_receive_bytes_total%5B1m%5D)&g0.tab=1
http://localhost:9090/graph?g0.range_input=1h&g0.expr=rate(container_network_receive_bytes_total%5B1m%5D)&g0.tab=1
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

Basic auth (/docs/guides/basic-auth/)

Monitoring Docker container metrics using cAdvisor (/docs/guides/cadvisor/)

Use file-based service discovery to discover scrape targets (/docs/guides/file-sd/)

Instrumenting a Go application (/docs/guides/go-application/)

Understanding and using the multi-target exporter pattern (/docs/guides/multi-target-

exporter/)

Monitoring Linux host metrics with the Node Exporter (/docs/guides/node-exporter/)

OpenTelemetry (/docs/guides/opentelemetry/)

Docker Swarm (/docs/guides/dockerswarm/)

Query Log (/docs/guides/query-log/)

TLS encryption (/docs/guides/tls-encryption/)

10/09/24, 19:26 Use file-based service discovery to discover scrape targets | Prometheus

https://prometheus.io/docs/guides/file-sd/ 1/7

https://prometheus.io/docs/guides/basic-auth/
https://prometheus.io/docs/guides/cadvisor/
https://prometheus.io/docs/guides/file-sd/
https://prometheus.io/docs/guides/go-application/
https://prometheus.io/docs/guides/multi-target-exporter/
https://prometheus.io/docs/guides/node-exporter/
https://prometheus.io/docs/guides/opentelemetry/
https://prometheus.io/docs/guides/dockerswarm/
https://prometheus.io/docs/guides/query-log/
https://prometheus.io/docs/guides/tls-encryption/

Installing and running

the Node Exporter

Installing, configuring,

and running

Prometheus

Exploring the

discovered services'

metrics

Changing the targets list

dynamically

Summary

USE FILE-BASED SERVICE DISCOVERY TO

DISCOVER SCRAPE TARGETS

Prometheus offers a variety of service

discovery options

(https://github.com/prometheus/prometheus/tree/main/discovery) for

discovering scrape targets, including Kubernetes

(/docs/prometheus/latest/configuration/configuration/#kubernetes_sd_config),

Consul

(/docs/prometheus/latest/configuration/configuration/#consul_sd_config), and

many others. If you need to use a service discovery system that is not currently

supported, your use case may be best served by Prometheus' file-based service

discovery

(/docs/prometheus/latest/configuration/configuration/#file_sd_config)

mechanism, which enables you to list scrape targets in a JSON file (along with

metadata about those targets).

In this guide, we will:

Install and run a Prometheus Node Exporter (../node-exporter) locally

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:26 Use file-based service discovery to discover scrape targets | Prometheus

https://prometheus.io/docs/guides/file-sd/ 2/7

https://github.com/prometheus/prometheus/tree/main/discovery
https://github.com/prometheus/prometheus/tree/main/discovery
https://github.com/prometheus/prometheus/tree/main/discovery
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#kubernetes_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#kubernetes_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#consul_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#consul_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#file_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#file_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#file_sd_config
https://prometheus.io/docs/guides/node-exporter
https://prometheus.io/docs/guides/node-exporter

Create a targets.json file specifying the host and port information for

the Node Exporter

Install and run a Prometheus instance that is configured to discover the

Node Exporter using the targets.json file

Installing and running the Node Exporter

See this section (../node-exporter#installing-and-running-the-node-exporter) of

the Monitoring Linux host metrics with the Node Exporter (../node-exporter)

guide. The Node Exporter runs on port 9100. To ensure that the Node Exporter

is exposing metrics:

curl http://localhost:9100/metrics

The metrics output should look something like this:

HELP go_gc_duration_seconds A summary of the GC invocation durations.
TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 0
go_gc_duration_seconds{quantile="0.25"} 0
go_gc_duration_seconds{quantile="0.5"} 0
...

Installing, configuring, and running Prometheus

Like the Node Exporter, Prometheus is a single static binary that you can install

via tarball. Download the latest release (/download#prometheus) for your

platform and untar it:

wget https://github.com/prometheus/prometheus/releases/download/v*/prometheus-*.*
tar xvf prometheus-*.*-amd64.tar.gz
cd prometheus-*.*

The untarred directory contains a prometheus.yml configuration file. Replace

the current contents of that file with this:

10/09/24, 19:26 Use file-based service discovery to discover scrape targets | Prometheus

https://prometheus.io/docs/guides/file-sd/ 3/7

https://prometheus.io/docs/guides/node-exporter#installing-and-running-the-node-exporter
https://prometheus.io/docs/guides/node-exporter#installing-and-running-the-node-exporter
https://prometheus.io/docs/guides/node-exporter
https://prometheus.io/docs/guides/node-exporter
https://prometheus.io/download#prometheus
https://prometheus.io/download#prometheus

scrape_configs:
- job_name: 'node'
 file_sd_configs:
 - files:
 - 'targets.json'

This configuration specifies that there is a job called node (for the Node

Exporter) that retrieves host and port information for Node Exporter instances

from a targets.json file.

Now create that targets.json file and add this content to it:

[
 {
 "labels": {
 "job": "node"
 },
 "targets": [
 "localhost:9100"
]
 }
]

NOTE: In this guide we'll work with JSON service discovery configurations

manually for the sake of brevity. In general, however, we recommend that

you use some kind of JSON-generating process or tool instead.

This configuration specifies that there is a node job with one target:

localhost:9100 .

Now you can start up Prometheus:

./prometheus

10/09/24, 19:26 Use file-based service discovery to discover scrape targets | Prometheus

https://prometheus.io/docs/guides/file-sd/ 4/7

If Prometheus has started up successfully, you should see a line like this in the

logs:

level=info ts=2018-08-13T20:39:24.905651509Z caller=main.go:500 msg="Server is re

Exploring the discovered services' metrics

With Prometheus up and running, you can explore metrics exposed by the

node service using the Prometheus expression browser

(/docs/visualization/browser). If you explore the up{job="node"}

(http://localhost:9090/graph?

g0.range_input=1h&g0.expr=up%7Bjob%3D%22node%22%7D&g0.tab=1)

metric, for example, you can see that the Node Exporter is being appropriately

discovered.

Changing the targets list dynamically

When using Prometheus' file-based service discovery mechanism, the

Prometheus instance will listen for changes to the file and automatically update

the scrape target list, without requiring an instance restart. To demonstrate

this, start up a second Node Exporter instance on port 9200. First navigate to

the directory containing the Node Exporter binary and run this command in a

new terminal window:

./node_exporter --web.listen-address=":9200"

Now modify the config in targets.json by adding an entry for the new Node

Exporter:

10/09/24, 19:26 Use file-based service discovery to discover scrape targets | Prometheus

https://prometheus.io/docs/guides/file-sd/ 5/7

https://prometheus.io/docs/visualization/browser
https://prometheus.io/docs/visualization/browser
http://localhost:9090/graph?g0.range_input=1h&g0.expr=up%7Bjob%3D%22node%22%7D&g0.tab=1
http://localhost:9090/graph?g0.range_input=1h&g0.expr=up%7Bjob%3D%22node%22%7D&g0.tab=1
http://localhost:9090/graph?g0.range_input=1h&g0.expr=up%7Bjob%3D%22node%22%7D&g0.tab=1

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

[
 {
 "targets": [
 "localhost:9100"
],
 "labels": {
 "job": "node"
 }
 },
 {
 "targets": [
 "localhost:9200"
],
 "labels": {
 "job": "node"
 }
 }
]

When you save the changes, Prometheus will automatically be notified of the

new list of targets. The up{job="node"} (http://localhost:9090/graph?

g0.range_input=1h&g0.expr=up%7Bjob%3D%22node%22%7D&g0.tab=1) metric

should display two instances with instance labels localhost:9100 and

localhost:9200 .

Summary

In this guide, you installed and ran a Prometheus Node Exporter and

configured Prometheus to discover and scrape metrics from the Node Exporter

using file-based service discovery.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:26 Use file-based service discovery to discover scrape targets | Prometheus

https://prometheus.io/docs/guides/file-sd/ 6/7

http://localhost:9090/graph?g0.range_input=1h&g0.expr=up%7Bjob%3D%22node%22%7D&g0.tab=1
http://localhost:9090/graph?g0.range_input=1h&g0.expr=up%7Bjob%3D%22node%22%7D&g0.tab=1
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

10/09/24, 19:26 Use file-based service discovery to discover scrape targets | Prometheus

https://prometheus.io/docs/guides/file-sd/ 7/7

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

Basic auth (/docs/guides/basic-auth/)

Monitoring Docker container metrics using cAdvisor (/docs/guides/cadvisor/)

Use file-based service discovery to discover scrape targets (/docs/guides/file-sd/)

Instrumenting a Go application (/docs/guides/go-application/)

Understanding and using the multi-target exporter pattern (/docs/guides/multi-target-exporter/)

Monitoring Linux host metrics with the Node Exporter (/docs/guides/node-exporter/)

OpenTelemetry (/docs/guides/opentelemetry/)

Docker Swarm (/docs/guides/dockerswarm/)

Query Log (/docs/guides/query-log/)

TLS encryption (/docs/guides/tls-encryption/)

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:26 Instrumenting a Go application | Prometheus

https://prometheus.io/docs/guides/go-application/ 1/6

https://prometheus.io/docs/guides/basic-auth/
https://prometheus.io/docs/guides/cadvisor/
https://prometheus.io/docs/guides/file-sd/
https://prometheus.io/docs/guides/go-application/
https://prometheus.io/docs/guides/multi-target-exporter/
https://prometheus.io/docs/guides/node-exporter/
https://prometheus.io/docs/guides/opentelemetry/
https://prometheus.io/docs/guides/dockerswarm/
https://prometheus.io/docs/guides/query-log/
https://prometheus.io/docs/guides/tls-encryption/

Installation

How Go exposition works

Adding your own metrics

Other Go client features

Summary

INSTRUMENTING A GO APPLICATION FOR

PROMETHEUS

Prometheus has an official Go client library

(https://github.com/prometheus/client_golang) that

you can use to instrument Go applications. In this

guide, we'll create a simple Go application that

exposes Prometheus metrics via HTTP.

NOTE: For comprehensive API documentation, see the GoDoc

(https://godoc.org/github.com/prometheus/client_golang) for Prometheus' various

Go libraries.

Installation 

You can install the prometheus , promauto , and promhttp libraries necessary for the

guide using go get (https://golang.org/doc/articles/go_command.html):

go get github.com/prometheus/client_golang/prometheus
go get github.com/prometheus/client_golang/prometheus/promauto
go get github.com/prometheus/client_golang/prometheus/promhttp

How Go exposition works

To expose Prometheus metrics in a Go application, you need to provide a /metrics

HTTP endpoint. You can use the prometheus/promhttp

(https://godoc.org/github.com/prometheus/client_golang/prometheus/promhttp)

library's HTTP Handler

(https://godoc.org/github.com/prometheus/client_golang/prometheus/promhttp#Handler)

as the handler function.

This minimal application, for example, would expose the default metrics for Go

applications via http://localhost:2112/metrics :

10/09/24, 19:26 Instrumenting a Go application | Prometheus

https://prometheus.io/docs/guides/go-application/ 2/6

https://github.com/prometheus/client_golang
https://github.com/prometheus/client_golang
https://godoc.org/github.com/prometheus/client_golang
https://godoc.org/github.com/prometheus/client_golang
https://golang.org/doc/articles/go_command.html
https://godoc.org/github.com/prometheus/client_golang/prometheus/promhttp
https://godoc.org/github.com/prometheus/client_golang/prometheus/promhttp
https://godoc.org/github.com/prometheus/client_golang/prometheus/promhttp#Handler
https://godoc.org/github.com/prometheus/client_golang/prometheus/promhttp#Handler

package main

import (
 "net/http"

 "github.com/prometheus/client_golang/prometheus/promhttp"
)

func main() {
 http.Handle("/metrics", promhttp.Handler())
 http.ListenAndServe(":2112", nil)
}

To start the application:

go run main.go

To access the metrics:

curl http://localhost:2112/metrics

Adding your own metrics

The application above exposes only the default Go metrics. You can also register your

own custom application-specific metrics. This example application exposes a

myapp_processed_ops_total counter (/docs/concepts/metric_types/#counter) that counts

the number of operations that have been processed thus far. Every 2 seconds, the

counter is incremented by one.

10/09/24, 19:26 Instrumenting a Go application | Prometheus

https://prometheus.io/docs/guides/go-application/ 3/6

https://prometheus.io/docs/concepts/metric_types/#counter
https://prometheus.io/docs/concepts/metric_types/#counter

package main

import (
 "net/http"
 "time"

 "github.com/prometheus/client_golang/prometheus"
 "github.com/prometheus/client_golang/prometheus/promauto"
 "github.com/prometheus/client_golang/prometheus/promhttp"
)

func recordMetrics() {
 go func() {
 for {
 opsProcessed.Inc()
 time.Sleep(2 * time.Second)
 }
 }()
}

var (
 opsProcessed = promauto.NewCounter(prometheus.CounterOpts{
 Name: "myapp_processed_ops_total",
 Help: "The total number of processed events",
 })
)

func main() {
 recordMetrics()

 http.Handle("/metrics", promhttp.Handler())
 http.ListenAndServe(":2112", nil)
}

To run the application:

go run main.go

To access the metrics:

curl http://localhost:2112/metrics

In the metrics output, you'll see the help text, type information, and current value of the

myapp_processed_ops_total counter:

10/09/24, 19:26 Instrumenting a Go application | Prometheus

https://prometheus.io/docs/guides/go-application/ 4/6

HELP myapp_processed_ops_total The total number of processed events
TYPE myapp_processed_ops_total counter
myapp_processed_ops_total 5

You can configure

(/docs/prometheus/latest/configuration/configuration/#scrape_config) a locally running

Prometheus instance to scrape metrics from the application. Here's an example

prometheus.yml configuration:

scrape_configs:
- job_name: myapp
 scrape_interval: 10s
 static_configs:
 - targets:
 - localhost:2112

Other Go client features

In this guide we covered just a small handful of features available in the Prometheus Go

client libraries. You can also expose other metrics types, such as gauges

(https://godoc.org/github.com/prometheus/client_golang/prometheus#Gauge) and

histograms

(https://godoc.org/github.com/prometheus/client_golang/prometheus#Histogram), non-

global registries

(https://godoc.org/github.com/prometheus/client_golang/prometheus#Registry),

functions for pushing metrics

(https://godoc.org/github.com/prometheus/client_golang/prometheus/push) to

Prometheus PushGateways (/docs/instrumenting/pushing/), bridging Prometheus and

Graphite

(https://godoc.org/github.com/prometheus/client_golang/prometheus/graphite), and

more.

Summary

In this guide, you created two sample Go applications that expose metrics to

Prometheus---one that exposes only the default Go metrics and one that also exposes a

custom Prometheus counter---and configured a Prometheus instance to scrape metrics

from those applications.

10/09/24, 19:26 Instrumenting a Go application | Prometheus

https://prometheus.io/docs/guides/go-application/ 5/6

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config
https://godoc.org/github.com/prometheus/client_golang/prometheus#Gauge
https://godoc.org/github.com/prometheus/client_golang/prometheus#Gauge
https://godoc.org/github.com/prometheus/client_golang/prometheus#Histogram
https://godoc.org/github.com/prometheus/client_golang/prometheus#Histogram
https://godoc.org/github.com/prometheus/client_golang/prometheus#Registry
https://godoc.org/github.com/prometheus/client_golang/prometheus#Registry
https://godoc.org/github.com/prometheus/client_golang/prometheus#Registry
https://godoc.org/github.com/prometheus/client_golang/prometheus/push
https://godoc.org/github.com/prometheus/client_golang/prometheus/push
https://prometheus.io/docs/instrumenting/pushing/
https://prometheus.io/docs/instrumenting/pushing/
https://godoc.org/github.com/prometheus/client_golang/prometheus/graphite
https://godoc.org/github.com/prometheus/client_golang/prometheus/graphite

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses

trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help improve it

by filing issues or pull requests.

10/09/24, 19:26 Instrumenting a Go application | Prometheus

https://prometheus.io/docs/guides/go-application/ 6/6

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

Basic auth (/docs/guides/basic-auth/)

Monitoring Docker container metrics using cAdvisor (/docs/guides/cadvisor/)

Use file-based service discovery to discover scrape targets (/docs/guides/file-sd/)

Instrumenting a Go application (/docs/guides/go-application/)

Understanding and using the multi-target exporter pattern (/docs/guides/multi-target-

exporter/)

Monitoring Linux host metrics with the Node Exporter (/docs/guides/node-exporter/)

OpenTelemetry (/docs/guides/opentelemetry/)

Docker Swarm (/docs/guides/dockerswarm/)

Query Log (/docs/guides/query-log/)

TLS encryption (/docs/guides/tls-encryption/)

 TUTORIALS

10/09/24, 19:26 Understanding and using the multi-target exporter pattern | Prometheus

https://prometheus.io/docs/guides/multi-target-exporter/ 1/17

https://prometheus.io/docs/guides/basic-auth/
https://prometheus.io/docs/guides/cadvisor/
https://prometheus.io/docs/guides/file-sd/
https://prometheus.io/docs/guides/go-application/
https://prometheus.io/docs/guides/multi-target-exporter/
https://prometheus.io/docs/guides/node-exporter/
https://prometheus.io/docs/guides/opentelemetry/
https://prometheus.io/docs/guides/dockerswarm/
https://prometheus.io/docs/guides/query-log/
https://prometheus.io/docs/guides/tls-encryption/

The multi-target exporter

pattern?

Running multi-target

exporters

Basic querying of multi-

target exporters

Configuring modules

Querying multi-target

exporters with

Prometheus

UNDERSTANDING AND USING THE MULTI-

TARGET EXPORTER PATTERN

This guide will introduce you to the multi-target

exporter pattern. To achieve this we will:

describe the multi-target exporter pattern

and why it is used,

run the blackbox

(https://github.com/prometheus/blackbox_exporter) exporter as an example of

the pattern,

configure a custom query module for the blackbox exporter,

let the blackbox exporter run basic metric queries against the Prometheus

website (https://prometheus.io),

examine a popular pattern of configuring Prometheus to scrape exporters using

relabeling.

The multi-target exporter pattern?

By multi-target exporter (/docs/instrumenting/exporters/) pattern we refer to a

specific design, in which:

the exporter will get the target’s metrics via a network protocol.

the exporter does not have to run on the machine the metrics are taken from.

the exporter gets the targets and a query config string as parameters of

Prometheus’ GET request.

the exporter subsequently starts the scrape after getting Prometheus’ GET

requests and once it is done with scraping.

the exporter can query multiple targets.

 SPECIFICATIONS

10/09/24, 19:26 Understanding and using the multi-target exporter pattern | Prometheus

https://prometheus.io/docs/guides/multi-target-exporter/ 2/17

https://github.com/prometheus/blackbox_exporter
https://github.com/prometheus/blackbox_exporter
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/exporters/

This pattern is only used for certain exporters, such as the blackbox

(https://github.com/prometheus/blackbox_exporter) and the SNMP exporter

(https://github.com/prometheus/snmp_exporter).

The reason is that we either can’t run an exporter on the targets, e.g. network gear

speaking SNMP, or that we are explicitly interested in the distance, e.g. latency and

reachability of a website from a specific point outside of our network, a common use

case for the blackbox (https://github.com/prometheus/blackbox_exporter) exporter.

Running multi-target exporters

Multi-target exporters are flexible regarding their environment and can be run in

many ways. As regular programs, in containers, as background services, on

baremetal, on virtual machines. Because they are queried and do query over network

they do need appropriate open ports. Otherwise they are frugal.

Now let’s try it out for yourself!

Use Docker (https://www.docker.com/) to start a blackbox exporter container by

running this in a terminal. Depending on your system configuration you might need

to prepend the command with a sudo :

docker run -p 9115:9115 prom/blackbox-exporter

You should see a few log lines and if everything went well the last one should report

msg="Listening on address" as seen here:

level=info ts=2018-10-17T15:41:35.4997596Z caller=main.go:324 msg="Listening on address

Basic querying of multi-target exporters

There are two ways of querying:

1. Querying the exporter itself. It has its own metrics, usually available at

/metrics .

2. Querying the exporter to scrape another target. Usually available at a

"descriptive" endpoint, e.g. /probe . This is likely what you are primarily

interested in, when using multi-target exporters.

