
v3.5 docs

These docs cover everything from setting up and running an etcd cluster to using etcd in

applications.

Quickstart

Demo

Tutorials

Install

FAQ

Libraries and tools

Metrics

Reporting bugs

Tuning

Discovery service protocol

Logging conventions

Golang modules

Learning

Developer guide

Operations guide

Benchmarks

Downgrading

Upgrading

Triage

Last modified September 11, 2024: [v3.5] Update installation version to latest tag (v3.5.16)

(90562aa)


etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/reporting_bugs/
https://etcd.io/docs/v3.5/tuning/
https://etcd.io/docs/v3.5/dev-internal/discovery_protocol/
https://etcd.io/docs/v3.5/dev-internal/logging/
https://etcd.io/docs/v3.5/dev-internal/modules/
https://etcd.io/docs/v3.5/learning/
https://etcd.io/docs/v3.5/dev-guide/
https://etcd.io/docs/v3.5/op-guide/
https://etcd.io/docs/v3.5/benchmarks/
https://etcd.io/docs/v3.5/downgrades/
https://etcd.io/docs/v3.5/upgrades/
https://etcd.io/docs/v3.5/triage/
https://github.com/etcd-io/website/commit/90562aaddf4c0a7ae331e260221404ffd4d44317
https://github.com/etcd-io/website/commit/90562aaddf4c0a7ae331e260221404ffd4d44317
https://github.com/etcd-io/website/commit/90562aaddf4c0a7ae331e260221404ffd4d44317
https://github.com/etcd-io/website/commit/90562aaddf4c0a7ae331e260221404ffd4d44317
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play




Quickstart

Get etcd up and running in less than 5 minutes!

Follow these instructions to locally install, run, and test a single-member cluster of etcd:

1. Install etcd from pre-built binaries or from source. For details, see Install.

2. Launch etcd :

3. From another terminal, use etcdctl  to set a key:

4. From the same terminal, retrieve the key:

Important: Ensure that you perform the last step of the installation instructions to

verify that etcd is in your path.

$ etcd
{"level":"info","ts":"2021-09-17T09:19:32.783-0400","caller":"etcdmain/etcd.go:72","m
⋮



Note: The output produced by etcd are logs — info-level logs can be ignored.

$ etcdctl put greeting "Hello, etcd"
OK



$ etcdctl get greeting
greeting
Hello, etcd



etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/install/
https://etcd.io/docs/v3.5/op-guide/configuration/#logging
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


What’s next?

Learn about more ways to configure and use etcd from the following pages:

Explore the gRPC API.

Set up a multi-machine cluster.

Learn how to configure etcd.

Find language bindings and tools.

Use TLS to secure an etcd cluster.

Tune etcd.

Last modified October 26, 2021: Configuration page rework: remove