10/09/24, 19:26 Understanding and using the multi-target exporter pattern | Prometheus

https://prometheus.io/docs/guides/multi-target-exporter/ 3/17

https://github.com/prometheus/blackbox_exporter
https://github.com/prometheus/blackbox_exporter
https://github.com/prometheus/snmp_exporter
https://github.com/prometheus/snmp_exporter
https://github.com/prometheus/blackbox_exporter
https://github.com/prometheus/blackbox_exporter
https://www.docker.com/
https://www.docker.com/

You can manually try the first query type with curl in another terminal or use this link

(http://localhost:9115/metrics):

curl 'localhost:9115/metrics'

The response should be something like this:

HELP blackbox_exporter_build_info A metric with a constant '1' value labeled by versi
TYPE blackbox_exporter_build_info gauge
blackbox_exporter_build_info{branch="HEAD",goversion="go1.10",revision="4a22506cf0cf139
HELP go_gc_duration_seconds A summary of the GC invocation durations.
TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 0
go_gc_duration_seconds{quantile="0.25"} 0
go_gc_duration_seconds{quantile="0.5"} 0
go_gc_duration_seconds{quantile="0.75"} 0
go_gc_duration_seconds{quantile="1"} 0
go_gc_duration_seconds_sum 0
go_gc_duration_seconds_count 0
HELP go_goroutines Number of goroutines that currently exist.
TYPE go_goroutines gauge
go_goroutines 9

[…]

HELP process_cpu_seconds_total Total user and system CPU time spent in seconds.
TYPE process_cpu_seconds_total counter
process_cpu_seconds_total 0.05
HELP process_max_fds Maximum number of open file descriptors.
TYPE process_max_fds gauge
process_max_fds 1.048576e+06
HELP process_open_fds Number of open file descriptors.
TYPE process_open_fds gauge
process_open_fds 7
HELP process_resident_memory_bytes Resident memory size in bytes.
TYPE process_resident_memory_bytes gauge
process_resident_memory_bytes 7.8848e+06
HELP process_start_time_seconds Start time of the process since unix epoch in seconds
TYPE process_start_time_seconds gauge
process_start_time_seconds 1.54115492874e+09
HELP process_virtual_memory_bytes Virtual memory size in bytes.
TYPE process_virtual_memory_bytes gauge
process_virtual_memory_bytes 1.5609856e+07

10/09/24, 19:26 Understanding and using the multi-target exporter pattern | Prometheus

https://prometheus.io/docs/guides/multi-target-exporter/ 4/17

http://localhost:9115/metrics
http://localhost:9115/metrics

Those are metrics in the Prometheus format

(/docs/instrumenting/exposition_formats/#text-format-example). They come from the

exporter’s instrumentation (/docs/practices/instrumentation/) and tell us about the

state of the exporter itself while it is running. This is called whitebox monitoring and

very useful in daily ops practice. If you are curious, try out our guide on how to

instrument your own applications (https://prometheus.io/docs/guides/go-

application/).

For the second type of querying we need to provide a target and module as

parameters in the HTTP GET Request. The target is a URI or IP and the module must

defined in the exporter’s configuration. The blackbox exporter container comes with a

meaningful default configuration.

We will use the target prometheus.io and the predefined module http_2xx . It tells

the exporter to make a GET request like a browser would if you go to prometheus.io

and to expect a 200 OK

(https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#2xx_Success) response.

You can now tell your blackbox exporter to query prometheus.io in the terminal with

curl:

curl 'localhost:9115/probe?target=prometheus.io&module=http_2xx'

This will return a lot of metrics:

10/09/24, 19:26 Understanding and using the multi-target exporter pattern | Prometheus

https://prometheus.io/docs/guides/multi-target-exporter/ 5/17

https://prometheus.io/docs/instrumenting/exposition_formats/#text-format-example
https://prometheus.io/docs/instrumenting/exposition_formats/#text-format-example
https://prometheus.io/docs/practices/instrumentation/
https://prometheus.io/docs/practices/instrumentation/
https://prometheus.io/docs/guides/go-application/
https://prometheus.io/docs/guides/go-application/
https://prometheus.io/docs/guides/go-application/
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#2xx_Success
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#2xx_Success

HELP probe_dns_lookup_time_seconds Returns the time taken for probe dns lookup in sec
TYPE probe_dns_lookup_time_seconds gauge
probe_dns_lookup_time_seconds 0.061087943
HELP probe_duration_seconds Returns how long the probe took to complete in seconds
TYPE probe_duration_seconds gauge
probe_duration_seconds 0.065580871
HELP probe_failed_due_to_regex Indicates if probe failed due to regex
TYPE probe_failed_due_to_regex gauge
probe_failed_due_to_regex 0
HELP probe_http_content_length Length of http content response
TYPE probe_http_content_length gauge
probe_http_content_length 0
HELP probe_http_duration_seconds Duration of http request by phase, summed over all r
TYPE probe_http_duration_seconds gauge
probe_http_duration_seconds{phase="connect"} 0
probe_http_duration_seconds{phase="processing"} 0
probe_http_duration_seconds{phase="resolve"} 0.061087943
probe_http_duration_seconds{phase="tls"} 0
probe_http_duration_seconds{phase="transfer"} 0
HELP probe_http_redirects The number of redirects
TYPE probe_http_redirects gauge
probe_http_redirects 0
HELP probe_http_ssl Indicates if SSL was used for the final redirect
TYPE probe_http_ssl gauge
probe_http_ssl 0
HELP probe_http_status_code Response HTTP status code
TYPE probe_http_status_code gauge
probe_http_status_code 0
HELP probe_http_version Returns the version of HTTP of the probe response
TYPE probe_http_version gauge
probe_http_version 0
HELP probe_ip_protocol Specifies whether probe ip protocol is IP4 or IP6
TYPE probe_ip_protocol gauge
probe_ip_protocol 6
HELP probe_success Displays whether or not the probe was a success
TYPE probe_success gauge
probe_success 0

Notice that almost all metrics have a value of 0 . The last one reads probe_success 0 .

This means the prober could not successfully reach prometheus.io . The reason is

hidden in the metric probe_ip_protocol with the value 6 . By default the prober uses

10/09/24, 19:26 Understanding and using the multi-target exporter pattern | Prometheus

https://prometheus.io/docs/guides/multi-target-exporter/ 6/17

IPv6 (https://en.wikipedia.org/wiki/IPv6) until told otherwise. But the Docker daemon

blocks IPv6 until told otherwise. Hence our blackbox exporter running in a Docker

container can’t connect via IPv6.

We could now either tell Docker to allow IPv6 or the blackbox exporter to use IPv4. In

the real world both can make sense and as so often the answer to the question "what

is to be done?" is "it depends". Because this is an exporter guide we will change the

exporter and take the opportunity to configure a custom module.

Configuring modules

The modules are predefined in a file inside the docker container called config.yml

which is a copy of blackbox.yml

(https://github.com/prometheus/blackbox_exporter/blob/master/blackbox.yml) in the

github repo.

We will copy this file, adapt

(https://github.com/prometheus/blackbox_exporter/blob/master/CONFIGURATION.md)

it to our own needs and tell the exporter to use our config file instead of the one

included in the container.

First download the file using curl or your browser:

curl -o blackbox.yml https://raw.githubusercontent.com/prometheus/blackbox_exporter/mas

Open it in an editor. The first few lines look like this:

modules:
 http_2xx:
 prober: http
 http_post_2xx:
 prober: http
 http:
 method: POST

YAML (https://en.wikipedia.org/wiki/YAML) uses whitespace indentation to express

hierarchy, so you can recognise that two modules named http_2xx and

http_post_2xx are defined, and that they both have a prober http and for one the

10/09/24, 19:26 Understanding and using the multi-target exporter pattern | Prometheus

https://prometheus.io/docs/guides/multi-target-exporter/ 7/17

https://en.wikipedia.org/wiki/IPv6
https://en.wikipedia.org/wiki/IPv6
https://github.com/prometheus/blackbox_exporter/blob/master/blackbox.yml
https://github.com/prometheus/blackbox_exporter/blob/master/blackbox.yml
https://github.com/prometheus/blackbox_exporter/blob/master/CONFIGURATION.md
https://github.com/prometheus/blackbox_exporter/blob/master/CONFIGURATION.md
https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/YAML

method value is specifically set to POST .

You will now change the module http_2xx by setting the preferred_ip_protocol of

the prober http explicitly to the string ip4 .

modules:
 http_2xx:
 prober: http
 http:
 preferred_ip_protocol: "ip4"
 http_post_2xx:
 prober: http
 http:
 method: POST

If you want to know more about the available probers and options check out the

documentation

(https://github.com/prometheus/blackbox_exporter/blob/master/CONFIGURATION.md).

Now we need to tell the blackbox exporter to use our freshly changed file. You can do

that with the flag --config.file="blackbox.yml" . But because we are using Docker,

we first must make this file available (https://docs.docker.com/storage/bind-mounts/)

inside the container using the --mount command.

NOTE: If you are using macOS you first need to allow the Docker daemon to

access the directory in which your blackbox.yml is. You can do that by clicking on

the little Docker whale in menu bar and then on Preferences -> File Sharing -> + .

Afterwards press Apply & Restart .

First you stop the old container by changing into its terminal and press ctrl+c . Make

sure you are in the directory containing your blackbox.yml . Then you run this

command. It is long, but we will explain it:

docker \
 run -p 9115:9115 \
 --mount type=bind,source="$(pwd)"/blackbox.yml,target=/blackbox.yml,readonly \
 prom/blackbox-exporter \
 --config.file="/blackbox.yml"

10/09/24, 19:26 Understanding and using the multi-target exporter pattern | Prometheus

https://prometheus.io/docs/guides/multi-target-exporter/ 8/17

https://github.com/prometheus/blackbox_exporter/blob/master/CONFIGURATION.md
https://github.com/prometheus/blackbox_exporter/blob/master/CONFIGURATION.md
https://docs.docker.com/storage/bind-mounts/
https://docs.docker.com/storage/bind-mounts/

With this command, you told docker to:

1. run a container with the port 9115 outside the container mapped to the port

9115 inside of the container.

2. mount from your current directory ($(pwd) stands for print working directory)

the file blackbox.yml into /blackbox.yml in readonly mode.

3. use the image prom/blackbox-exporter from Docker hub

(https://hub.docker.com/r/prom/blackbox-exporter/).

4. run the blackbox-exporter with the flag --config.file telling it to use

/blackbox.yml as config file.

If everything is correct, you should see something like this:

level=info ts=2018-10-19T12:40:51.650462756Z caller=main.go:213 msg="Starting blackbox_
level=info ts=2018-10-19T12:40:51.653357722Z caller=main.go:220 msg="Loaded config file
level=info ts=2018-10-19T12:40:51.65349635Z caller=main.go:324 msg="Listening on addres

Now you can try our new IPv4-using module http_2xx in a terminal:

curl 'localhost:9115/probe?target=prometheus.io&module=http_2xx'

Which should return Prometheus metrics like this:

10/09/24, 19:26 Understanding and using the multi-target exporter pattern | Prometheus

https://prometheus.io/docs/guides/multi-target-exporter/ 9/17

https://hub.docker.com/r/prom/blackbox-exporter/
https://hub.docker.com/r/prom/blackbox-exporter/

HELP probe_dns_lookup_time_seconds Returns the time taken for probe dns lookup in sec
TYPE probe_dns_lookup_time_seconds gauge
probe_dns_lookup_time_seconds 0.02679421
HELP probe_duration_seconds Returns how long the probe took to complete in seconds
TYPE probe_duration_seconds gauge
probe_duration_seconds 0.461619124
HELP probe_failed_due_to_regex Indicates if probe failed due to regex
TYPE probe_failed_due_to_regex gauge
probe_failed_due_to_regex 0
HELP probe_http_content_length Length of http content response
TYPE probe_http_content_length gauge
probe_http_content_length -1
HELP probe_http_duration_seconds Duration of http request by phase, summed over all r
TYPE probe_http_duration_seconds gauge
probe_http_duration_seconds{phase="connect"} 0.062076202999999996
probe_http_duration_seconds{phase="processing"} 0.23481845699999998
probe_http_duration_seconds{phase="resolve"} 0.029594103
probe_http_duration_seconds{phase="tls"} 0.163420078
probe_http_duration_seconds{phase="transfer"} 0.002243199
HELP probe_http_redirects The number of redirects
TYPE probe_http_redirects gauge
probe_http_redirects 1
HELP probe_http_ssl Indicates if SSL was used for the final redirect
TYPE probe_http_ssl gauge
probe_http_ssl 1
HELP probe_http_status_code Response HTTP status code
TYPE probe_http_status_code gauge
probe_http_status_code 200
HELP probe_http_uncompressed_body_length Length of uncompressed response body
TYPE probe_http_uncompressed_body_length gauge
probe_http_uncompressed_body_length 14516
HELP probe_http_version Returns the version of HTTP of the probe response
TYPE probe_http_version gauge
probe_http_version 1.1
HELP probe_ip_protocol Specifies whether probe ip protocol is IP4 or IP6
TYPE probe_ip_protocol gauge
probe_ip_protocol 4
HELP probe_ssl_earliest_cert_expiry Returns earliest SSL cert expiry in unixtime
TYPE probe_ssl_earliest_cert_expiry gauge
probe_ssl_earliest_cert_expiry 1.581897599e+09
HELP probe_success Displays whether or not the probe was a success
TYPE probe_success gauge
probe_success 1
HELP probe_tls_version_info Contains the TLS version used

10/09/24, 19:26 Understanding and using the multi-target exporter pattern | Prometheus

https://prometheus.io/docs/guides/multi-target-exporter/ 10/17

TYPE probe_tls_version_info gauge
probe_tls_version_info{version="TLS 1.3"} 1

You can see that the probe was successful and get many useful metrics, like latency

by phase, status code, ssl status or certificate expiry in Unix time

(https://en.wikipedia.org/wiki/Unix_time).

The blackbox exporter also offers a tiny web interface at localhost:9115

(http://localhost:9115) for you to check out the last few probes, the loaded config and

debug information. It even offers a direct link to probe prometheus.io . Handy if you

are wondering why something does not work.

Querying multi-target exporters with Prometheus

So far, so good. Congratulate yourself. The blackbox exporter works and you can

manually tell it to query a remote target. You are almost there. Now you need to tell

Prometheus to do the queries for us.

Below you find a minimal prometheus config. It is telling Prometheus to scrape the

exporter itself as we did before using curl 'localhost:9115/metrics' :

NOTE: If you use Docker for Mac or Docker for Windows, you can’t use

localhost:9115 in the last line, but must use host.docker.internal:9115 . This

has to do with the virtual machines used to implement Docker on those

operating systems. You should not use this in production.

prometheus.yml for Linux:

global:
 scrape_interval: 5s

scrape_configs:
- job_name: blackbox # To get metrics about the exporter itself
 metrics_path: /metrics
 static_configs:
 - targets:
 - localhost:9115

10/09/24, 19:26 Understanding and using the multi-target exporter pattern | Prometheus

https://prometheus.io/docs/guides/multi-target-exporter/ 11/17

https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
http://localhost:9115/
http://localhost:9115/

prometheus.yml for macOS and Windows:

global:
 scrape_interval: 5s

scrape_configs:
- job_name: blackbox # To get metrics about the exporter itself
 metrics_path: /metrics
 static_configs:
 - targets:
 - host.docker.internal:9115

Now run a Prometheus container and tell it to mount our config file from above.

Because of the way networking on the host is addressable from the container you

need to use a slightly different command on Linux than on MacOS and Windows.:

Run Prometheus on Linux (don’t use --network="host" in production):

docker \
 run --network="host"\
 --mount type=bind,source="$(pwd)"/prometheus.yml,target=/prometheus.yml,readonly \
 prom/prometheus \
 --config.file="/prometheus.yml"

Run Prometheus on MacOS and Windows:

docker \
 run -p 9090:9090 \
 --mount type=bind,source="$(pwd)"/prometheus.yml,target=/prometheus.yml,readonly \
 prom/prometheus \
 --config.file="/prometheus.yml"

This command works similarly to running the blackbox exporter using a config file.

If everything worked, you should be able to go to localhost:9090/targets

(http://localhost:9090/targets) and see under blackbox an endpoint with the state UP

in green. If you get a red DOWN make sure that the blackbox exporter you started

above is still running. If you see nothing or a yellow UNKNOWN you are really fast and

need to give it a few more seconds before reloading your browser’s tab.

10/09/24, 19:26 Understanding and using the multi-target exporter pattern | Prometheus

https://prometheus.io/docs/guides/multi-target-exporter/ 12/17

http://localhost:9090/targets
http://localhost:9090/targets

To tell Prometheus to query "localhost:9115/probe?

target=prometheus.io&module=http_2xx" you add another scrape job blackbox-http

where you set the metrics_path to /probe and the parameters under params: in the

Prometheus config file prometheus.yml :

global:
 scrape_interval: 5s

scrape_configs:
- job_name: blackbox # To get metrics about the exporter itself
 metrics_path: /metrics
 static_configs:
 - targets:
 - localhost:9115 # For Windows and macOS replace with - host.docker.internal:91

- job_name: blackbox-http # To get metrics about the exporter’s targets
 metrics_path: /probe
 params:
 module: [http_2xx]
 target: [prometheus.io]
 static_configs:
 - targets:
 - localhost:9115 # For Windows and macOS replace with - host.docker.internal:91

After saving the config file switch to the terminal with your Prometheus docker

container and stop it by pressing ctrl+C and start it again to reload the configuration

by using the existing command.

The terminal should return the message "Server is ready to receive web

requests." and after a few seconds you should start to see colourful graphs in your

Prometheus (http://localhost:9090/graph?

g0.range_input=5m&g0.stacked=0&g0.expr=probe_http_duration_seconds&g0.tab=0).

This works, but it has a few disadvantages:

1. The actual targets are up in the param config, which is very unusual and hard to

understand later.

2. The instance label has the value of the blackbox exporter’s address which is

technically true, but not what we are interested in.

3. We can’t see which URL we probed. This is unpractical and will also mix up

different metrics into one if we probe several URLs.

10/09/24, 19:26 Understanding and using the multi-target exporter pattern | Prometheus

https://prometheus.io/docs/guides/multi-target-exporter/ 13/17

http://localhost:9090/graph?g0.range_input=5m&g0.stacked=0&g0.expr=probe_http_duration_seconds&g0.tab=0
http://localhost:9090/graph?g0.range_input=5m&g0.stacked=0&g0.expr=probe_http_duration_seconds&g0.tab=0
http://localhost:9090/graph?g0.range_input=5m&g0.stacked=0&g0.expr=probe_http_duration_seconds&g0.tab=0
http://localhost:9090/graph?g0.range_input=5m&g0.stacked=0&g0.expr=probe_http_duration_seconds&g0.tab=0

To fix this, we will use relabeling

(/docs/prometheus/latest/configuration/configuration/#relabel_config). Relabeling is

useful here because behind the scenes many things in Prometheus are configured

with internal labels. The details are complicated and out of scope for this guide.

Hence we will limit ourselves to the necessary. But if you want to know more check

out this talk (https://www.youtube.com/watch?v=b5-SvvZ7AwI). For now it suffices if

you understand this:

All labels starting with __ are dropped after the scrape. Most internal labels

start with __ .

You can set internal labels that are called __param_<name> . Those set URL

parameter with the key <name> for the scrape request.

There is an internal label __address__ which is set by the targets under

static_configs and whose value is the hostname for the scrape request. By

default it is later used to set the value for the label instance , which is attached

to each metric and tells you where the metrics came from.

Here is the config you will use to do that. Don’t worry if this is a bit much at once, we

will go through it step by step:

10/09/24, 19:26 Understanding and using the multi-target exporter pattern | Prometheus

https://prometheus.io/docs/guides/multi-target-exporter/ 14/17

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#relabel_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#relabel_config
https://www.youtube.com/watch?v=b5-SvvZ7AwI
https://www.youtube.com/watch?v=b5-SvvZ7AwI

global:
 scrape_interval: 5s

scrape_configs:
- job_name: blackbox # To get metrics about the exporter itself
 metrics_path: /metrics
 static_configs:
 - targets:
 - localhost:9115 # For Windows and macOS replace with - host.docker.internal:91

- job_name: blackbox-http # To get metrics about the exporter’s targets
 metrics_path: /probe
 params:
 module: [http_2xx]
 static_configs:
 - targets:
 - http://prometheus.io # Target to probe with http
 - https://prometheus.io # Target to probe with https
 - http://example.com:8080 # Target to probe with http on port 8080
 relabel_configs:
 - source_labels: [__address__]
 target_label: __param_target
 - source_labels: [__param_target]
 target_label: instance
 - target_label: __address__
 replacement: localhost:9115 # The blackbox exporter’s real hostname:port. For Wi

So what is new compared to the last config?

params does not include target anymore. Instead we add the actual targets under

static configs: targets . We also use several because we can do that now:

 params:
 module: [http_2xx]
 static_configs:
 - targets:
 - http://prometheus.io # Target to probe with http
 - https://prometheus.io # Target to probe with https
 - http://example.com:8080 # Target to probe with http on port 8080

relabel_configs contains the new relabeling rules:

10/09/24, 19:26 Understanding and using the multi-target exporter pattern | Prometheus

https://prometheus.io/docs/guides/multi-target-exporter/ 15/17

 relabel_configs:
 - source_labels: [__address__]
 target_label: __param_target
 - source_labels: [__param_target]
 target_label: instance
 - target_label: __address__
 replacement: localhost:9115 # The blackbox exporter’s real hostname:port. For Wi

Before applying the relabeling rules, the URI of a request Prometheus would make

would look like this: "http://prometheus.io/probe?module=http_2xx" . After relabeling

it will look like this "http://localhost:9115/probe?

target=http://prometheus.io&module=http_2xx" .

Now let us explore how each rule does that:

First we take the values from the label __address__ (which contain the values from

targets) and write them to a new label __param_target which will add a parameter

target to the Prometheus scrape requests:

 relabel_configs:
 - source_labels: [__address__]
 target_label: __param_target

After this our imagined Prometheus request URI has now a target parameter:

"http://prometheus.io/probe?target=http://prometheus.io&module=http_2xx" .

Then we take the values from the label __param_target and create a label instance

with the values.

 relabel_configs:
 - source_labels: [__param_target]
 target_label: instance

Our request will not change, but the metrics that come back from our request will

now bear a label instance="http://prometheus.io" .

After that we write the value localhost:9115 (the URI of our exporter) to the label

__address__ . This will be used as the hostname and port for the Prometheus scrape

requests. So that it queries the exporter and not the target URI directly.

10/09/24, 19:26 Understanding and using the multi-target exporter pattern | Prometheus

https://prometheus.io/docs/guides/multi-target-exporter/ 16/17

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses

trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

 relabel_configs:
 - target_label: __address__
 replacement: localhost:9115 # The blackbox exporter’s real hostname:port. For Wi

Our request is now "localhost:9115/probe?

target=http://prometheus.io&module=http_2xx" . This way we can have the actual

targets there, get them as instance label values while letting Prometheus make a

request against the blackbox exporter.

Often people combine these with a specific service discovery. Check out the

configuration documentation (/docs/prometheus/latest/configuration/configuration)

for more information. Using them is no problem, as these write into the __address__

label just like targets defined under static_configs .

That is it. Restart the Prometheus docker container and look at your metrics

(http://localhost:9090/graph?

g0.range_input=30m&g0.stacked=0&g0.expr=probe_http_duration_seconds&g0.tab=0).

Pay attention that you selected the period of time when the metrics were actually

collected.

SUMMARY

In this guide, you learned how the multi-target exporter pattern works, how to run a

blackbox exporter with a customised module, and to configure Prometheus using

relabeling to scrape metrics with prober labels.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help improve

it by filing issues or pull requests.

10/09/24, 19:26 Understanding and using the multi-target exporter pattern | Prometheus

https://prometheus.io/docs/guides/multi-target-exporter/ 17/17

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://prometheus.io/docs/prometheus/latest/configuration/configuration
https://prometheus.io/docs/prometheus/latest/configuration/configuration
http://localhost:9090/graph?g0.range_input=30m&g0.stacked=0&g0.expr=probe_http_duration_seconds&g0.tab=0
http://localhost:9090/graph?g0.range_input=30m&g0.stacked=0&g0.expr=probe_http_duration_seconds&g0.tab=0
http://localhost:9090/graph?g0.range_input=30m&g0.stacked=0&g0.expr=probe_http_duration_seconds&g0.tab=0
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

Installing and running the Node Exporter

Node Exporter metrics

Configuring your Prometheus instances

Exploring Node Exporter metrics

through the Prometheus expression

browser

MONITORING LINUX HOST METRICS WITH THE NODE

EXPORTER

The Prometheus Node Exporter

(https://github.com/prometheus/node_exporter) exposes a wide variety

of hardware- and kernel-related metrics.

In this guide, you will:

Start up a Node Exporter on localhost

Start up a Prometheus instance on localhost that's configured to

scrape metrics from the running Node Exporter

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

Basic auth (/docs/guides/basic-auth/)

Monitoring Docker container metrics using cAdvisor (/docs/guides/cadvisor/)

Use file-based service discovery to discover scrape targets (/docs/guides/file-sd/)

Instrumenting a Go application (/docs/guides/go-application/)

Understanding and using the multi-target exporter pattern (/docs/guides/multi-target-exporter/)

Monitoring Linux host metrics with the Node Exporter (/docs/guides/node-exporter/)

OpenTelemetry (/docs/guides/opentelemetry/)

Docker Swarm (/docs/guides/dockerswarm/)

Query Log (/docs/guides/query-log/)

TLS encryption (/docs/guides/tls-encryption/)

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:26 Monitoring Linux host metrics with the Node Exporter | Prometheus

https://prometheus.io/docs/guides/node-exporter/ 1/4

https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://prometheus.io/docs/guides/basic-auth/
https://prometheus.io/docs/guides/cadvisor/
https://prometheus.io/docs/guides/file-sd/
https://prometheus.io/docs/guides/go-application/
https://prometheus.io/docs/guides/multi-target-exporter/
https://prometheus.io/docs/guides/node-exporter/
https://prometheus.io/docs/guides/opentelemetry/
https://prometheus.io/docs/guides/dockerswarm/
https://prometheus.io/docs/guides/query-log/
https://prometheus.io/docs/guides/tls-encryption/

NOTE: While the Prometheus Node Exporter is for *nix systems, there is the Windows exporter

(https://github.com/prometheus-community/windows_exporter) for Windows that serves an analogous purpose.

Installing and running the Node Exporter

The Prometheus Node Exporter is a single static binary that you can install via tarball. Once you've downloaded it from

the Prometheus downloads page (/download#node_exporter) extract it, and run it:

NOTE: Replace the URL with one from the above mentioned "downloads" page.
<VERSION>, <OS>, and <ARCH> are placeholders.
wget https://github.com/prometheus/node_exporter/releases/download/v<VERSION>/node_exporter-<VERSION>.<OS>-<ARCH>.tar.gz
tar xvfz node_exporter-*.*-amd64.tar.gz
cd node_exporter-*.*-amd64
./node_exporter

You should see output like this indicating that the Node Exporter is now running and exposing metrics on port 9100:

INFO[0000] Starting node_exporter (version=0.16.0, branch=HEAD, revision=d42bd70f4363dced6b77d8fc311ea57b63387e4f) source="
INFO[0000] Build context (go=go1.9.6, user=root@a67a9bc13a69, date=20180515-15:53:28) source="node_exporter.go:83"
INFO[0000] Enabled collectors: source="node_exporter.go:90"
INFO[0000] - boottime source="node_exporter.go:97"
...
INFO[0000] Listening on :9100 source="node_exporter.go:111"

Node Exporter metrics

Once the Node Exporter is installed and running, you can verify that metrics are being exported by cURLing the /metrics

endpoint:

curl http://localhost:9100/metrics

You should see output like this:

HELP go_gc_duration_seconds A summary of the GC invocation durations.
TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 3.8996e-05
go_gc_duration_seconds{quantile="0.25"} 4.5926e-05
go_gc_duration_seconds{quantile="0.5"} 5.846e-05
etc.

Success! The Node Exporter is now exposing metrics that Prometheus can scrape, including a wide variety of system

metrics further down in the output (prefixed with node_). To view those metrics (along with help and type information):

curl http://localhost:9100/metrics | grep "node_"

Configuring your Prometheus instances

Your locally running Prometheus instance needs to be properly configured in order to access Node Exporter metrics. The

following prometheus.yml (../../prometheus/latest/configuration/configuration/) example configuration file will tell the

Prometheus instance to scrape, and how frequently, from the Node Exporter via localhost:9100 :

10/09/24, 19:26 Monitoring Linux host metrics with the Node Exporter | Prometheus

https://prometheus.io/docs/guides/node-exporter/ 2/4

https://github.com/prometheus-community/windows_exporter
https://github.com/prometheus-community/windows_exporter
https://prometheus.io/download#node_exporter
https://prometheus.io/download#node_exporter
https://prometheus.io/docs/prometheus/latest/configuration/configuration/

global:
 scrape_interval: 15s

scrape_configs:
- job_name: node
 static_configs:
 - targets: ['localhost:9100']

To install Prometheus, download the latest release (/download) for your platform and untar it:

wget https://github.com/prometheus/prometheus/releases/download/v*/prometheus-*.*-amd64.tar.gz
tar xvf prometheus-*.*-amd64.tar.gz
cd prometheus-*.*

Once Prometheus is installed you can start it up, using the --config.file flag to point to the Prometheus configuration

that you created above:

./prometheus --config.file=./prometheus.yml

Exploring Node Exporter metrics through the Prometheus expression browser

Now that Prometheus is scraping metrics from a running Node Exporter instance, you can explore those metrics using

the Prometheus UI (aka the expression browser (/docs/visualization/browser)). Navigate to localhost:9090/graph in your

browser and use the main expression bar at the top of the page to enter expressions. The expression bar looks like this:

Metrics specific to the Node Exporter are prefixed with node_ and include metrics like node_cpu_seconds_total and

node_exporter_build_info .

Click on the links below to see some example metrics:

10/09/24, 19:26 Monitoring Linux host metrics with the Node Exporter | Prometheus

https://prometheus.io/docs/guides/node-exporter/ 3/4

https://prometheus.io/download
https://prometheus.io/download
https://prometheus.io/docs/visualization/browser
https://prometheus.io/docs/visualization/browser

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list of trademarks of The Linux

Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-usage) page.

Metric Mea

rate(node_cpu_seconds_total{mode="system"}[1m]) (http://localhost:9090/graph?

g0.range_input=1h&g0.expr=rate(node_cpu_seconds_total%7Bmode%3D%22system%22%7D%5B1m%5D)&g0.tab=1)

The

ave

amo

of C

time

spe

syst

mod

per

seco

ove

last

min

(in

seco

node_filesystem_avail_bytes (http://localhost:9090/graph?

g0.range_input=1h&g0.expr=node_filesystem_avail_bytes&g0.tab=1)

The

files

spa

ava

to n

root

use

byte

rate(node_network_receive_bytes_total[1m]) (http://localhost:9090/graph?

g0.range_input=1h&g0.expr=rate(node_network_receive_bytes_total%5B1m%5D)&g0.tab=1)

The

ave

netw

traffi

rece

per

seco

ove

last

min

(in b

 This documentation is open-source (https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:26 Monitoring Linux host metrics with the Node Exporter | Prometheus

https://prometheus.io/docs/guides/node-exporter/ 4/4

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
http://localhost:9090/graph?g0.range_input=1h&g0.expr=rate(node_cpu_seconds_total%7Bmode%3D%22system%22%7D%5B1m%5D)&g0.tab=1
http://localhost:9090/graph?g0.range_input=1h&g0.expr=rate(node_cpu_seconds_total%7Bmode%3D%22system%22%7D%5B1m%5D)&g0.tab=1
http://localhost:9090/graph?g0.range_input=1h&g0.expr=node_filesystem_avail_bytes&g0.tab=1
http://localhost:9090/graph?g0.range_input=1h&g0.expr=node_filesystem_avail_bytes&g0.tab=1
http://localhost:9090/graph?g0.range_input=1h&g0.expr=rate(node_network_receive_bytes_total%5B1m%5D)&g0.tab=1
http://localhost:9090/graph?g0.range_input=1h&g0.expr=rate(node_network_receive_bytes_total%5B1m%5D)&g0.tab=1
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

Basic auth (/docs/guides/basic-auth/)

Monitoring Docker container metrics using cAdvisor (/docs/guides/cadvisor/)

Use file-based service discovery to discover scrape targets (/docs/guides/file-sd/)

Instrumenting a Go application (/docs/guides/go-application/)

Understanding and using the multi-target exporter pattern (/docs/guides/multi-target-

exporter/)

Monitoring Linux host metrics with the Node Exporter (/docs/guides/node-exporter/)

OpenTelemetry (/docs/guides/opentelemetry/)

Docker Swarm (/docs/guides/dockerswarm/)

Query Log (/docs/guides/query-log/)

TLS encryption (/docs/guides/tls-encryption/)

10/09/24, 19:27 OpenTelemetry | Prometheus

https://prometheus.io/docs/guides/opentelemetry/ 1/5

https://prometheus.io/docs/guides/basic-auth/
https://prometheus.io/docs/guides/cadvisor/
https://prometheus.io/docs/guides/file-sd/
https://prometheus.io/docs/guides/go-application/
https://prometheus.io/docs/guides/multi-target-exporter/
https://prometheus.io/docs/guides/node-exporter/
https://prometheus.io/docs/guides/opentelemetry/
https://prometheus.io/docs/guides/dockerswarm/
https://prometheus.io/docs/guides/query-log/
https://prometheus.io/docs/guides/tls-encryption/

Enable the OTLP

receiver

Enable out-of-order

ingestion

Promoting resource

attributes

UTF-8

Delta Temporality

USING PROMETHEUS AS YOUR

OPENTELEMETRY BACKEND

Prometheus supports OTLP

(https://opentelemetry.io/docs/specs/otlp)

(aka "OpenTelemetry Protocol") ingestion

through HTTP

(https://opentelemetry.io/docs/specs/otlp/#otlphttp).

Enable the OTLP receiver

By default, the OTLP receiver is disabled. This is because Prometheus can work

without any authentication, so it would not be safe to accept incoming traffic

unless explicitly configured.

To enable the receiver you need to toggle the flag --enable-feature=otlp-

write-receiver .

$ prometheus --enable-feature=otlp-write-receiver

Enable out-of-order ingestion

There are multiple reasons why you might want to enable out-of-order

ingestion.

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:27 OpenTelemetry | Prometheus

https://prometheus.io/docs/guides/opentelemetry/ 2/5

https://opentelemetry.io/docs/specs/otlp
https://opentelemetry.io/docs/specs/otlp
https://opentelemetry.io/docs/specs/otlp/#otlphttp
https://opentelemetry.io/docs/specs/otlp/#otlphttp

For example, the OpenTelemetry collector encourages batching and you could

have multiple replicas of the collector sending data to Prometheus. Because

there is no mechanism ordering those samples they could get out-of-order.

To enable out-of-order ingestion you need to extend the Prometheus

configuration file with the following:

storage:
 tsdb:
 out_of_order_time_window: 30m

30 minutes of out-of-order have been enough for most cases but don't hesitate

to adjust this value to your needs.

Promoting resource attributes

Based on experience and conversations with our community, we've found that

out of all the commonly seen resource attributes, these are the ones that are

most frequently promoted by our users:

- service.instance.id
- service.name
- service.namespace
- cloud.availability_zone
- cloud.region
- container.name
- deployment.environment
- k8s.cluster.name
- k8s.container.name
- k8s.cronjob.name
- k8s.daemonset.name
- k8s.deployment.name
- k8s.job.name
- k8s.namespace.name
- k8s.pod.name
- k8s.replicaset.name
- k8s.statefulset.name

10/09/24, 19:27 OpenTelemetry | Prometheus

https://prometheus.io/docs/guides/opentelemetry/ 3/5

By default Prometheus won't be promoting any attributes. If you'd like to

promote any of them, you can do so in this section of the Prometheus

configuration file:

otlp:
 resource_attributes:
 - service.instance.id
 - deployment.environment
 - k8s.cluster.name
 - ...

UTF-8

The UTF-8 support for Prometheus is not ready yet so both the Prometheus

Remote Write Exporter and the OTLP Ingestion endpoint still rely on the

Prometheus normalization translator package from OpenTelemetry

(https://github.com/open-telemetry/opentelemetry-collector-

contrib/tree/main/pkg/translator/prometheus).

So if you are sending non-valid characters to Prometheus, they will be replaced

with an underscore _ character.

Once the UTF-8 feature is merged into Prometheus, we will revisit this.

Delta Temporality

The OpenTelemetry specification says

(https://opentelemetry.io/docs/specs/otel/metrics/data-model/#temporality)

that both Delta temporality and Cumulative temporality are supported.

While Delta temporality is common in systems like statsd and graphite,

cumulative temporality is the default temporality for Prometheus.

Today Prometheus does not have support for delta temporality but we are

learning from the OpenTelemetry community and we are considering adding

support for it in the future.

10/09/24, 19:27 OpenTelemetry | Prometheus

https://prometheus.io/docs/guides/opentelemetry/ 4/5

https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/pkg/translator/prometheus
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/pkg/translator/prometheus
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/pkg/translator/prometheus
https://opentelemetry.io/docs/specs/otel/metrics/data-model/#temporality
https://opentelemetry.io/docs/specs/otel/metrics/data-model/#temporality

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

If you are coming from a delta temporality system we recommend that you use

the delta to cumulative processor (https://github.com/open-

telemetry/opentelemetry-collector-

contrib/tree/main/processor/deltatocumulativeprocessor) in your OTel

pipeline.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:27 OpenTelemetry | Prometheus

https://prometheus.io/docs/guides/opentelemetry/ 5/5

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/processor/deltatocumulativeprocessor
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/processor/deltatocumulativeprocessor
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/processor/deltatocumulativeprocessor
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/processor/deltatocumulativeprocessor
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

DOCKER SWARM

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

Basic auth (/docs/guides/basic-auth/)

Monitoring Docker container metrics using cAdvisor (/docs/guides/cadvisor/)

Use file-based service discovery to discover scrape targets (/docs/guides/file-sd/)

Instrumenting a Go application (/docs/guides/go-application/)

Understanding and using the multi-target exporter pattern (/docs/guides/multi-target-exporter/)

Monitoring Linux host metrics with the Node Exporter (/docs/guides/node-exporter/)

OpenTelemetry (/docs/guides/opentelemetry/)

Docker Swarm (/docs/guides/dockerswarm/)

Query Log (/docs/guides/query-log/)

TLS encryption (/docs/guides/tls-encryption/)

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:27 Docker Swarm | Prometheus

https://prometheus.io/docs/guides/dockerswarm/ 1/6

https://prometheus.io/docs/guides/basic-auth/
https://prometheus.io/docs/guides/cadvisor/
https://prometheus.io/docs/guides/file-sd/
https://prometheus.io/docs/guides/go-application/
https://prometheus.io/docs/guides/multi-target-exporter/
https://prometheus.io/docs/guides/node-exporter/
https://prometheus.io/docs/guides/opentelemetry/
https://prometheus.io/docs/guides/dockerswarm/
https://prometheus.io/docs/guides/query-log/
https://prometheus.io/docs/guides/tls-encryption/

Docker Swarm service discovery

architecture

Setting up Prometheus

Monitoring Docker daemons

Monitoring Containers

Discovered labels

Scraping metrics via a certain

network only

Scraping global tasks only

Adding a docker_node label

to the targets

Connecting to the Docker

Swarm

Conclusion

Prometheus can discover targets in a Docker Swarm

(https://docs.docker.com/engine/swarm/) cluster, as of

v2.20.0. This guide demonstrates how to use that service

discovery mechanism.

Docker Swarm service discovery
architecture 

The Docker Swarm service discovery

(https://prometheus.io/docs/prometheus/latest/configuration/configuration/#dockerswarm_sd_config)

contains 3 different roles: nodes, services, and tasks.

The first role, nodes, represents the hosts that are part of the Swarm. It can be used to

automatically monitor the Docker daemons or the Node Exporters who run on the Swarm hosts.

The second role, tasks, represents any individual container deployed in the swarm. Each task gets

its associated service labels. One service can be backed by one or multiple tasks.

The third one, services, will discover the services deployed in the swarm. It will discover the ports

exposed by the services. Usually you will want to use the tasks role instead of this one.

Prometheus will only discover tasks and service that expose ports.

NOTE: The rest of this post assumes that you have a Swarm running.

Setting up Prometheus

For this guide, you need to setup Prometheus

(https://prometheus.io/docs/prometheus/latest/getting_started/). We will assume that Prometheus

runs on a Docker Swarm manager node and has access to the Docker socket at

/var/run/docker.sock .

Monitoring Docker daemons

Let's dive into the service discovery itself.

Docker itself, as a daemon, exposes metrics (https://docs.docker.com/config/daemon/prometheus/)

that can be ingested by a Prometheus server.

10/09/24, 19:27 Docker Swarm | Prometheus

https://prometheus.io/docs/guides/dockerswarm/ 2/6

https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#dockerswarm_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#dockerswarm_sd_config
https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/getting_started/
https://docs.docker.com/config/daemon/prometheus/
https://docs.docker.com/config/daemon/prometheus/

You can enable them by editing /etc/docker/daemon.json and setting the following properties:

{
 "metrics-addr" : "0.0.0.0:9323",
 "experimental" : true
}

Instead of 0.0.0.0 , you can set the IP of the Docker Swarm node.

A restart of the daemon is required to take the new configuration into account.

The Docker documentation (https://docs.docker.com/config/daemon/prometheus/) contains more

info about this.

Then, you can configure Prometheus to scrape the Docker daemon, by providing the following

prometheus.yml file:

scrape_configs:
 # Make Prometheus scrape itself for metrics.
 - job_name: 'prometheus'
 static_configs:
 - targets: ['localhost:9090']

 # Create a job for Docker daemons.
 - job_name: 'docker'
 dockerswarm_sd_configs:
 - host: unix:///var/run/docker.sock
 role: nodes
 relabel_configs:
 # Fetch metrics on port 9323.
 - source_labels: [__meta_dockerswarm_node_address]
 target_label: __address__
 replacement: $1:9323
 # Set hostname as instance label
 - source_labels: [__meta_dockerswarm_node_hostname]
 target_label: instance

For the nodes role, you can also use the port parameter of dockerswarm_sd_configs . However,

using relabel_configs is recommended as it enables Prometheus to reuse the same API calls across

identical Docker Swarm configurations.

Monitoring Containers

Let's now deploy a service in our Swarm. We will deploy cadvisor

(https://github.com/google/cadvisor), which exposes container resources metrics:

10/09/24, 19:27 Docker Swarm | Prometheus

https://prometheus.io/docs/guides/dockerswarm/ 3/6

https://docs.docker.com/config/daemon/prometheus/
https://docs.docker.com/config/daemon/prometheus/
https://github.com/google/cadvisor
https://github.com/google/cadvisor

docker service create --name cadvisor -l prometheus-job=cadvisor \
 --mode=global --publish target=8080,mode=host \
 --mount type=bind,src=/var/run/docker.sock,dst=/var/run/docker.sock,ro \
 --mount type=bind,src=/,dst=/rootfs,ro \
 --mount type=bind,src=/var/run,dst=/var/run \
 --mount type=bind,src=/sys,dst=/sys,ro \
 --mount type=bind,src=/var/lib/docker,dst=/var/lib/docker,ro \
 google/cadvisor -docker_only

This is a minimal prometheus.yml file to monitor it:

scrape_configs:
 # Make Prometheus scrape itself for metrics.
 - job_name: 'prometheus'
 static_configs:
 - targets: ['localhost:9090']

 # Create a job for Docker Swarm containers.
 - job_name: 'dockerswarm'
 dockerswarm_sd_configs:
 - host: unix:///var/run/docker.sock
 role: tasks
 relabel_configs:
 # Only keep containers that should be running.
 - source_labels: [__meta_dockerswarm_task_desired_state]
 regex: running
 action: keep
 # Only keep containers that have a `prometheus-job` label.
 - source_labels: [__meta_dockerswarm_service_label_prometheus_job]
 regex: .+
 action: keep
 # Use the prometheus-job Swarm label as Prometheus job label.
 - source_labels: [__meta_dockerswarm_service_label_prometheus_job]
 target_label: job

Let's analyze each part of the relabel configuration

(https://prometheus.io/docs/prometheus/latest/configuration/configuration/#relabel_config).

- source_labels: [__meta_dockerswarm_task_desired_state]
 regex: running
 action: keep

Docker Swarm exposes the desired state of the tasks (https://docs.docker.com/engine/swarm/how-

swarm-mode-works/swarm-task-states/) over the API. In out example, we only keep the targets that

should be running. It prevents monitoring tasks that should be shut down.

10/09/24, 19:27 Docker Swarm | Prometheus

https://prometheus.io/docs/guides/dockerswarm/ 4/6

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#relabel_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#relabel_config
https://docs.docker.com/engine/swarm/how-swarm-mode-works/swarm-task-states/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/swarm-task-states/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/swarm-task-states/

- source_labels: [__meta_dockerswarm_service_label_prometheus_job]
 regex: .+
 action: keep

When we deployed our cadvisor, we have added a label prometheus-job=cadvisor . As Prometheus

fetches the tasks labels, we can instruct it to only keep the targets which have a prometheus-job

label.

- source_labels: [__meta_dockerswarm_service_label_prometheus_job]
 target_label: job

That last part takes the label prometheus-job of the task and turns it into a target label, overwriting

the default dockerswarm job label that comes from the scrape config.

Discovered labels

The Prometheus Documentation

(https://prometheus.io/docs/prometheus/latest/configuration/configuration/#dockerswarm_sd_config)

contains the full list of labels, but here are other relabel configs that you might find useful.

Scraping metrics via a certain network only

- source_labels: [__meta_dockerswarm_network_name]
 regex: ingress
 action: keep

Scraping global tasks only

Global tasks run on every daemon.

- source_labels: [__meta_dockerswarm_service_mode]
 regex: global
 action: keep
- source_labels: [__meta_dockerswarm_task_port_publish_mode]
 regex: host
 action: keep

Adding a docker_node label to the targets

- source_labels: [__meta_dockerswarm_node_hostname]
 target_label: docker_node

Connecting to the Docker Swarm

The above dockerswarm_sd_configs entries have a field host:

10/09/24, 19:27 Docker Swarm | Prometheus

https://prometheus.io/docs/guides/dockerswarm/ 5/6

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#dockerswarm_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#dockerswarm_sd_config

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list of

trademarks of The Linux Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-usage) page.

host: unix:///var/run/docker.sock

That is using the Docker socket. Prometheus offers additional configuration options

(https://prometheus.io/docs/prometheus/latest/configuration/configuration/#dockerswarm_sd_config)

to connect to Swarm using HTTP and HTTPS, if you prefer that over the unix socket.

Conclusion

There are many discovery labels you can play with to better determine which targets to monitor and

how, for the tasks, there is more than 25 labels available. Don't hesitate to look at the "Service

Discovery" page of your Prometheus server (under the "Status" menu) to see all the discovered

labels.

The service discovery makes no assumptions about your Swarm stack, in such a way that given

proper configuration, this should be pluggable to any existing stack.

 This documentation is open-source (https://github.com/prometheus/docs#contributing-

changes). Please help improve it by filing issues or pull requests.

10/09/24, 19:27 Docker Swarm | Prometheus

https://prometheus.io/docs/guides/dockerswarm/ 6/6

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#dockerswarm_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#dockerswarm_sd_config
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

Basic auth (/docs/guides/basic-auth/)

Monitoring Docker container metrics using cAdvisor (/docs/guides/cadvisor/)

Use file-based service discovery to discover scrape targets (/docs/guides/file-sd/)

Instrumenting a Go application (/docs/guides/go-application/)

Understanding and using the multi-target exporter pattern (/docs/guides/multi-target-

exporter/)

Monitoring Linux host metrics with the Node Exporter (/docs/guides/node-exporter/)

OpenTelemetry (/docs/guides/opentelemetry/)

Docker Swarm (/docs/guides/dockerswarm/)

Query Log (/docs/guides/query-log/)

TLS encryption (/docs/guides/tls-encryption/)

10/09/24, 19:27 Query Log | Prometheus

https://prometheus.io/docs/guides/query-log/ 1/6

https://prometheus.io/docs/guides/basic-auth/
https://prometheus.io/docs/guides/cadvisor/
https://prometheus.io/docs/guides/file-sd/
https://prometheus.io/docs/guides/go-application/
https://prometheus.io/docs/guides/multi-target-exporter/
https://prometheus.io/docs/guides/node-exporter/
https://prometheus.io/docs/guides/opentelemetry/
https://prometheus.io/docs/guides/dockerswarm/
https://prometheus.io/docs/guides/query-log/
https://prometheus.io/docs/guides/tls-encryption/

Enable the query log

Logging all the

queries to a file

Verifying if the query log

is enabled

Format of the query log

API Queries and

consoles

Recording rules and

alerts

Rotating the query log

USING THE PROMETHEUS QUERY LOG

Prometheus has the ability to log all the

queries run by the engine to a log file, as of

2.16.0. This guide demonstrates how to use

that log file, which fields it contains, and

provides advanced tips about how to operate

the log file.

Enable the query log

The query log can be toggled at runtime. It can

therefore be activated when you want to

investigate slownesses or high load on your

Prometheus instance.

To enable or disable the query log, two steps are needed:

1. Adapt the configuration to add or remove the query log configuration.

2. Reload the Prometheus server configuration.

Logging all the queries to a file

This example demonstrates how to log all the queries to a file called

/prometheus/query.log . We will assume that /prometheus is the data directory

and that Prometheus has write access to it.

First, adapt the prometheus.yml configuration file:

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:27 Query Log | Prometheus

https://prometheus.io/docs/guides/query-log/ 2/6

global:
 scrape_interval: 15s
 evaluation_interval: 15s
 query_log_file: /prometheus/query.log
scrape_configs:
- job_name: 'prometheus'
 static_configs:
 - targets: ['localhost:9090']

Then, reload (/docs/prometheus/latest/management_api/#reload) the

Prometheus configuration:

$ curl -X POST http://127.0.0.1:9090/-/reload

Or, if Prometheus is not launched with --web.enable-lifecycle , and you're not

running on Windows, you can trigger the reload by sending a SIGHUP to the

Prometheus process.

The file /prometheus/query.log should now exist and all the queries will be

logged to that file.

To disable the query log, repeat the operation but remove query_log_file

from the configuration.

Verifying if the query log is enabled

Prometheus conveniently exposes metrics that indicates if the query log is

enabled and working:

HELP prometheus_engine_query_log_enabled State of the query log.
TYPE prometheus_engine_query_log_enabled gauge
prometheus_engine_query_log_enabled 0
HELP prometheus_engine_query_log_failures_total The number of query log failure
TYPE prometheus_engine_query_log_failures_total counter
prometheus_engine_query_log_failures_total 0

10/09/24, 19:27 Query Log | Prometheus

https://prometheus.io/docs/guides/query-log/ 3/6

https://prometheus.io/docs/prometheus/latest/management_api/#reload
https://prometheus.io/docs/prometheus/latest/management_api/#reload

The first metric, prometheus_engine_query_log_enabled is set to 1 of the query

log is enabled, and 0 otherwise. The second one,

prometheus_engine_query_log_failures_total , indicates the number of queries

that could not be logged.

Format of the query log

The query log is a JSON-formatted log. Here is an overview of the fields present

for a query:

{
 "params": {
 "end": "2020-02-08T14:59:50.368Z",
 "query": "up == 0",
 "start": "2020-02-08T13:59:50.368Z",
 "step": 5
 },
 "stats": {
 "timings": {
 "evalTotalTime": 0.000447452,
 "execQueueTime": 7.599e-06,
 "execTotalTime": 0.000461232,
 "innerEvalTime": 0.000427033,
 "queryPreparationTime": 1.4177e-05,
 "resultSortTime": 6.48e-07
 }
 },
 "ts": "2020-02-08T14:59:50.387Z"
}

params : The query. The start and end timestamp, the step and the actual

query statement.

stats : Statistics. Currently, it contains internal engine timers.

ts : The timestamp when the query ended.

Additionally, depending on what triggered the request, you will have additional

fields in the JSON lines.

10/09/24, 19:27 Query Log | Prometheus

https://prometheus.io/docs/guides/query-log/ 4/6

API Queries and consoles

HTTP requests contain the client IP, the method, and the path:

{
 "httpRequest": {
 "clientIP": "127.0.0.1",
 "method": "GET",
 "path": "/api/v1/query_range"
 }
}

The path will contain the web prefix if it is set, and can also point to a console.

The client IP is the network IP address and does not take into consideration the

headers like X-Forwarded-For . If you wish to log the original caller behind a

proxy, you need to do so in the proxy itself.

Recording rules and alerts

Recording rules and alerts contain a ruleGroup element which contains the

path of the file and the name of the group:

{
 "ruleGroup": {
 "file": "rules.yml",
 "name": "partners"
 }
}

Rotating the query log

Prometheus will not rotate the query log itself. Instead, you can use external

tools to do so.

One of those tools is logrotate. It is enabled by default on most Linux

distributions.

Here is an example of file you can add as /etc/logrotate.d/prometheus :

10/09/24, 19:27 Query Log | Prometheus

https://prometheus.io/docs/guides/query-log/ 5/6

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

/prometheus/query.log {
 daily
 rotate 7
 compress
 delaycompress
 postrotate
 killall -HUP prometheus
 endscript
}

That will rotate your file daily and keep one week of history.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:27 Query Log | Prometheus

https://prometheus.io/docs/guides/query-log/ 6/6

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

Basic auth (/docs/guides/basic-auth/)

Monitoring Docker container metrics using cAdvisor (/docs/guides/cadvisor/)

Use file-based service discovery to discover scrape targets (/docs/guides/file-sd/)

Instrumenting a Go application (/docs/guides/go-application/)

Understanding and using the multi-target exporter pattern (/docs/guides/multi-target-

exporter/)

Monitoring Linux host metrics with the Node Exporter (/docs/guides/node-exporter/)

OpenTelemetry (/docs/guides/opentelemetry/)

Docker Swarm (/docs/guides/dockerswarm/)

Query Log (/docs/guides/query-log/)

TLS encryption (/docs/guides/tls-encryption/)

10/09/24, 19:27 TLS encryption | Prometheus

https://prometheus.io/docs/guides/tls-encryption/ 1/4

https://prometheus.io/docs/guides/basic-auth/
https://prometheus.io/docs/guides/cadvisor/
https://prometheus.io/docs/guides/file-sd/
https://prometheus.io/docs/guides/go-application/
https://prometheus.io/docs/guides/multi-target-exporter/
https://prometheus.io/docs/guides/node-exporter/
https://prometheus.io/docs/guides/opentelemetry/
https://prometheus.io/docs/guides/dockerswarm/
https://prometheus.io/docs/guides/query-log/
https://prometheus.io/docs/guides/tls-encryption/

Pre-requisites

Prometheus

configuration

Testing

SECURING PROMETHEUS API AND UI

ENDPOINTS USING TLS ENCRYPTION

Prometheus supports Transport Layer Security

(https://en.wikipedia.org/wiki/Transport_Layer_Security) (TLS) encryption for

connections to Prometheus instances (i.e. to the expression browser or HTTP

API (../../prometheus/latest/querying/api)). If you would like to enforce TLS for

those connections, you would need to create a specific web configuration file.

NOTE: This guide is about TLS connections to Prometheus instances. TLS is

also supported for connections from Prometheus instances to scrape

targets (../../prometheus/latest/configuration/configuration/#tls_config).

Pre-requisites

Let's say that you already have a Prometheus instance up and running, and you

want to adapt it. We will not cover the initial Prometheus setup in this guide.

Let's say that you want to run a Prometheus instance served with TLS, available

at the example.com domain (which you own).

Let's also say that you've generated the following using OpenSSL

(https://www.digitalocean.com/community/tutorials/openssl-essentials-

working-with-ssl-certificates-private-keys-and-csrs) or an analogous tool:

 TUTORIALS

 SPECIFICATIONS

10/09/24, 19:27 TLS encryption | Prometheus

https://prometheus.io/docs/guides/tls-encryption/ 2/4

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://prometheus.io/docs/prometheus/latest/querying/api
https://prometheus.io/docs/prometheus/latest/querying/api
https://prometheus.io/docs/prometheus/latest/querying/api
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#tls_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#tls_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#tls_config
https://www.digitalocean.com/community/tutorials/openssl-essentials-working-with-ssl-certificates-private-keys-and-csrs
https://www.digitalocean.com/community/tutorials/openssl-essentials-working-with-ssl-certificates-private-keys-and-csrs
https://www.digitalocean.com/community/tutorials/openssl-essentials-working-with-ssl-certificates-private-keys-and-csrs

an SSL certificate at /home/prometheus/certs/example.com/example.com.crt

an SSL key at /home/prometheus/certs/example.com/example.com.key

You can generate a self-signed certificate and private key using this command:

mkdir -p /home/prometheus/certs/example.com && cd /home/prometheus/certs/certs/ex
openssl req \
 -x509 \
 -newkey rsa:4096 \
 -nodes \
 -keyout example.com.key \
 -out example.com.crt

Fill out the appropriate information at the prompts, and make sure to enter

example.com at the Common Name prompt.

Prometheus configuration

Below is an example web-config.yml

(https://prometheus.io/docs/prometheus/latest/configuration/https/)

configuration file. With this configuration, Prometheus will serve all its

endpoints behind TLS.

tls_server_config:
 cert_file: /home/prometheus/certs/example.com/example.com.crt
 key_file: /home/prometheus/certs/example.com/example.com.key

To make Prometheus use this config, you will need to call it with the flag --

web.config.file .

prometheus \
 --config.file=/path/to/prometheus.yml \
 --web.config.file=/path/to/web-config.yml \
 --web.external-url=https://example.com/

The --web.external-url= flag is optional here.

10/09/24, 19:27 TLS encryption | Prometheus

https://prometheus.io/docs/guides/tls-encryption/ 3/4

https://prometheus.io/docs/prometheus/latest/configuration/https/
https://prometheus.io/docs/prometheus/latest/configuration/https/

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

Testing

If you'd like to test out TLS locally using the example.com domain, you can add

an entry to your /etc/hosts file that re-routes example.com to localhost :

127.0.0.1 example.com

You can then use cURL to interact with your local Prometheus setup:

curl --cacert /home/prometheus/certs/example.com/example.com.crt \
 https://example.com/api/v1/label/job/values

You can connect to the Prometheus server without specifying certs using the --

insecure or -k flag:

curl -k https://example.com/api/v1/label/job/values

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:27 TLS encryption | Prometheus

https://prometheus.io/docs/guides/tls-encryption/ 4/4

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

WHAT IS PROMETHEUS ?

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

Getting Started with Prometheus (/docs/tutorials/getting_started/)

Understanding metric types (/docs/tutorials/understanding_metric_types/)

Instrumenting HTTP server written in Go

(/docs/tutorials/instrumenting_http_server_in_go/)

Visualizing metrics using Grafana (/docs/tutorials/visualizing_metrics_using_grafana/)

Alerting based on metrics. (/docs/tutorials/alerting_based_on_metrics/)

 SPECIFICATIONS

10/09/24, 19:27 Getting Started with Prometheus | Prometheus

https://prometheus.io/docs/tutorials/getting_started/ 1/8

https://prometheus.io/docs/tutorials/getting_started/
https://prometheus.io/docs/tutorials/understanding_metric_types/
https://prometheus.io/docs/tutorials/instrumenting_http_server_in_go/
https://prometheus.io/docs/tutorials/visualizing_metrics_using_grafana/
https://prometheus.io/docs/tutorials/alerting_based_on_metrics/

Prometheus is a system monitoring and alerting system. It was opensourced by

SoundCloud in 2012 and is the second project both to join and to graduate

within Cloud Native Computing Foundation after Kubernetes. Prometheus

stores all metrics data as time series, i.e metrics information is stored along

with the timestamp at which it was recorded, optional key-value pairs called as

labels can also be stored along with metrics.

WHAT ARE METRICS AND WHY IS IT

IMPORTANT?

Metrics in layperson terms is a standard for measurement. What we want to

measure depends from application to application. For a web server it can be

request times, for a database it can be CPU usage or number of active

connections etc.

Metrics play an important role in understanding why your application is

working in a certain way. If you run a web application and someone comes up

to you and says that the application is slow, you will need some information to

find out what is happening with your application. For example the application

can become slow when the number of requests are high. If you have the

request count metric you can spot the reason and increase the number of

servers to handle the heavy load. Whenever you are defining the metrics for

your application you must put on your detective hat and ask this question what

all information will be important for me to debug if any issue occurs in my

application?

BASIC ARCHITECTURE OF PROMETHEUS

The basic components of a Prometheus setup are:

Prometheus Server (the server which scrapes and stores the metrics

data).

Targets to be scraped, for example an instrumented application that

exposes its metrics, or an exporter that exposes metrics of another

10/09/24, 19:27 Getting Started with Prometheus | Prometheus

https://prometheus.io/docs/tutorials/getting_started/ 2/8

application.

Alertmanager to raise alerts based on preset rules.

(Note: Apart from this Prometheus has push_gateway which is not covered

here).

(/assets/tutorial/architecture.png)

Let's consider a web server as an example application and we want to extract a

certain metric like the number of API calls processed by the web server. So we

add certain instrumentation code using the Prometheus client library and

expose the metrics information. Now that our web server exposes its metrics

we can configure Prometheus to scrape it. Now Prometheus is configured to

fetch the metrics from the web server which is listening on xyz IP address port

7500 at a specific time interval, say, every minute.

At 11:00:00 when I make the server public for consumption, the application

calculates the request count and exposes it, Prometheus simultaneously

scrapes the count metric and stores the value as 0.

By 11:01:00 one request is processed. The instrumentation logic in the server

increments the count to 1. When Prometheus scrapes the metric the value of

count is 1 now.

By 11:02:00 two more requests are processed and the request count is 1+2 = 3

now. Similarly metrics are scraped and stored.

The user can control the frequency at which metrics are scraped by

Prometheus.

10/09/24, 19:27 Getting Started with Prometheus | Prometheus

https://prometheus.io/docs/tutorials/getting_started/ 3/8

https://prometheus.io/assets/tutorial/architecture.png
https://prometheus.io/assets/tutorial/architecture.png
https://prometheus.io/assets/tutorial/architecture.png

Time Stamp Request Count (metric)

11:00:00 0

11:01:00 1

11:02:00 3

(Note: This table is just a representation for understanding purposes.

Prometheus doesn’t store the values in this exact format)

Prometheus also has an API which allows to query metrics which have been

stored by scraping. This API is used to query the metrics, create

dashboards/charts on it etc. PromQL is used to query these metrics.

A simple Line chart created on the Request Count metric will look like this

(/assets/tutorial/sample_graph.png)

One can scrape multiple useful metrics to understand what is happening in the

application and create multiple charts on them. Group the charts into a

dashboard and use it to get an overview of the application.

10/09/24, 19:27 Getting Started with Prometheus | Prometheus

https://prometheus.io/docs/tutorials/getting_started/ 4/8

https://prometheus.io/assets/tutorial/sample_graph.png
https://prometheus.io/assets/tutorial/sample_graph.png
https://prometheus.io/assets/tutorial/sample_graph.png

SHOW ME HOW IT IS DONE

Let’s get our hands dirty and setup Prometheus. Prometheus is written using

Go (https://golang.org/) and all you need is the binary compiled for your

operating system. Download the binary corresponding to your operating

system from here (https://prometheus.io/download/) and add the binary to

your path.

Prometheus exposes its own metrics which can be consumed by itself or

another Prometheus server.

Now that we have Prometheus installed, the next step is to run it. All that we

need is just the binary and a configuration file. Prometheus uses yaml files for

configuration.

global:
 scrape_interval: 15s

scrape_configs:
 - job_name: prometheus
 static_configs:
 - targets: ["localhost:9090"]

In the above configuration file we have mentioned the scrape_interval , i.e

how frequently we want Prometheus to scrape the metrics. We have added

scrape_configs which has a name and target to scrape the metrics from.

Prometheus by default listens on port 9090. So add it to targets.

prometheus --config.file=prometheus.yml

10/09/24, 19:27 Getting Started with Prometheus | Prometheus

https://prometheus.io/docs/tutorials/getting_started/ 5/8

https://golang.org/
https://golang.org/
https://prometheus.io/download/
https://prometheus.io/download/

prometheus introprometheus intro

Now we have Prometheus up and running and scraping its own metrics every

15s. Prometheus has standard exporters available to export metrics. Next we

will run a node exporter which is an exporter for machine metrics and scrape

the same using Prometheus. (Download node metrics exporter.

(https://prometheus.io/download/#node_exporter))

Run the node exporter in a terminal.

./node_exporter

(/assets/tutorial/node_exporter.png)

Next, add node exporter to the list of scrape_configs:

10/09/24, 19:27 Getting Started with Prometheus | Prometheus

https://prometheus.io/docs/tutorials/getting_started/ 6/8

https://www.youtube.com/watch?v=ioa0eISf1Q0
https://prometheus.io/download/#node_exporter
https://prometheus.io/download/#node_exporter
https://prometheus.io/assets/tutorial/node_exporter.png
https://prometheus.io/assets/tutorial/node_exporter.png
https://prometheus.io/assets/tutorial/node_exporter.png

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

global:
 scrape_interval: 15s

scrape_configs:
 - job_name: prometheus
 static_configs:
 - targets: ["localhost:9090"]
 - job_name: node_exporter
 static_configs:
 - targets: ["localhost:9100"]

node exporter demonode exporter demo

In this tutorial we discussed what are metrics and why they are important, basic

architecture of Prometheus and how to run Prometheus.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:27 Getting Started with Prometheus | Prometheus

https://prometheus.io/docs/tutorials/getting_started/ 7/8

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://www.youtube.com/watch?v=hM5bp53C7Y8
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

10/09/24, 19:27 Getting Started with Prometheus | Prometheus

https://prometheus.io/docs/tutorials/getting_started/ 8/8

Counter

Gauge

Histogram

Summary

TYPES OF METRICS.

Prometheus supports four types of metrics, which are -

Counter - Gauge - Histogram - Summary

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

Getting Started with Prometheus (/docs/tutorials/getting_started/)

Understanding metric types (/docs/tutorials/understanding_metric_types/)

Instrumenting HTTP server written in Go (/docs/tutorials/instrumenting_http_server_in_go/)

Visualizing metrics using Grafana (/docs/tutorials/visualizing_metrics_using_grafana/)

Alerting based on metrics. (/docs/tutorials/alerting_based_on_metrics/)

 SPECIFICATIONS

10/09/24, 19:27 Understanding metric types | Prometheus

https://prometheus.io/docs/tutorials/understanding_metric_types/ 1/7

https://prometheus.io/docs/tutorials/getting_started/
https://prometheus.io/docs/tutorials/understanding_metric_types/
https://prometheus.io/docs/tutorials/instrumenting_http_server_in_go/
https://prometheus.io/docs/tutorials/visualizing_metrics_using_grafana/
https://prometheus.io/docs/tutorials/alerting_based_on_metrics/

Counter

Counter is a metric value that can only increase or reset i.e. the value cannot reduce than the

previous value. It can be used for metrics like the number of requests, no of errors, etc.

Type the below query in the query bar and click execute.

go_gc_duration_seconds_count

(/assets/tutorial/counter_example.png)

The rate() function in PromQL takes the history of metrics over a time frame and calculates

how fast the value is increasing per second. Rate is applicable on counter values only.

10/09/24, 19:27 Understanding metric types | Prometheus

https://prometheus.io/docs/tutorials/understanding_metric_types/ 2/7

https://prometheus.io/assets/tutorial/counter_example.png
https://prometheus.io/assets/tutorial/counter_example.png
https://prometheus.io/assets/tutorial/counter_example.png

rate(go_gc_duration_seconds_count[5m])

(/assets/tutorial/rate_example.png)

Gauge

Gauge is a number which can either go up or down. It can be used for metrics like the

number of pods in a cluster, the number of events in a queue, etc.

go_memstats_heap_alloc_bytes

(/assets/tutorial/gauge_example.png)

PromQL functions like max_over_time , min_over_time and avg_over_time can be used on

gauge metrics

10/09/24, 19:27 Understanding metric types | Prometheus

https://prometheus.io/docs/tutorials/understanding_metric_types/ 3/7

https://prometheus.io/assets/tutorial/rate_example.png
https://prometheus.io/assets/tutorial/rate_example.png
https://prometheus.io/assets/tutorial/rate_example.png
https://prometheus.io/assets/tutorial/gauge_example.png
https://prometheus.io/assets/tutorial/gauge_example.png
https://prometheus.io/assets/tutorial/gauge_example.png

Histogram

Histogram is a more complex metric type when compared to the previous two. Histogram can

be used for any calculated value which is counted based on bucket values. Bucket boundaries

can be configured by the developer. A common example would be the time it takes to reply to

a request, called latency.

Example: Let's assume we want to observe the time taken to process API requests. Instead of

storing the request time for each request, histograms allow us to store them in buckets. We

define buckets for time taken, for example lower or equal 0.3 , le 0.5 , le 0.7 , le 1 , and

le 1.2 . So these are our buckets and once the time taken for a request is calculated it is

added to the count of all the buckets whose bucket boundaries are higher than the measured

value.

Let's say Request 1 for endpoint “/ping” takes 0.25 s. The count values for the buckets will be.

/ping

Bucket Count

0 - 0.3 1

0 - 0.5 1

0 - 0.7 1

0 - 1 1

0 - 1.2 1

0 - +Inf 1

Note: +Inf bucket is added by default.

(Since the histogram is a cumulative frequency 1 is added to all the buckets that are greater

than the value)

Request 2 for endpoint “/ping” takes 0.4s The count values for the buckets will be this.

/ping

10/09/24, 19:27 Understanding metric types | Prometheus

https://prometheus.io/docs/tutorials/understanding_metric_types/ 4/7

Bucket Count

0 - 0.3 1

0 - 0.5 2

0 - 0.7 2

0 - 1 2

0 - 1.2 2

0 - +Inf 2

Since 0.4 is below 0.5, all buckets up to that boundary increase their counts.

Let's explore a histogram metric from the Prometheus UI and apply a few functions.

prometheus_http_request_duration_seconds_bucket{handler="/graph"}

(/assets/tutorial/histogram_example.png)

histogram_quantile() function can be used to calculate quantiles from a histogram

histogram_quantile(0.9,prometheus_http_request_duration_seconds_bucket{handler="/graph"})

10/09/24, 19:27 Understanding metric types | Prometheus

https://prometheus.io/docs/tutorials/understanding_metric_types/ 5/7

https://prometheus.io/assets/tutorial/histogram_example.png
https://prometheus.io/assets/tutorial/histogram_example.png
https://prometheus.io/assets/tutorial/histogram_example.png

(/assets/tutorial/histogram_quantile_example.png)

The graph shows that the 90th percentile is 0.09, To find the histogram_quantile over the last

5m you can use the rate() and time frame

histogram_quantile(0.9,

rate(prometheus_http_request_duration_seconds_bucket{handler="/graph"}[5m]))

(/assets/tutorial/histogram_rate_example.png)

10/09/24, 19:27 Understanding metric types | Prometheus

https://prometheus.io/docs/tutorials/understanding_metric_types/ 6/7

https://prometheus.io/assets/tutorial/histogram_quantile_example.png
https://prometheus.io/assets/tutorial/histogram_quantile_example.png
https://prometheus.io/assets/tutorial/histogram_quantile_example.png
https://prometheus.io/assets/tutorial/histogram_rate_example.png
https://prometheus.io/assets/tutorial/histogram_rate_example.png
https://prometheus.io/assets/tutorial/histogram_rate_example.png

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For

a list of trademarks of The Linux Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-

usage) page.

Summary

Summaries also measure events and are an alternative to histograms. They are cheaper but

lose more data. They are calculated on the application level hence aggregation of metrics

from multiple instances of the same process is not possible. They are used when the buckets

of a metric are not known beforehand, but it is highly recommended to use histograms over

summaries whenever possible.

In this tutorial, we covered the types of metrics in detail and a few PromQL operations like

rate, histogram_quantile, etc.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help improve it by

filing issues or pull requests.

10/09/24, 19:27 Understanding metric types | Prometheus

https://prometheus.io/docs/tutorials/understanding_metric_types/ 7/7

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

In this tutorial we will create a simple Go HTTP server and instrumentation it by

adding a counter metric to keep count of the total number of requests

processed by the server.

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

Getting Started with Prometheus (/docs/tutorials/getting_started/)

Understanding metric types (/docs/tutorials/understanding_metric_types/)

Instrumenting HTTP server written in Go

(/docs/tutorials/instrumenting_http_server_in_go/)

Visualizing metrics using Grafana (/docs/tutorials/visualizing_metrics_using_grafana/)

Alerting based on metrics. (/docs/tutorials/alerting_based_on_metrics/)

 SPECIFICATIONS

10/09/24, 19:27 Instrumenting HTTP server written in Go | Prometheus

https://prometheus.io/docs/tutorials/instrumenting_http_server_in_go/ 1/7

https://prometheus.io/docs/tutorials/getting_started/
https://prometheus.io/docs/tutorials/understanding_metric_types/
https://prometheus.io/docs/tutorials/instrumenting_http_server_in_go/
https://prometheus.io/docs/tutorials/visualizing_metrics_using_grafana/
https://prometheus.io/docs/tutorials/alerting_based_on_metrics/

Here we have a simple HTTP server with /ping endpoint which returns pong as

response.

package main

import (
 "fmt"
 "net/http"
)

func ping(w http.ResponseWriter, req *http.Request){
 fmt.Fprintf(w,"pong")
}

func main() {
 http.HandleFunc("/ping",ping)

 http.ListenAndServe(":8090", nil)
}

Compile and run the server

go build server.go
./server

Now open http://localhost:8090/ping in your browser and you must see

pong .

10/09/24, 19:27 Instrumenting HTTP server written in Go | Prometheus

https://prometheus.io/docs/tutorials/instrumenting_http_server_in_go/ 2/7

(/assets/tutorial/server.png)

Now lets add a metric to the server which will instrument the number of

requests made to the ping endpoint,the counter metric type is suitable for this

as we know the request count doesn’t go down and only increases.

Create a Prometheus counter

var pingCounter = prometheus.NewCounter(
 prometheus.CounterOpts{
 Name: "ping_request_count",
 Help: "No of request handled by Ping handler",
 },
)

Next lets update the ping Handler to increase the count of the counter using

pingCounter.Inc() .

func ping(w http.ResponseWriter, req *http.Request) {
 pingCounter.Inc()
 fmt.Fprintf(w, "pong")
}

10/09/24, 19:27 Instrumenting HTTP server written in Go | Prometheus

https://prometheus.io/docs/tutorials/instrumenting_http_server_in_go/ 3/7

https://prometheus.io/assets/tutorial/server.png
https://prometheus.io/assets/tutorial/server.png
https://prometheus.io/assets/tutorial/server.png

Then register the counter to the Default Register and expose the metrics.

func main() {
 prometheus.MustRegister(pingCounter)
 http.HandleFunc("/ping", ping)
 http.Handle("/metrics", promhttp.Handler())
 http.ListenAndServe(":8090", nil)
}

The prometheus.MustRegister function registers the pingCounter to the default

Register. To expose the metrics the Go Prometheus client library provides the

promhttp package. promhttp.Handler() provides a http.Handler which

exposes the metrics registered in the Default Register.

The sample code depends on the

10/09/24, 19:27 Instrumenting HTTP server written in Go | Prometheus

https://prometheus.io/docs/tutorials/instrumenting_http_server_in_go/ 4/7

package main

import (
 "fmt"
 "net/http"

 "github.com/prometheus/client_golang/prometheus"
 "github.com/prometheus/client_golang/prometheus/promhttp"
)

var pingCounter = prometheus.NewCounter(
 prometheus.CounterOpts{
 Name: "ping_request_count",
 Help: "No of request handled by Ping handler",
 },
)

func ping(w http.ResponseWriter, req *http.Request) {
 pingCounter.Inc()
 fmt.Fprintf(w, "pong")
}

func main() {
 prometheus.MustRegister(pingCounter)

 http.HandleFunc("/ping", ping)
 http.Handle("/metrics", promhttp.Handler())
 http.ListenAndServe(":8090", nil)
}

Run the example

go mod init prom_example
go mod tidy
go run server.go

Now hit the localhost:8090/ping endpoint a couple of times and sending a

request to localhost:8090 will provide the metrics.

10/09/24, 19:27 Instrumenting HTTP server written in Go | Prometheus

https://prometheus.io/docs/tutorials/instrumenting_http_server_in_go/ 5/7

(/assets/tutorial/ping_metric.png)

Here the ping_request_count shows that /ping endpoint was called 3 times.

The Default Register comes with a collector for go runtime metrics and that is

why we see other metrics like go_threads , go_goroutines etc.

We have built our first metric exporter. Let’s update our Prometheus config to

scrape the metrics from our server.

global:
 scrape_interval: 15s

scrape_configs:
 - job_name: prometheus
 static_configs:
 - targets: ["localhost:9090"]
 - job_name: simple_server
 static_configs:
 - targets: ["localhost:8090"]

prometheus --config.file=prometheus.yml

10/09/24, 19:27 Instrumenting HTTP server written in Go | Prometheus

https://prometheus.io/docs/tutorials/instrumenting_http_server_in_go/ 6/7

https://prometheus.io/assets/tutorial/ping_metric.png
https://prometheus.io/assets/tutorial/ping_metric.png
https://prometheus.io/assets/tutorial/ping_metric.png

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

instrumentation demoinstrumentation demo

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:27 Instrumenting HTTP server written in Go | Prometheus

https://prometheus.io/docs/tutorials/instrumenting_http_server_in_go/ 7/7

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://www.youtube.com/watch?v=yQIWgZoiW0o
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

Getting Started with Prometheus (/docs/tutorials/getting_started/)

Understanding metric types (/docs/tutorials/understanding_metric_types/)

Instrumenting HTTP server written in Go

(/docs/tutorials/instrumenting_http_server_in_go/)

Visualizing metrics using Grafana

(/docs/tutorials/visualizing_metrics_using_grafana/)

Alerting based on metrics. (/docs/tutorials/alerting_based_on_metrics/)

 SPECIFICATIONS

10/09/24, 19:28 Visualizing metrics using Grafana | Prometheus

https://prometheus.io/docs/tutorials/visualizing_metrics_using_grafana/ 1/4

https://prometheus.io/docs/tutorials/getting_started/
https://prometheus.io/docs/tutorials/understanding_metric_types/
https://prometheus.io/docs/tutorials/instrumenting_http_server_in_go/
https://prometheus.io/docs/tutorials/visualizing_metrics_using_grafana/
https://prometheus.io/docs/tutorials/alerting_based_on_metrics/

Installing and Setting up

Grafana.

Adding Prometheus as

a Data Source in

Grafana.

Creating our first

dashboard.

VISUALIZING METRICS.

In this tutorial we will create a simple

dashboard using Grafana

(https://github.com/grafana/grafana) to

visualize the ping_request_count metric that

we instrumented in the previous tutorial

(../instrumenting_http_server_in_go).

If you are wondering why one should use a

tool like Grafana when one can query and see

the graphs using Prometheus, the answer is that the graph that we see when

we run queries on Prometheus is to run ad-hoc queries. Grafana and Console

Templates (https://prometheus.io/docs/visualization/consoles/) are two

recommended ways of creating graphs.

Installing and Setting up Grafana.

Install and Run Grafana by following the steps from here

(https://grafana.com/docs/grafana/latest/installation/requirements/#supported-

operating-systems) for your operating system.

Once Grafana is installed and run, navigate to http://localhost:3000

(http://localhost:3000) in your browser. Use the default credentials, username

as admin and password as admin to log in and setup new credentials.

Adding Prometheus as a Data Source in Grafana.

Let's add a datasource to Grafana by clicking on the gear icon in the side bar

and select Data Sources

⚙ > Data Sources

In the Data Sources screen you can see that Grafana supports multiple data

sources like Graphite, PostgreSQL etc. Select Prometheus to set it up.

10/09/24, 19:28 Visualizing metrics using Grafana | Prometheus

https://prometheus.io/docs/tutorials/visualizing_metrics_using_grafana/ 2/4

https://github.com/grafana/grafana
https://github.com/grafana/grafana
https://prometheus.io/docs/tutorials/instrumenting_http_server_in_go
https://prometheus.io/docs/tutorials/instrumenting_http_server_in_go
https://prometheus.io/docs/visualization/consoles/
https://prometheus.io/docs/visualization/consoles/
https://prometheus.io/docs/visualization/consoles/
https://grafana.com/docs/grafana/latest/installation/requirements/#supported-operating-systems
https://grafana.com/docs/grafana/latest/installation/requirements/#supported-operating-systems
https://grafana.com/docs/grafana/latest/installation/requirements/#supported-operating-systems
http://localhost:3000/
http://localhost:3000/

Enter the URL as http://localhost:9090 (http://localhost:9090) under the HTTP

section and click on Save and Test .

Add Prometheus as Data Source to GrafanaAdd Prometheus as Data Source to Grafana

Creating our first dashboard.

Now we have successfully added Prometheus as a data source, Next we will

create our first dashboard for the ping_request_count metric that we

instrumented in the previous tutorial.

1. Click on the + icon in the side bar and select Dashboard .

2. In the next screen, Click on the Add new panel button.

3. In the Query tab type the PromQL query, in this case just type

ping_request_count .

4. Access the ping endpoint few times and refresh the Graph to verify if it is

working as expected.

5. In the right hand section under Panel Options set the Title as Ping

Request Count .

6. Click on the Save Icon in the right corner to Save the dashboard.

10/09/24, 19:28 Visualizing metrics using Grafana | Prometheus

https://prometheus.io/docs/tutorials/visualizing_metrics_using_grafana/ 3/4

http://localhost:9090/
http://localhost:9090/
https://www.youtube.com/watch?v=QT66dU_h9lo

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

Create DashboardCreate Dashboard

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:28 Visualizing metrics using Grafana | Prometheus

https://prometheus.io/docs/tutorials/visualizing_metrics_using_grafana/ 4/4

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://www.youtube.com/watch?v=giVZHO6akRA
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

ALERTING BASED ON METRICS

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

Getting Started with Prometheus (/docs/tutorials/getting_started/)

Understanding metric types (/docs/tutorials/understanding_metric_types/)

Instrumenting HTTP server written in Go

(/docs/tutorials/instrumenting_http_server_in_go/)

Visualizing metrics using Grafana (/docs/tutorials/visualizing_metrics_using_grafana/)

Alerting based on metrics. (/docs/tutorials/alerting_based_on_metrics/)

 SPECIFICATIONS

10/09/24, 19:28 Alerting based on metrics. | Prometheus

https://prometheus.io/docs/tutorials/alerting_based_on_metrics/ 1/6

https://prometheus.io/docs/tutorials/getting_started/
https://prometheus.io/docs/tutorials/understanding_metric_types/
https://prometheus.io/docs/tutorials/instrumenting_http_server_in_go/
https://prometheus.io/docs/tutorials/visualizing_metrics_using_grafana/
https://prometheus.io/docs/tutorials/alerting_based_on_metrics/

In this tutorial we will create alerts on the ping_request_count metric that we

instrumented earlier in the Instrumenting HTTP server written in Go

(./instrumenting_http_server_in_go/) tutorial.

For the sake of this tutorial we will alert when the ping_request_count metric is

greater than 5, Checkout real world best practices (../../practices/alerting) to

learn more about alerting principles.

Download the latest release of Alertmanager for your operating system from

here (https://github.com/prometheus/alertmanager/releases)

Alertmanager supports various receivers like email , webhook , pagerduty ,

slack etc through which it can notify when an alert is firing. You can find the

list of receivers and how to configure them here

(../../alerting/latest/configuration). We will use webhook as a receiver for this

tutorial, head over to webhook.site (https://webhook.site) and copy the

webhook URL which we will use later to configure the Alertmanager.

First let's setup Alertmanager with webhook receiver.

alertmanager.yml

global:
 resolve_timeout: 5m
route:
 receiver: webhook_receiver
receivers:
 - name: webhook_receiver
 webhook_configs:
 - url: '<INSERT-YOUR-WEBHOOK>'
 send_resolved: false

Replace <INSERT-YOUR-WEBHOOK> with the webhook that we copied earlier in the

alertmanager.yml file and run the Alertmanager using the following command.

alertmanager --config.file=alertmanager.yml

10/09/24, 19:28 Alerting based on metrics. | Prometheus

https://prometheus.io/docs/tutorials/alerting_based_on_metrics/ 2/6

https://prometheus.io/docs/tutorials/alerting_based_on_metrics/instrumenting_http_server_in_go/
https://prometheus.io/docs/tutorials/alerting_based_on_metrics/instrumenting_http_server_in_go/
https://prometheus.io/docs/practices/alerting
https://prometheus.io/docs/practices/alerting
https://github.com/prometheus/alertmanager/releases
https://github.com/prometheus/alertmanager/releases
https://prometheus.io/docs/alerting/latest/configuration
https://prometheus.io/docs/alerting/latest/configuration
https://webhook.site/
https://webhook.site/

Once the Alertmanager is up and running navigate to http://localhost:9093

(http://localhost:9093) and you should be able to access it.

Set up AlertmanagerSet up Alertmanager

Now that we have configured the Alertmanager with webhook receiver let's add

the rules to the Prometheus config.

prometheus.yml

10/09/24, 19:28 Alerting based on metrics. | Prometheus

https://prometheus.io/docs/tutorials/alerting_based_on_metrics/ 3/6

http://localhost:9093/
http://localhost:9093/
https://www.youtube.com/watch?v=RKXwHhQZ5RE

global:
 scrape_interval: 15s
 evaluation_interval: 10s
rule_files:
 - rules.yml
alerting:
 alertmanagers:
 - static_configs:
 - targets:
 - localhost:9093
scrape_configs:
 - job_name: prometheus
 static_configs:
 - targets: ["localhost:9090"]
 - job_name: simple_server
 static_configs:
 - targets: ["localhost:8090"]

If you notice the evaluation_interval , rule_files and alerting sections are

added to the Prometheus config, the evaluation_interval defines the intervals

at which the rules are evaluated, rule_files accepts an array of yaml files that

defines the rules and the alerting section defines the Alertmanager

configuration. As mentioned in the beginning of this tutorial we will create a

basic rule where we want to raise an alert when the ping_request_count value

is greater than 5.

rules.yml

groups:
 - name: Count greater than 5
 rules:
 - alert: CountGreaterThan5
 expr: ping_request_count > 5
 for: 10s

Now let's run Prometheus using the following command.

10/09/24, 19:28 Alerting based on metrics. | Prometheus

https://prometheus.io/docs/tutorials/alerting_based_on_metrics/ 4/6

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

prometheus --config.file=./prometheus.yml

Open http://localhost:9090/rules (http://localhost:9090/rules) in your browser

to see the rules. Next run the instrumented ping server and visit the

http://localhost:8090/ping (http://localhost:8090/ping) endpoint and refresh the

page atleast 6 times. You can check the ping count by navigating to

http://localhost:8090/metrics (http://localhost:8090/metrics) endpoint. To see

the status of the alert visit http://localhost:9090/alerts

(http://localhost:9090/alerts). Once the condition ping_request_count > 5 is

true for more than 10s the state will become FIRING . Now if you navigate

back to your webhook.site URL you will see the alert message.

Alertmanager webhook exampleAlertmanager webhook example

Similarly Alertmanager can be configured with other receivers to notify when an

alert is firing.

 This documentation is open-source

(https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:28 Alerting based on metrics. | Prometheus

https://prometheus.io/docs/tutorials/alerting_based_on_metrics/ 5/6

http://localhost:9090/rules
http://localhost:9090/rules
http://localhost:8090/ping
http://localhost:8090/ping
http://localhost:8090/metrics
http://localhost:8090/metrics
http://localhost:9090/alerts
http://localhost:9090/alerts
https://www.youtube.com/watch?v=xaMXVrle98M
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and

uses trademarks. For a list of trademarks of The Linux Foundation, please see our Trademark Usage

(https://www.linuxfoundation.org/trademark-usage) page.

10/09/24, 19:28 Alerting based on metrics. | Prometheus

https://prometheus.io/docs/tutorials/alerting_based_on_metrics/ 6/6

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage

Introduction

Background

Glossary

Definitions

Protocol

Response

Retries & Backoff

Backward and Forward Compatibility

Protobuf Message

io.prometheus.write.v2.Request

Out of Scope

Future Plans

Related

FAQ

PROMETHEUS REMOTE-WRITE SPECIFICATION

Version: 2.0-rc.3

Status: Experimental

Date: May 2024

The Remote-Write specification, in general, is intended to document the

standard for how Prometheus and Prometheus Remote-Write

compatible senders send data to Prometheus or Prometheus Remote-

Write compatible receivers.

This document is intended to define a second version of the

Prometheus Remote-Write (./remote_write_spec.md) API with minor

changes to protocol and semantics. This second version adds a new

Protobuf Message with new features enabling more use cases and

wider adoption on top of performance and cost savings. The second

version also deprecates the previous Protobuf Message from a 1.0

Remote-Write specification (./remote_write_spec.md#protocol) and

adds mandatory X-Prometheus-Remote-Write-*-Written HTTP response headersfor reliability purposes. Finally, this spec

outlines how to implement backwards-compatible senders and receivers (even under a single endpoint) using existing

basic content negotiation request headers. More advanced, automatic content negotiation mechanisms might come in a

future minor version if needed. For the rationales behind the 2.0 specification, see the formal proposal

(https://github.com/prometheus/proposals/pull/35).

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED",

"MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119

(https://datatracker.ietf.org/doc/html/rfc2119).

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

Prometheus Remote-Write 2.0 [EXPERIMENTAL] (/docs/specs/remote_write_spec_2_0/)

Prometheus Remote-Write 1.0 (/docs/specs/remote_write_spec/)

10/09/24, 19:28 Prometheus Remote-Write 2.0 [EXPERIMENTAL] | Prometheus

https://prometheus.io/docs/specs/remote_write_spec_2_0/ 1/11

https://prometheus.io/docs/specs/remote_write_spec_2_0/remote_write_spec.md
https://prometheus.io/docs/specs/remote_write_spec_2_0/remote_write_spec.md
https://prometheus.io/docs/specs/remote_write_spec_2_0/remote_write_spec.md#protocol
https://prometheus.io/docs/specs/remote_write_spec_2_0/remote_write_spec.md#protocol
https://prometheus.io/docs/specs/remote_write_spec_2_0/remote_write_spec.md#protocol
https://github.com/prometheus/proposals/pull/35
https://github.com/prometheus/proposals/pull/35
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://prometheus.io/docs/specs/remote_write_spec_2_0/
https://prometheus.io/docs/specs/remote_write_spec/

NOTE: This is a release candidate for Remote-Write 2.0 specification. This means that this

specification is currently in an experimental state--no major changes are expected, but we reserve

the right to break the compatibility if it's necessary, based on the early adopters' feedback. The

potential feedback, questions and suggestions should be added as comments to the PR with the open

proposal (https://github.com/prometheus/proposals/pull/35).

Introduction

Background

The Remote-Write protocol is designed to make it possible to reliably propagate samples in real-time from a sender to a

receiver, without loss.

The Remote-Write protocol is designed to be stateless; there is strictly no inter-message communication. As such the

protocol is not considered "streaming". To achieve a streaming effect multiple messages should be sent over the same

connection using e.g. HTTP/1.1 or HTTP/2. "Fancy" technologies such as gRPC were considered, but at the time were not

widely adopted, and it was challenging to expose gRPC services to the internet behind load balancers such as an AWS EC2

ELB.

The Remote-Write protocol contains opportunities for batching, e.g. sending multiple samples for different series in a

single request. It is not expected that multiple samples for the same series will be commonly sent in the same request,

although there is support for this in the Protobuf Message.

A test suite can be found at https://github.com/prometheus/compliance/tree/main/remote_write_sender

(https://github.com/prometheus/compliance/tree/main/remote_write_sender). The compliance tests for remote write 2.0

compatibility are still in progress (https://github.com/prometheus/compliance/issues/101).

Glossary

In this document, the following definitions are followed:

Remote-Write is the name of this Prometheus protocol.

a Protocol is a communication specification that enables the client and server to transfer metrics.

a Protobuf Message (or Proto Message) refers to the content type (https://www.rfc-

editor.org/rfc/rfc9110.html#name-content-type) definition of the data structure for this Protocol. Since the

specification uses Google Protocol Buffers ("protobuf") (https://protobuf.dev/) exclusively, the schema is defined in a

"proto" file (https://protobuf.dev/programming-guides/proto3/) and represented by a single Protobuf "message"

(https://protobuf.dev/programming-guides/proto3/#simple).

a Wire Format is the format of the data as it travels on the wire (i.e. in a network). In the case of Remote-Write, this

is always the compressed binary protobuf format.

a Sender is something that sends Remote-Write data.

a Receiver is something that receives (writes) Remote-Write data. The meaning of Written is up to the Receiver e.g.

usually it means storing received data in a database, but also just validating, splitting or enhancing it.

Written refers to data the Receiver has received and is accepting. Whether or not it has ingested this data to

persistent storage, written it to a WAL, etc. is up to the Receiver . The only distinction is that the Receiver has

accepted this data rather than explicitly rejecting it with an error response.

a Sample is a pair of (timestamp, value).

a Histogram is a pair of (timestamp, histogram value

(https://github.com/prometheus/docs/blob/b9657b5f5b264b81add39f6db2f1df36faf03efe/content/docs/concepts/nati

a Label is a pair of (key, value).

a Series is a list of samples, identified by a unique set of labels.

10/09/24, 19:28 Prometheus Remote-Write 2.0 [EXPERIMENTAL] | Prometheus

https://prometheus.io/docs/specs/remote_write_spec_2_0/ 2/11

https://github.com/prometheus/proposals/pull/35
https://github.com/prometheus/proposals/pull/35
https://github.com/prometheus/proposals/pull/35
https://github.com/prometheus/compliance/tree/main/remote_write_sender
https://github.com/prometheus/compliance/tree/main/remote_write_sender
https://github.com/prometheus/compliance/issues/101
https://github.com/prometheus/compliance/issues/101
https://www.rfc-editor.org/rfc/rfc9110.html#name-content-type
https://www.rfc-editor.org/rfc/rfc9110.html#name-content-type
https://www.rfc-editor.org/rfc/rfc9110.html#name-content-type
https://protobuf.dev/
https://protobuf.dev/
https://protobuf.dev/programming-guides/proto3/
https://protobuf.dev/programming-guides/proto3/
https://protobuf.dev/programming-guides/proto3/#simple
https://protobuf.dev/programming-guides/proto3/#simple
https://github.com/prometheus/docs/blob/b9657b5f5b264b81add39f6db2f1df36faf03efe/content/docs/concepts/native_histograms.md
https://github.com/prometheus/docs/blob/b9657b5f5b264b81add39f6db2f1df36faf03efe/content/docs/concepts/native_histograms.md

Definitions

Protocol

The Remote-Write Protocol MUST consist of RPCs with the request body serialized using a Google Protocol Buffers and

then compressed.

The protobuf serialization MUST use either of the following Protobuf Messages:

The prometheus.WriteRequest introduced in the Remote-Write 1.0 specification (./remote_write_spec.md#protocol).

As of 2.0, this message is deprecated. It SHOULD be used only for compatibility reasons. Senders and Receivers MAY

NOT support the prometheus.WriteRequest .

The io.prometheus.write.v2.Request introduced in this specification and defined below. Senders and Receivers

SHOULD use this message when possible. Senders and Receivers MUST support the

io.prometheus.write.v2.Request .

Protobuf Message MUST use binary Wire Format. Then, MUST be compressed with Google’s Snappy

(https://github.com/google/snappy). Snappy's block format

(https://github.com/google/snappy/blob/2c94e11145f0b7b184b831577c93e5a41c4c0346/format_description.txt) MUST

be used -- the framed format

(https://github.com/google/snappy/blob/2c94e11145f0b7b184b831577c93e5a41c4c0346/framing_format.txt) MUST NOT

be used.

Senders MUST send a serialized and compressed Protobuf Message in the body of an HTTP POST request and send it to

the Receiver via HTTP at the provided URL path. Receivers MAY specify any HTTP URL path to receive metrics.

Senders MUST send the following reserved headers with the HTTP request:

Content-Encoding

Content-Type

X-Prometheus-Remote-Write-Version

User-Agent

Senders MAY allow users to add custom HTTP headers; they MUST NOT allow users to configure them in such a way as to

send reserved headers.

Content-Encoding

Content-Encoding: <compression>

Content encoding request header MUST follow the RFC 9110 (https://www.rfc-editor.org/rfc/rfc9110.html#name-content-

encoding). Senders MUST use the snappy value. Receivers MUST support snappy compression. New, optional

compression algorithms might come in 2.x or beyond.

Content-Type

Content-Type: application/x-protobuf
Content-Type: application/x-protobuf;proto=<fully qualified name>

Content type request header MUST follow the RFC 9110 (https://www.rfc-editor.org/rfc/rfc9110.html#name-content-type).

Senders MUST use application/x-protobuf as the only media type. Senders MAY add ;proto= parameter to the header's

value to indicate the fully qualified name of the Protobuf Message that was used, from the two mentioned above. As a

result, Senders MUST send any of the three supported header values:

For the deprecated message introduced in PRW 1.0, identified by prometheus.WriteRequest :

Content-Type: application/x-protobuf

Content-Type: application/x-protobuf;proto=prometheus.WriteRequest

10/09/24, 19:28 Prometheus Remote-Write 2.0 [EXPERIMENTAL] | Prometheus

https://prometheus.io/docs/specs/remote_write_spec_2_0/ 3/11

https://prometheus.io/docs/specs/remote_write_spec_2_0/remote_write_spec.md#protocol
https://prometheus.io/docs/specs/remote_write_spec_2_0/remote_write_spec.md#protocol
https://github.com/google/snappy
https://github.com/google/snappy
https://github.com/google/snappy/blob/2c94e11145f0b7b184b831577c93e5a41c4c0346/format_description.txt
https://github.com/google/snappy/blob/2c94e11145f0b7b184b831577c93e5a41c4c0346/format_description.txt
https://github.com/google/snappy/blob/2c94e11145f0b7b184b831577c93e5a41c4c0346/framing_format.txt
https://github.com/google/snappy/blob/2c94e11145f0b7b184b831577c93e5a41c4c0346/framing_format.txt
https://www.rfc-editor.org/rfc/rfc9110.html#name-content-encoding
https://www.rfc-editor.org/rfc/rfc9110.html#name-content-encoding
https://www.rfc-editor.org/rfc/rfc9110.html#name-content-encoding
https://www.rfc-editor.org/rfc/rfc9110.html#name-content-type
https://www.rfc-editor.org/rfc/rfc9110.html#name-content-type

For the message introduced in PRW 2.0, identified by io.prometheus.write.v2.Request :

Content-Type: application/x-protobuf;proto=io.prometheus.write.v2.Request

When talking to 1.x Receivers, Senders SHOULD use Content-Type: application/x-protobuf for backward compatibility.

Otherwise, Senders SHOULD use Content-Type: application/x-protobuf;proto=io.prometheus.write.v2.Request . More

Protobuf Messages might come in 2.x or beyond.

Receivers MUST use the content type header to identify the Protobuf Message schema to use. Accidental wrong schema

choices may result in non-deterministic behaviour (e.g. corruptions).

NOTE: Thanks to reserved fields in io.prometheus.write.v2.Request , Receiver accidental use of

wrong schema with prometheus.WriteRequest will result in empty message. This is generally for

convenience to avoid surprising errors, but don't rely on it -- future Protobuf Messages might not

have this feature.

X-Prometheus-Remote-Write-Version

X-Prometheus-Remote-Write-Version: <Remote-Write spec major and minor version>

When talking to 1.x Receivers, Senders MUST use X-Prometheus-Remote-Write-Version: 0.1.0 for backward compatibility.

Otherwise, Senders SHOULD use the newest Remote-Write version it is compatible with e.g. X-Prometheus-Remote-Write-

Version: 2.0.0 .

User-Agent

User-Agent: <name & version of the Sender>

Senders MUST include a user agent header that SHOULD follow the RFC 9110 User-Agent header format (https://www.rfc-

editor.org/rfc/rfc9110.html#name-user-agent).

Response

Receivers that written all data successfully MUST return a success 2xx HTTP status code (https://www.rfc-

editor.org/rfc/rfc9110.html#name-successful-2xx). In such a successful case, the response body from the Receiver

SHOULD be empty and the status code SHOULD be 204 HTTP No Content (https://www.rfc-

editor.org/rfc/rfc9110.html#name-204-no-content); Senders MUST ignore the response body. The response body is

RESERVED for future use.

Receivers MUST NOT return a 2xx HTTP status code if any of the pieces of sent data known to the Receiver (e.g. Samples,

Histograms, Exemplars) were NOT written successfully (both partial write or full write rejection). In such a case, the

Receiver MUST provide a human-readable error message in the response body. The Receiver's error SHOULD contain

information about the amount of the samples being rejected and for what reasons. Senders MUST NOT try and interpret

the error message and SHOULD log it as is.

The following subsections specify Sender and Receiver semantics around headers and different write error cases.

Required Written Response Headers

Upon a successful content negotiation, Receivers process (write) the received batch of data. Once completed (with

success or failure) for each important piece of data (currently Samples, Histograms and Exemplars) Receivers MUST send

a dedicated HTTP X-Prometheus-Remote-Write-*-Written response header with the precise number of successfully written

elements.

10/09/24, 19:28 Prometheus Remote-Write 2.0 [EXPERIMENTAL] | Prometheus

https://prometheus.io/docs/specs/remote_write_spec_2_0/ 4/11

https://www.rfc-editor.org/rfc/rfc9110.html#name-user-agent
https://www.rfc-editor.org/rfc/rfc9110.html#name-user-agent
https://www.rfc-editor.org/rfc/rfc9110.html#name-user-agent
https://www.rfc-editor.org/rfc/rfc9110.html#name-successful-2xx
https://www.rfc-editor.org/rfc/rfc9110.html#name-successful-2xx
https://www.rfc-editor.org/rfc/rfc9110.html#name-successful-2xx
https://www.rfc-editor.org/rfc/rfc9110.html#name-204-no-content
https://www.rfc-editor.org/rfc/rfc9110.html#name-204-no-content
https://www.rfc-editor.org/rfc/rfc9110.html#name-204-no-content

Each header value MUST be a single 64-bit integer. The header names MUST be as follows:

X-Prometheus-Remote-Write-Samples-Written <count of all successfully written Samples>
X-Prometheus-Remote-Write-Histograms-Written <count of all successfully written Histogram samples>
X-Prometheus-Remote-Write-Exemplars-Written <count of all successfully written Exemplars>

Upon receiving a 2xx or a 4xx status code, Senders CAN assume that any missing X-Prometheus-Remote-Write-*-Written

response header means no element from this category (e.g. Sample) was written by the Receiver (count of 0). Senders

MUST NOT assume the same when using the deprecated prometheus.WriteRequest Protobuf Message due to the risk of

hitting 1.0 Receiver without this feature.

Senders MAY use those headers to confirm which parts of data were successfully written by the Receiver. Common use

cases:

Better handling of the Partial Write failure situations: Senders MAY use those headers for more accurate client

instrumentation and error handling.

Detecting broken 1.0 Receiver implementations: Senders SHOULD assume 415 HTTP Unsupported Media Type

(https://www.rfc-editor.org/rfc/rfc9110.html#name-415-unsupported-media-type) status code when sending the

data using io.prometheus.write.v2.Request request and receiving 2xx HTTP status code, but none of the X-

Prometheus-Remote-Write-*-Written response headers from the Receiver. This is a common issue for the 1.0

Receivers that do not check the Content-Type request header; accidental decoding of the

io.prometheus.write.v2.Request payload with prometheus.WriteRequest schema results in empty result and no

decoding errors.

Detecting other broken implementations or issues: Senders MAY use those headers to detect broken Sender and

Receiver implementations or other problems.

Senders MUST NOT assume what Remote Write specification version the Receiver implements from the remote write

response headers.

More (optional) headers might come in the future, e.g. when more entities or fields are added and worth confirming.

Partial Write

Senders SHOULD use Remote-Write to send samples for multiple series in a single request. As a result, Receivers MAY

write valid samples within a write request that also contains some invalid or otherwise unwritten samples, which

represents a partial write case. In such a case, the Receiver MUST return non-2xx status code following the Invalid

Samples and Retry on Partial Writes sections.

Unsupported Request Content

Receivers MUST return 415 HTTP Unsupported Media Type (https://www.rfc-editor.org/rfc/rfc9110.html#name-415-

unsupported-media-type) status code if they don't support a given content type or encoding provided by Senders.

Senders SHOULD expect 400 HTTP Bad Request (https://www.rfc-editor.org/rfc/rfc9110.html#name-400-bad-request) for

the above reasons from 1.x Receivers, for backwards compatibility.

Invalid Samples

Receivers MAY NOT support certain metric types or samples (e.g. a Receiver might reject sample without metadata type

specified or without created timestamp, while another Receiver might accept such sample.). It’s up to the Receiver what

sample is invalid. Receivers MUST return a 400 HTTP Bad Request (https://www.rfc-editor.org/rfc/rfc9110.html#name-

400-bad-request) status code for write requests that contain any invalid samples unless the partial retriable write occurs.

Senders MUST NOT retry on a 4xx HTTP status codes (other than 429 (https://developer.mozilla.org/en-

US/docs/Web/HTTP/Status/429)), which MUST be used by Receivers to indicate that the write operation will never be able

to succeed and should not be retried. Senders MAY retry on the 415 HTTP status code with a different content type or

encoding to see if the Receiver supports it.

10/09/24, 19:28 Prometheus Remote-Write 2.0 [EXPERIMENTAL] | Prometheus

https://prometheus.io/docs/specs/remote_write_spec_2_0/ 5/11

https://www.rfc-editor.org/rfc/rfc9110.html#name-415-unsupported-media-type
https://www.rfc-editor.org/rfc/rfc9110.html#name-415-unsupported-media-type
https://www.rfc-editor.org/rfc/rfc9110.html#name-415-unsupported-media-type
https://www.rfc-editor.org/rfc/rfc9110.html#name-415-unsupported-media-type
https://www.rfc-editor.org/rfc/rfc9110.html#name-415-unsupported-media-type
https://www.rfc-editor.org/rfc/rfc9110.html#name-400-bad-request
https://www.rfc-editor.org/rfc/rfc9110.html#name-400-bad-request
https://www.rfc-editor.org/rfc/rfc9110.html#name-400-bad-request
https://www.rfc-editor.org/rfc/rfc9110.html#name-400-bad-request
https://www.rfc-editor.org/rfc/rfc9110.html#name-400-bad-request
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/429
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/429
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/429

Retries & Backoff

Receivers MAY return a 429 HTTP Too Many Requests (https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/429)

status code to indicate the overloaded server situation. Receivers MAY return the Retry-After (https://www.rfc-

editor.org/rfc/rfc9110.html#name-retry-after) header to indicate the time for the next write attempt. Receivers MAY

return a 5xx HTTP status code to represent internal server errors.

Senders MAY retry on a 429 HTTP status code. Senders MUST retry write requests on 5xx HTTP. Senders MUST use a

backoff algorithm to prevent overwhelming the server. Senders MAY handle the Retry-After response header

(https://www.rfc-editor.org/rfc/rfc9110.html#name-retry-after) to estimate the next retry time.

The difference between 429 vs 5xx handling is due to the potential situation of a Sender “falling behind” when the

Receiver cannot keep up with the request volume, or the Receiver choosing to rate limit the Sender to protect its

availability. As a result, Senders has the option to NOT retry on 429, which allows progress to be made when there are

Sender side errors (e.g. too much traffic), while the data is not lost when there are Receiver side errors (5xx).

Retries on Partial Writes

Receivers MAY return a 5xx HTTP or 429 HTTP status code on partial write or partial invalid sample cases when it expects

Senders to retry the whole request. In that case, the Receiver MUST support idempotency as Senders MAY retry with the

same request.

Backward and Forward Compatibility

The protocol follows semantic versioning 2.0 (https://semver.org/): any 2.x compatible Receiver MUST be able to read any

2.x compatible Senders and vice versa. Breaking or backwards incompatible changes will result in a 3.x version of the

spec.

The Protobuf Messages (in Wire Format) themselves are forward / backward compatible, in some respects:

Removing fields from the Protobuf Message requires a major version bump.

Adding (optional) fields can be done in a minor version bump.

In other words, this means that future minor versions of 2.x MAY add new optional fields to

io.prometheus.write.v2.Request , new compressions, Protobuf Messages and negotiation mechanisms, as long as they

are backwards compatible (e.g. optional to both Receiver and Sender).

2.x vs 1.x Compatibility

The 2.x protocol is breaking compatibility with 1.x by introducing a new, mandatory io.prometheus.write.v2.Request

Protobuf Message and deprecating the prometheus.WriteRequest .

2.x Senders MAY support 1.x Receivers by allowing users to configure what content type Senders should use. 2.x Senders

also MAY automatically fall back to different content types, if the Receiver returns 415 HTTP status code.

Protobuf Message

io.prometheus.write.v2.Request

The io.prometheus.write.v2.Request references the new Protobuf Message that's meant to replace and deprecate the

Remote-Write 1.0's prometheus.WriteRequest message.

The full schema and source of the truth is in Prometheus repository in prompb/io/prometheus/write/v2/types.proto

(https://github.com/prometheus/prometheus/blob/remote-write-2.0/prompb/io/prometheus/write/v2/types.proto#L32).

The gogo dependency and options CAN be ignored (will be removed eventually

(https://github.com/prometheus/prometheus/issues/11908)). They are not part of the specification as they don't impact

the serialized format.

The simplified version of the new io.prometheus.write.v2.Request is presented below.

10/09/24, 19:28 Prometheus Remote-Write 2.0 [EXPERIMENTAL] | Prometheus

https://prometheus.io/docs/specs/remote_write_spec_2_0/ 6/11

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/429
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/429
https://www.rfc-editor.org/rfc/rfc9110.html#name-retry-after
https://www.rfc-editor.org/rfc/rfc9110.html#name-retry-after
https://www.rfc-editor.org/rfc/rfc9110.html#name-retry-after
https://www.rfc-editor.org/rfc/rfc9110.html#name-retry-after
https://www.rfc-editor.org/rfc/rfc9110.html#name-retry-after
https://semver.org/
https://semver.org/
https://github.com/prometheus/prometheus/blob/remote-write-2.0/prompb/io/prometheus/write/v2/types.proto#L32
https://github.com/prometheus/prometheus/blob/remote-write-2.0/prompb/io/prometheus/write/v2/types.proto#L32
https://github.com/prometheus/prometheus/issues/11908
https://github.com/prometheus/prometheus/issues/11908

// Request represents a request to write the given timeseries to a remote destination.
message Request {
 // Since Request supersedes 1.0 spec's prometheus.WriteRequest, we reserve the top-down message
 // for the deterministic interop between those two.
 // Generally it's not needed, because Receivers must use the Content-Type header, but we want to
 // be sympathetic to adopters with mistaken implementations and have deterministic error (empty
 // message if you use the wrong proto schema).
 reserved 1 to 3;

 // symbols contains a de-duplicated array of string elements used for various
 // items in a Request message, like labels and metadata items. For the sender's convenience
 // around empty values for optional fields like unit_ref, symbols array MUST start with
 // empty string.
 //
 // To decode each of the symbolized strings, referenced, by "ref(s)" suffix, you
 // need to lookup the actual string by index from symbols array. The order of
 // strings is up to the sender. The receiver should not assume any particular encoding.
 repeated string symbols = 4;
 // timeseries represents an array of distinct series with 0 or more samples.
 repeated TimeSeries timeseries = 5;
}

// TimeSeries represents a single series.
message TimeSeries {
 // labels_refs is a list of label name-value pair references, encoded
 // as indices to the Request.symbols array. This list's length is always
 // a multiple of two, and the underlying labels should be sorted lexicographically.
 //
 // Note that there might be multiple TimeSeries objects in the same
 // Requests with the same labels e.g. for different exemplars, metadata
 // or created timestamp.
 repeated uint32 labels_refs = 1;

 // Timeseries messages can either specify samples or (native) histogram samples
 // (histogram field), but not both. For a typical sender (real-time metric
 // streaming), in healthy cases, there will be only one sample or histogram.
 //
 // Samples and histograms are sorted by timestamp (older first).
 repeated Sample samples = 2;
 repeated Histogram histograms = 3;

 // exemplars represents an optional set of exemplars attached to this series' samples.
 repeated Exemplar exemplars = 4;

 // metadata represents the metadata associated with the given series' samples.
 Metadata metadata = 5;

 // created_timestamp represents an optional created timestamp associated with
 // this series' samples in ms format, typically for counter or histogram type
 // metrics. Created timestamp represents the time when the counter started
 // counting (sometimes referred to as start timestamp), which can increase
 // the accuracy of query results.
 //
 // Note that some receivers might require this and in return fail to
 // write such samples within the Request.
 //
 // For Go, see github.com/prometheus/prometheus/model/timestamp/timestamp.go
 // for conversion from/to time.Time to Prometheus timestamp.
 //
 // Note that the "optional" keyword is omitted due to
 // https://cloud.google.com/apis/design/design_patterns.md#optional_primitive_fields
 // Zero value means value not set. If you need to use exactly zero value for
 // the timestamp, use 1 millisecond before or after.
 int64 created_timestamp = 6;
}

10/09/24, 19:28 Prometheus Remote-Write 2.0 [EXPERIMENTAL] | Prometheus

https://prometheus.io/docs/specs/remote_write_spec_2_0/ 7/11

// Exemplar represents additional information attached to some series' samples.
message Exemplar {
 // labels_refs is an optional list of label name-value pair references, encoded
 // as indices to the Request.symbols array. This list's len is always
 // a multiple of 2, and the underlying labels should be sorted lexicographically.
 // If the exemplar references a trace it should use the `trace_id` label name, as a best practice.
 repeated uint32 labels_refs = 1;
 // value represents an exact example value. This can be useful when the exemplar
 // is attached to a histogram, which only gives an estimated value through buckets.
 double value = 2;
 // timestamp represents the timestamp of the exemplar in ms.
 // For Go, see github.com/prometheus/prometheus/model/timestamp/timestamp.go
 // for conversion from/to time.Time to Prometheus timestamp.
 int64 timestamp = 3;
}

// Sample represents series sample.
message Sample {
 // value of the sample.
 double value = 1;
 // timestamp represents timestamp of the sample in ms.
 int64 timestamp = 2;
}

// Metadata represents the metadata associated with the given series' samples.
message Metadata {
 enum MetricType {
 METRIC_TYPE_UNSPECIFIED = 0;
 METRIC_TYPE_COUNTER = 1;
 METRIC_TYPE_GAUGE = 2;
 METRIC_TYPE_HISTOGRAM = 3;
 METRIC_TYPE_GAUGEHISTOGRAM = 4;
 METRIC_TYPE_SUMMARY = 5;
 METRIC_TYPE_INFO = 6;
 METRIC_TYPE_STATESET = 7;
 }
 MetricType type = 1;
 // help_ref is a reference to the Request.symbols array representing help
 // text for the metric. Help is optional, reference should point to an empty string in
 // such a case.
 uint32 help_ref = 3;
 // unit_ref is a reference to the Request.symbols array representing a unit
 // for the metric. Unit is optional, reference should point to an empty string in
 // such a case.
 uint32 unit_ref = 4;
}

// A native histogram, also known as a sparse histogram.
// See https://github.com/prometheus/prometheus/blob/remote-write-2.0/prompb/io/prometheus/write/v2/types.proto#L142
// for a full message that follows the native histogram spec for both sparse
// and exponential, as well as, custom bucketing.
message Histogram { ... }

All timestamps MUST be int64 counted as milliseconds since the Unix epoch. Sample's values MUST be float64.

For every TimeSeries message:

labels_refs MUST be provided.

At least one element in samples or in histograms MUST be provided. A TimeSeries MUST NOT include both

samples and histograms . For series which (rarely) would mix float and histogram samples, a separate TimeSeries

message MUST be used.

10/09/24, 19:28 Prometheus Remote-Write 2.0 [EXPERIMENTAL] | Prometheus

https://prometheus.io/docs/specs/remote_write_spec_2_0/ 8/11

metadata sub-fields SHOULD be provided. Receivers MAY reject series with unspecified Metadata.type .

Exemplars SHOULD be provided if they exist for a series.

created_timestamp SHOULD be provided for metrics that follow counter semantics (e.g. counters and histograms).

Receivers MAY reject those series without created_timestamp being set.

The following subsections define some schema elements in detail.

Symbols

The io.prometheus.write.v2.Request Protobuf Message is designed to intern all strings

(https://en.wikipedia.org/wiki/String_interning) for the proven additional compression and memory efficiency gains on top

of the standard compressions.

The symbols table MUST be provided and it MUST contain deduplicated strings used in series, exemplar labels, and

metadata strings. The first element of the symbols table MUST be an empty string, which is used to represent empty or

unspecified values such as when Metadata.unit_ref or Metadata.help_ref are not provided. References MUST point to

the existing index in the symbols string array.

Series Labels

The complete set of labels MUST be sent with each Sample or Histogram sample. Additionally, the label set associated

with samples:

SHOULD contain a __name__ label.

MUST NOT contain repeated label names.

MUST have label names sorted in lexicographical order.

MUST NOT contain any empty label names or values.

Metric names, label names, and label values MUST be any sequence of UTF-8 characters.

Metric names SHOULD adhere to the regex [a-zA-Z_:]([a-zA-Z0-9_:])* .

Label names SHOULD adhere to the regex [a-zA-Z_]([a-zA-Z0-9_])* .

Names that do not adhere to the above, might be harder to use for PromQL users (see the UTF-8 proposal for more

details (https://github.com/prometheus/proposals/blob/main/proposals/2023-08-21-utf8.md)).

Label names beginning with "__" are RESERVED for system usage and SHOULD NOT be used, see Prometheus Data Model

(https://prometheus.io/docs/concepts/data_model/).

Receivers also MAY impose limits on the number and length of labels, but this is receiver-specific and is out of the scope

of this document.

Samples and Histogram Samples

Senders MUST send samples (or histograms) for any given TimeSeries in timestamp order. Senders MAY send multiple

requests for different series in parallel.

Senders SHOULD send stale markers when a time series will no longer be appended to. Senders MUST send stale

markers if the discontinuation of time series is possible to detect, for example:

For series that were pulled (scraped), unless explicit timestamp was used.

For series that is resulted by a recording rule evaluation.

Generally, not sending stale markers for series that are discontinued can lead to the Receiver non-trivial query time

alignment issues (https://prometheus.io/docs/prometheus/latest/querying/basics/#staleness).

Stale markers MUST be signalled by the special NaN value 0x7ff0000000000002 . This value MUST NOT be used otherwise.

Typically, Senders can detect when a time series will no longer be appended using the following techniques:

10/09/24, 19:28 Prometheus Remote-Write 2.0 [EXPERIMENTAL] | Prometheus

https://prometheus.io/docs/specs/remote_write_spec_2_0/ 9/11

https://en.wikipedia.org/wiki/String_interning
https://en.wikipedia.org/wiki/String_interning
https://github.com/prometheus/proposals/blob/main/proposals/2023-08-21-utf8.md
https://github.com/prometheus/proposals/blob/main/proposals/2023-08-21-utf8.md
https://github.com/prometheus/proposals/blob/main/proposals/2023-08-21-utf8.md
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/prometheus/latest/querying/basics/#staleness
https://prometheus.io/docs/prometheus/latest/querying/basics/#staleness
https://prometheus.io/docs/prometheus/latest/querying/basics/#staleness

1. Detecting, using service discovery, that the target exposing the series has gone away.

2. Noticing the target is no longer exposing the time series between successive scrapes.

3. Failing to scrape the target that originally exposed a time series.

4. Tracking configuration and evaluation for recording and alerting rules.

5. Tracking discontinuation of metrics for non-scrape source of metric (e.g. in k6 when the benchmark has finished for

series per benchmark, it could emit a stale marker).

Metadata

Metadata SHOULD follow the official Prometheus guidelines for Type

(https://prometheus.io/docs/instrumenting/writing_exporters/#types) and Help

(https://prometheus.io/docs/instrumenting/writing_exporters/#help-strings).

Metadata MAY follow the official OpenMetrics guidelines for Unit

(https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#unit).

Exemplars

Each exemplar, if attached to a TimeSeries :

MUST contain a value.

MAY contain labels e.g. referencing trace or request ID. If the exemplar references a trace it SHOULD use the

trace_id label name, as a best practice.

MUST contain a timestamp. While exemplar timestamps are optional in Prometheus/Open Metrics exposition

formats, the assumption is that a timestamp is assigned at scrape time in the same way a timestamp is assigned to

the scrape sample. Receivers require exemplar timestamps to reliably handle (e.g. deduplicate) incoming exemplars.

Out of Scope

The same as in 1.0 (./remote_write_spec.md#out-of-scope).

Future Plans

This section contains speculative plans that are not considered part of protocol specification yet but are mentioned here

for completeness. Note that 2.0 specification completed 2 of 3 future plans in the 1.0 (./remote_write_spec.md#future-

plans).

Transactionality There is still no transactionality defined for 2.0 specification, mostly because it makes a scalable

Sender implementation difficult. Prometheus Sender aims at being "transactional" - i.e. to never expose a partially

scraped target to a query. We intend to do the same with Remote-Write -- for instance, in the future we would like to

"align" Remote-Write with scrapes, perhaps such that all the samples, metadata and exemplars for a single scrape

are sent in a single Remote-Write request.

However, Remote-Write 2.0 specification solves an important transactionality problem for the classic histogram buckets

(https://docs.google.com/document/d/1mpcSWH1B82q-BtJza-

eJ8xMLlKt6EJ9oFGH325vtY1Q/edit#heading=h.ueg7q07wymku). This is done thanks to the native histograms supporting

custom bucket-ing possible with the io.prometheus.write.v2.Request wire format. Senders might translate all classic

histograms to native histograms this way, but it's out of this specification to mandate this. However, for this reason,

Receivers MAY ignore certain metric types (e.g. classic histograms).

Alternative wire formats. The OpenTelemetry community has shown the validity of Apache Arrow (and potentially

other columnar formats) for over-wire data transfer with their OTLP protocol. We would like to do experiments to

confirm the compatibility of a similar format with Prometheus’ data model and include benchmarks of any resource

usage changes. We would potentially maintain both a protobuf and columnar format long term for compatibility

reasons and use our content negotiation to add different Protobuf Messages for this purpose.

10/09/24, 19:28 Prometheus Remote-Write 2.0 [EXPERIMENTAL] | Prometheus

https://prometheus.io/docs/specs/remote_write_spec_2_0/ 10/11

https://prometheus.io/docs/instrumenting/writing_exporters/#types
https://prometheus.io/docs/instrumenting/writing_exporters/#types
https://prometheus.io/docs/instrumenting/writing_exporters/#help-strings
https://prometheus.io/docs/instrumenting/writing_exporters/#help-strings
https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#unit
https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#unit
https://prometheus.io/docs/specs/remote_write_spec_2_0/remote_write_spec.md#out-of-scope
https://prometheus.io/docs/specs/remote_write_spec_2_0/remote_write_spec.md#out-of-scope
https://prometheus.io/docs/specs/remote_write_spec_2_0/remote_write_spec.md#future-plans
https://prometheus.io/docs/specs/remote_write_spec_2_0/remote_write_spec.md#future-plans
https://prometheus.io/docs/specs/remote_write_spec_2_0/remote_write_spec.md#future-plans
https://docs.google.com/document/d/1mpcSWH1B82q-BtJza-eJ8xMLlKt6EJ9oFGH325vtY1Q/edit#heading=h.ueg7q07wymku
https://docs.google.com/document/d/1mpcSWH1B82q-BtJza-eJ8xMLlKt6EJ9oFGH325vtY1Q/edit#heading=h.ueg7q07wymku
https://docs.google.com/document/d/1mpcSWH1B82q-BtJza-eJ8xMLlKt6EJ9oFGH325vtY1Q/edit#heading=h.ueg7q07wymku

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list of trademarks of The Linux

Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-usage) page.

Global symbols. Pre-defined string dictionary for interning The protocol could pre-define a static dictionary of ref-

>symbol that includes strings that are considered common, e.g. “namespace”, “le”, “job”, “seconds”, “bytes”, etc.

Senders could refer to these without the need to include them in the request’s symbols table. This dictionary could

incrementally grow with minor version releases of this protocol.

Related

FAQ

Why did you not use gRPC? Because the 1.0 protocol does not use gRPC, breaking it would increase friction in the

adoption. See 1.0 reason (./remote_write_spec.md#faq).

Why not stream protobuf messages? If you use persistent HTTP/1.1 connections, they are pretty close to streaming. Of

course, headers have to be re-sent, but that is less expensive than a new TCP set up.

Why do we send samples in order? The in-order constraint comes from the encoding we use for time series data in

Prometheus, the implementation of which is optimized for append-only workloads. However, this requirement is also

shared across many other databases and vendors in the ecosystem. In fact, Prometheus with OOO feature enabled

(https://youtu.be/qYsycK3nTSQ?t=1321), allows out-of-order writes, but with the performance penalty, thus reserved for

rare events. To sum up, Receivers may support out-of-order write, though it is not permitted by the specification. In the

future e.g. 2.x spec versions, we could extend content type to negotiate the out-of-order writes, if needed.

How can we parallelise requests with the in-order constraint? Samples must be in-order for a given series. However,

even if a Receiver does not support out-of-order write, the Remote-Write requests can be sent in parallel as long as they

are for different series. Prometheus shards the samples by their labels into separate queues, and then writes happen

sequentially in each queue. This guarantees samples for the same series are delivered in order, but samples for different

series are sent in parallel - and potentially "out of order" between different series.

What are the differences between Remote-Write 2.0 and OpenTelemetry's OTLP protocol? OpenTelemetry OTLP

(https://github.com/open-telemetry/opentelemetry-

proto/blob/a05597bff803d3d9405fcdd1e1fb1f42bed4eb7a/docs/specification.md) is a protocol for transporting of

telemetry data (such as metrics, logs, traces and profiles) between telemetry sources, intermediate nodes and telemetry

backends. The recommended transport involves gRPC with protobuf, but HTTP with protobuf or JSON are also described.

It was designed from scratch with the intent to support a variety of different observability signals, data types and extra

information. For metrics (https://github.com/open-telemetry/opentelemetry-

proto/blob/main/opentelemetry/proto/metrics/v1/metrics.proto) that means additional non-identifying labels, flags,

temporal aggregations types, resource or scoped metrics, schema URLs and more. OTLP also requires the semantic

convention (https://opentelemetry.io/docs/concepts/semantic-conventions/) to be used.

Remote-Write was designed for simplicity, efficiency and organic growth. The first version was officially released in 2023,

when already dozens of battle-tested adopters in the CNCF ecosystem (./remote_write_spec.md#compatible-senders-

and-receivers) had been using this protocol for years. Remote-Write 2.0 iterates on the previous protocol by adding a few

new elements (metadata, exemplars, created timestamp and native histograms) and string interning. Remote-Write 2.0 is

always stateless, focuses only on metrics and is opinionated; as such it is scoped down to elements that the Prometheus

community considers enough to have a robust metric solution. The intention is to ensure the Remote-Write is a stable

protocol that is cheaper and simpler to adopt and use than the alternatives in the observability ecosystem.

 This documentation is open-source (https://github.com/prometheus/docs#contributing-changes). Please help

improve it by filing issues or pull requests.

10/09/24, 19:28 Prometheus Remote-Write 2.0 [EXPERIMENTAL] | Prometheus

https://prometheus.io/docs/specs/remote_write_spec_2_0/ 11/11

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://prometheus.io/docs/specs/remote_write_spec_2_0/remote_write_spec.md#faq
https://prometheus.io/docs/specs/remote_write_spec_2_0/remote_write_spec.md#faq
https://youtu.be/qYsycK3nTSQ?t=1321
https://youtu.be/qYsycK3nTSQ?t=1321
https://github.com/open-telemetry/opentelemetry-proto/blob/a05597bff803d3d9405fcdd1e1fb1f42bed4eb7a/docs/specification.md
https://github.com/open-telemetry/opentelemetry-proto/blob/a05597bff803d3d9405fcdd1e1fb1f42bed4eb7a/docs/specification.md
https://github.com/open-telemetry/opentelemetry-proto/blob/a05597bff803d3d9405fcdd1e1fb1f42bed4eb7a/docs/specification.md
https://github.com/open-telemetry/opentelemetry-proto/blob/main/opentelemetry/proto/metrics/v1/metrics.proto
https://github.com/open-telemetry/opentelemetry-proto/blob/main/opentelemetry/proto/metrics/v1/metrics.proto
https://github.com/open-telemetry/opentelemetry-proto/blob/main/opentelemetry/proto/metrics/v1/metrics.proto
https://opentelemetry.io/docs/concepts/semantic-conventions/
https://opentelemetry.io/docs/concepts/semantic-conventions/
https://opentelemetry.io/docs/concepts/semantic-conventions/
https://prometheus.io/docs/specs/remote_write_spec_2_0/remote_write_spec.md#compatible-senders-and-receivers
https://prometheus.io/docs/specs/remote_write_spec_2_0/remote_write_spec.md#compatible-senders-and-receivers
https://prometheus.io/docs/specs/remote_write_spec_2_0/remote_write_spec.md#compatible-senders-and-receivers
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

Introduction

Background

Glossary

Definitions

Protocol

Backward and forward

compatibility

Labels

Ordering

Retries & Backoff

Stale Markers

Out of Scope

Future Plans

Related

PROMETHEUS REMOTE-WRITE SPECIFICATION

Version: 1.0

Status: Published

Date: April 2023

This document is intended to define and standardise the

API, wire format, protocol and semantics of the existing,

widely and organically adopted protocol, and not to

propose anything new.

The remote write specification is intended to document

the standard for how Prometheus and Prometheus

remote-write-compatible agents send data to a

Prometheus or Prometheus remote-write compatible

receiver.

 INTRODUCTION

 CONCEPTS

 PROMETHEUS SERVER

 VISUALIZATION

 INSTRUMENTING

 OPERATING

 ALERT MANAGER

 BEST PRACTICES

 GUIDES

 TUTORIALS

 SPECIFICATIONS

Prometheus Remote-Write 2.0 [EXPERIMENTAL] (/docs/specs/remote_write_spec_2_0/)

Prometheus Remote-Write 1.0 (/docs/specs/remote_write_spec/)

10/09/24, 19:28 Prometheus Remote-Write 1.0 | Prometheus

https://prometheus.io/docs/specs/remote_write_spec/ 1/8

https://prometheus.io/docs/specs/remote_write_spec_2_0/
https://prometheus.io/docs/specs/remote_write_spec/

Compatible Senders and

Receivers

FAQ

The key words "MUST", "MUST NOT", "REQUIRED",

"SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",

"RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119

(https://datatracker.ietf.org/doc/html/rfc2119).

Introduction

Background

The remote write protocol is designed to make it possible to reliably propagate samples in real-time

from a sender to a receiver, without loss.

The Remote-Write protocol is designed to be stateless; there is strictly no inter-message

communication. As such the protocol is not considered "streaming". To achieve a streaming effect

multiple messages should be sent over the same connection using e.g. HTTP/1.1 or HTTP/2. "Fancy"

technologies such as gRPC were considered, but at the time were not widely adopted, and it was

challenging to expose gRPC services to the internet behind load balancers such as an AWS EC2 ELB.

The remote write protocol contains opportunities for batching, e.g. sending multiple samples for

different series in a single request. It is not expected that multiple samples for the same series will

be commonly sent in the same request, although there is support for this in the protocol.

The remote write protocol is not intended for use by applications to push metrics to Prometheus

remote-write-compatible receivers. It is intended that a Prometheus remote-write-compatible

sender scrapes instrumented applications or exporters and sends remote write messages to a

server.

A test suite can be found at

https://github.com/prometheus/compliance/tree/main/remote_write_sender

(https://github.com/prometheus/compliance/tree/main/remote_write_sender).

Glossary

For the purposes of this document the following definitions MUST be followed:

a "Sender" is something that sends Prometheus Remote Write data.

a "Receiver" is something that receives Prometheus Remote Write data.

a "Sample" is a pair of (timestamp, value).

a "Label" is a pair of (key, value).

a "Series" is a list of samples, identified by a unique set of labels.

Definitions

Protocol

The Remote Write Protocol MUST consist of RPCs with the following signature:

10/09/24, 19:28 Prometheus Remote-Write 1.0 | Prometheus

https://prometheus.io/docs/specs/remote_write_spec/ 2/8

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://github.com/prometheus/compliance/tree/main/remote_write_sender
https://github.com/prometheus/compliance/tree/main/remote_write_sender

func Send(WriteRequest)

message WriteRequest {
 repeated TimeSeries timeseries = 1;
 // Cortex uses this field to determine the source of the write request.
 // We reserve it to avoid any compatibility issues.
 reserved 2;

 // Prometheus uses this field to send metadata, but this is
 // omitted from v1 of the spec as it is experimental.
 reserved 3;
}

message TimeSeries {
 repeated Label labels = 1;
 repeated Sample samples = 2;
}

message Label {
 string name = 1;
 string value = 2;
}

message Sample {
 double value = 1;
 int64 timestamp = 2;
}

Remote write Senders MUST encode the Write Request in the body of a HTTP POST request and

send it to the Receivers via HTTP at a provided URL path. The Receiver MAY specify any HTTP URL

path to receive metrics.

Timestamps MUST be int64 counted as milliseconds since the Unix epoch. Values MUST be float64.

The following headers MUST be sent with the HTTP request:

Content-Encoding: snappy

Content-Type: application/x-protobuf

User-Agent: <name & version of the sender>

X-Prometheus-Remote-Write-Version: 0.1.0

Clients MAY allow users to send custom HTTP headers; they MUST NOT allow users to configure

them in such a way as to send reserved headers. For more info see

https://github.com/prometheus/prometheus/pull/8416

(https://github.com/prometheus/prometheus/pull/8416).

The remote write request in the body of the HTTP POST MUST be compressed with Google’s Snappy

(https://github.com/google/snappy). The block format MUST be used - the framed format MUST

NOT be used.

10/09/24, 19:28 Prometheus Remote-Write 1.0 | Prometheus

https://prometheus.io/docs/specs/remote_write_spec/ 3/8

https://github.com/prometheus/prometheus/pull/8416
https://github.com/prometheus/prometheus/pull/8416
https://github.com/google/snappy
https://github.com/google/snappy

The remote write request MUST be encoded using Google Protobuf 3, and MUST use the schema

defined above. Note the Prometheus implementation

(https://github.com/prometheus/prometheus/blob/v2.24.0/prompb/remote.proto) uses gogoproto

optimisations (https://github.com/gogo/protobuf) - for receivers written in languages other than

Golang the gogoproto types MAY be substituted for line-level equivalents.

The response body from the remote write receiver SHOULD be empty; clients MUST ignore the

response body. The response body is RESERVED for future use.

Backward and forward compatibility

The protocol follows semantic versioning 2.0 (https://semver.org/): any 1.x compatible receivers

MUST be able to read any 1.x compatible sender and so on. Breaking/backwards incompatible

changes will result in a 2.x version of the spec.

The proto format itself is forward / backward compatible, in some respects:

Removing fields from the proto will mean a major version bump.

Adding (optional) fields will be a minor version bump.

Negotiation:

Senders MUST send the version number in a headers.

Receivers MAY return the highest version number they support in a response header ("X-

Prometheus-Remote-Write-Version").

Senders who wish to send in a format >1.x MUST start by sending an empty 1.x, and see if the

response says the receiver supports something else. The Sender MAY use any supported

version . If there is no version header in the response, senders MUST assume 1.x compatibility

only.

Labels

The complete set of labels MUST be sent with each sample. Whatsmore, the label set associated

with samples:

SHOULD contain a __name__ label.

MUST NOT contain repeated label names.

MUST have label names sorted in lexicographical order.

MUST NOT contain any empty label names or values.

Senders MUST only send valid metric names, label names, and label values:

Metric names MUST adhere to the regex [a-zA-Z_:]([a-zA-Z0-9_:])* .

Label names MUST adhere to the regex [a-zA-Z_]([a-zA-Z0-9_])* .

Label values MAY be any sequence of UTF-8 characters .

Receivers MAY impose limits on the number and length of labels, but this will be receiver-specific

and is out of scope for this document.

10/09/24, 19:28 Prometheus Remote-Write 1.0 | Prometheus

https://prometheus.io/docs/specs/remote_write_spec/ 4/8

https://github.com/prometheus/prometheus/blob/v2.24.0/prompb/remote.proto
https://github.com/prometheus/prometheus/blob/v2.24.0/prompb/remote.proto
https://github.com/gogo/protobuf
https://github.com/gogo/protobuf
https://github.com/gogo/protobuf
https://semver.org/
https://semver.org/

Label names beginning with "__" are RESERVED for system usage and SHOULD NOT be used, see

Prometheus Data Model (https://prometheus.io/docs/concepts/data_model/).

Remote write Receivers MAY ingest valid samples within a write request that otherwise contains

invalid samples. Receivers MUST return a HTTP 400 status code ("Bad Request") for write requests

that contain any invalid samples. Receivers SHOULD provide a human readable error message in

the response body. Senders MUST NOT try and interpret the error message, and SHOULD log it as

is.

Ordering

Prometheus Remote Write compatible senders MUST send samples for any given series in

timestamp order. Prometheus Remote Write compatible Senders MAY send multiple requests for

different series in parallel.

Retries & Backoff

Prometheus Remote Write compatible senders MUST retry write requests on HTTP 5xx responses

and MUST use a backoff algorithm to prevent overwhelming the server. They MUST NOT retry write

requests on HTTP 2xx and 4xx responses other than 429. They MAY retry on HTTP 429 responses,

which could result in senders "falling behind" if the server cannot keep up. This is done to ensure

data is not lost when there are server side errors, and progress is made when there are client side

errors.

Prometheus remote Write compatible receivers MUST respond with a HTTP 2xx status code when

the write is successful. They MUST respond with HTTP status code 5xx when the write fails and

SHOULD be retried. They MUST respond with HTTP status code 4xx when the request is invalid, will

never be able to succeed and should not be retried.

Stale Markers

Prometheus remote write compatible senders MUST send stale markers when a time series will no

longer be appended to.

Stale markers MUST be signalled by the special NaN value 0x7ff0000000000002. This value MUST

NOT be used otherwise.

Typically the sender can detect when a time series will no longer be appended to using the following

techniques:

1. Detecting, using service discovery, that the target exposing the series has gone away

2. Noticing the target is no longer exposing the time series between successive scrapes

3. Failing to scrape the target that originally exposed a time series

4. Tracking configuration and evaluation for recording and alerting rules

10/09/24, 19:28 Prometheus Remote-Write 1.0 | Prometheus

https://prometheus.io/docs/specs/remote_write_spec/ 5/8

https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/

Out of Scope

This document does not intend to explain all the features required for a fully Prometheus-

compatible monitoring system. In particular, the following areas are out of scope for the first

version of the spec:

The "up" metric The definition and semantics of the "up" metric are beyond the scope of the

remote write protocol and should be documented separately.

HTTP Path The path for HTTP handler can be anything - and MUST be provided by the sender.

Generally we expect the whole URL to be specified in config.

Persistence It is recommended that Prometheus Remote Write compatible senders should

persistently buffer sample data in the event of outages in the receiver.

Authentication & Encryption as remote write uses HTTP, we consider authentication & encryption

to be a transport-layer problem. Senders and receivers should support all the usual suspects (Basic

auth, TLS etc) and are free to add potentially custom authentication options. Support for custom

authentication in the Prometheus remote write sender and eventual agent should not be assumed,

but we will endeavour to support common and widely used auth protocols, where feasible.

Remote Read this is a separate interface that has already seen some iteration, and is less widely

used.

Sharding the current sharding scheme in Prometheus for remote write parallelisation is very much

an implementation detail, and isn’t part of the spec. When senders do implement parallelisation

they MUST preserve per-series sample ordering.

Backfill The specification does not place a limit on how old series can be pushed, however

server/implementation specific constraints may exist.

Limits Limits on the number and length of labels, batch sizes etc are beyond the scope of this

document, however it is expected that implementation will impose reasonable limits.

Push-based Prometheus Applications pushing metrics to Prometheus Remote Write compatible

receivers was not a design goal of this system, and should be explored in a separate doc.

Labels Every series MAY include a "job" and/or "instance" label, as these are typically added by

service discovery in the Sender. These are not mandatory.

Future Plans

This section contains speculative plans that are not considered part of protocol specification, but

are mentioned here for completeness.

Transactionality Prometheus aims at being "transactional" - i.e. to never expose a partially scraped

target to a query. We intend to do the same with remote write - for instance, in the future we would

like to "align" remote write with scrapes, perhaps such that all the samples, metadata and

exemplars for a single scrape are sent in a single remote write request. This is yet to be designed.

10/09/24, 19:28 Prometheus Remote-Write 1.0 | Prometheus

https://prometheus.io/docs/specs/remote_write_spec/ 6/8

Metadata and Exemplars In line with above, we also send metadata (type information, help text)

and exemplars along with the scraped samples. We plan to package this up in a single remote write

request - future versions of the spec may insist on this. Prometheus currently has experimental

support for sending metadata and exemplars.

Optimizations We would like to investigate various optimizations to reduce message size by

eliminating repetition of label names and values.

Related

Compatible Senders and Receivers

The spec is intended to describe how the following components interact (as of April 2023):

Prometheus (https://github.com/prometheus/prometheus/tree/master/storage/remote) (as

both a "sender" and a "receiver")

Avalanche (https://github.com/prometheus-community/avalanche) (as a "sender") - A Load

Testing Tool Prometheus Metrics.

Cortex (https://github.com/cortexproject/cortex/blob/master/pkg/util/push/push.go#L20) (as a

"receiver")

Elastic Agent (https://docs.elastic.co/integrations/prometheus#prometheus-server-remote-

write) (as a "receiver")

Grafana Agent (https://github.com/grafana/agent) (as both a "sender" and a "receiver")

GreptimeDB (https://github.com/greptimeTeam/greptimedb) (as a "receiver"

(https://docs.greptime.com/user-guide/write-data/prometheus#prometheus))

InfluxData’s Telegraf agent. (as a sender

(https://github.com/influxdata/telegraf/tree/master/plugins/serializers/prometheusremotewrite),

and as a receiver (https://github.com/influxdata/telegraf/pull/8967))

M3 (https://m3db.io/docs/integrations/prometheus/#prometheus-configuration) (as a

"receiver")

Mimir (https://github.com/grafana/mimir) (as a "receiver")

OpenTelemetry Collector (https://github.com/open-telemetry/opentelemetry-collector-

releases/) (as a "sender" (https://github.com/open-telemetry/opentelemetry-collector-

contrib/tree/main/exporter/prometheusremotewriteexporter#readme) and eventually as a

"receiver")

Thanos (https://thanos.io/tip/components/receive.md/) (as a "receiver")

Vector (as a "sender"

(https://vector.dev/docs/reference/configuration/sinks/prometheus_remote_write/) and a

"receiver"

(https://vector.dev/docs/reference/configuration/sources/prometheus_remote_write/))

VictoriaMetrics (https://github.com/VictoriaMetrics/VictoriaMetrics) (as a "receiver"

(https://docs.victoriametrics.com/#prometheus-setup))

FAQ

Why did you not use gRPC? Funnily enough we initially used gRPC, but switched to Protos atop

HTTP as in 2016 it was hard to get them past ELBs:

https://github.com/prometheus/prometheus/issues/1982

10/09/24, 19:28 Prometheus Remote-Write 1.0 | Prometheus

https://prometheus.io/docs/specs/remote_write_spec/ 7/8

https://github.com/prometheus/prometheus/tree/master/storage/remote
https://github.com/prometheus/prometheus/tree/master/storage/remote
https://github.com/prometheus-community/avalanche
https://github.com/prometheus-community/avalanche
https://github.com/cortexproject/cortex/blob/master/pkg/util/push/push.go#L20
https://github.com/cortexproject/cortex/blob/master/pkg/util/push/push.go#L20
https://docs.elastic.co/integrations/prometheus#prometheus-server-remote-write
https://docs.elastic.co/integrations/prometheus#prometheus-server-remote-write
https://docs.elastic.co/integrations/prometheus#prometheus-server-remote-write
https://github.com/grafana/agent
https://github.com/grafana/agent
https://github.com/greptimeTeam/greptimedb
https://github.com/greptimeTeam/greptimedb
https://docs.greptime.com/user-guide/write-data/prometheus#prometheus
https://docs.greptime.com/user-guide/write-data/prometheus#prometheus
https://github.com/influxdata/telegraf/tree/master/plugins/serializers/prometheusremotewrite
https://github.com/influxdata/telegraf/tree/master/plugins/serializers/prometheusremotewrite
https://github.com/influxdata/telegraf/pull/8967
https://github.com/influxdata/telegraf/pull/8967
https://m3db.io/docs/integrations/prometheus/#prometheus-configuration
https://m3db.io/docs/integrations/prometheus/#prometheus-configuration
https://github.com/grafana/mimir
https://github.com/grafana/mimir
https://github.com/open-telemetry/opentelemetry-collector-releases/
https://github.com/open-telemetry/opentelemetry-collector-releases/
https://github.com/open-telemetry/opentelemetry-collector-releases/
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/exporter/prometheusremotewriteexporter#readme
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/exporter/prometheusremotewriteexporter#readme
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/exporter/prometheusremotewriteexporter#readme
https://thanos.io/tip/components/receive.md/
https://thanos.io/tip/components/receive.md/
https://vector.dev/docs/reference/configuration/sinks/prometheus_remote_write/
https://vector.dev/docs/reference/configuration/sinks/prometheus_remote_write/
https://vector.dev/docs/reference/configuration/sources/prometheus_remote_write/
https://vector.dev/docs/reference/configuration/sources/prometheus_remote_write/
https://github.com/VictoriaMetrics/VictoriaMetrics
https://github.com/VictoriaMetrics/VictoriaMetrics
https://docs.victoriametrics.com/#prometheus-setup
https://docs.victoriametrics.com/#prometheus-setup
https://github.com/prometheus/prometheus/issues/1982

© Prometheus Authors 2014-2024 | Documentation Distributed under CC-BY-4.0

© 2024 The Linux Foundation. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list of

trademarks of The Linux Foundation, please see our Trademark Usage (https://www.linuxfoundation.org/trademark-usage) page.

(https://github.com/prometheus/prometheus/issues/1982)

Why not streaming protobuf messages? If you use persistent HTTP/1.1 connections, they are

pretty close to streaming… Of course headers have to be re-sent, but yes that is less expensive than

a new TCP set up.

Why do we send samples in order? The in-order constraint comes from the encoding we use for

time series data in Prometheus, the implementation of which is append only. It is possible to

remove this constraint, for instance by buffering samples and reordering them before encoding. We

can investigate this in future versions of the protocol.

How can we parallelise requests with the in-order constraint? Samples must be in-order for a
given series. Remote write requests can be sent in parallel as long as they are for different series. In

Prometheus, we shard the samples by their labels into separate queues, and then writes happen

sequentially in each queue. This guarantees samples for the same series are delivered in order, but

samples for different series are sent in parallel - and potentially "out of order" between different

series.

We believe this is necessary as, even if the receiver could support out-of-order samples, we can't

have agents sending out of order as they would never be able to send to Prometheus, Cortex and

Thanos. We’re doing this to ensure the integrity of the ecosystem and to prevent confusing/forking

the community into "prometheus-agents-that-can-write-to-prometheus" and those that can’t.

 This documentation is open-source (https://github.com/prometheus/docs#contributing-

changes). Please help improve it by filing issues or pull requests.

10/09/24, 19:28 Prometheus Remote-Write 1.0 | Prometheus

https://prometheus.io/docs/specs/remote_write_spec/ 8/8

https://www.linuxfoundation.org/trademark-usage
https://www.linuxfoundation.org/trademark-usage
https://github.com/prometheus/prometheus/issues/1982
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes
https://github.com/prometheus/docs#contributing-changes

	1.Overview _ Prometheus
	2.First steps _ Prometheus
	3.Comparison to alternatives _ Prometheus
	4.FAQ _ Prometheus
	5.Roadmap _ Prometheus
	6.Design Documents _ Prometheus
	7.Media _ Prometheus
	8.Glossary _ Prometheus
	9.Long-Term Support _ Prometheus
	10.Data model _ Prometheus
	11.Metric types _ Prometheus
	12.Jobs and instances _ Prometheus
	13.Getting started _ Prometheus
	14.Installation _ Prometheus
	15.Configuration _ Prometheus
	16.Recording rules _ Prometheus
	17.Alerting rules _ Prometheus
	18.Template examples _ Prometheus
	19.Template reference _ Prometheus
	20.Unit Testing for Rules _ Prometheus
	21.HTTPS and authentication _ Prometheus
	22.Querying basics _ Prometheus
	23.Operators _ Prometheus
	24.Query functions _ Prometheus
	25.Querying examples _ Prometheus
	26.HTTP API _ Prometheus
	27.Remote Read API _ Prometheus
	28.Storage _ Prometheus
	29.Federation _ Prometheus
	30.HTTP SD _ Prometheus
	31.Management API _ Prometheus
	32.prometheus _ Prometheus
	33.promtool _ Prometheus
	34.Migration _ Prometheus
	35.API Stability _ Prometheus
	36.Feature flags _ Prometheus
	37.Expression browser _ Prometheus
	38.Grafana _ Prometheus
	39.Console templates _ Prometheus
	40.Client libraries _ Prometheus
	41.Writing client libraries _ Prometheus
	42.Pushing metrics _ Prometheus
	43.Exporters and integrations _ Prometheus
	44.Writing exporters _ Prometheus
	45.Exposition formats _ Prometheus
	46.Security _ Prometheus
	47.Integrations _ Prometheus
	48.Alerting overview _ Prometheus
	49.Alertmanager _ Prometheus
	50.Configuration _ Prometheus
	51.Clients _ Prometheus
	52.Notification template reference _ Prometheus
	53.Notification template examples _ Prometheus
	54.Management API _ Prometheus
	55.HTTPS and authentication _ Prometheus
	56.Metric and label naming _ Prometheus
	57.Consoles and dashboards _ Prometheus
	58.Instrumentation _ Prometheus
	59.Histograms and summaries _ Prometheus
	60.Design Documents _ Prometheus
	61.Recording rules _ Prometheus
	62.When to use the Pushgateway _
	63.Remote write tuning _ Prometheus
	64.Basic auth _ Prometheus
	65.Monitoring Docker container metrics using cAdvisor _ Prometheus
	66.Use file-based service discovery to discover scrape targets _ Prometheus
	67.Instrumenting a Go application _ Prometheus
	68.Understanding and using the multi-target exporter pattern _ Prometheus
	69.Monitoring Linux host metrics with the Node Exporter _ Prometheus
	70.OpenTelemetry _ Prometheus
	71.Docker Swarm _ Prometheus
	72.Query Log _ Prometheus
	73.TLS encryption _ Prometheus
	74.Getting Started with Prometheus _ Prometheus
	75.Understanding metric types _ Prometheus
	76Instrumenting HTTP server written in Go _ Prometheus
	77.Visualizing metrics using Grafana _ Prometheus
	78.Alerting based on metrics. _ Prometheus
	79.Prometheus Remote-Write 2.0 [EXPERIMENTAL] _ Prometheus
	80.Prometheus Remote-Write 1.0 _ Prometheus

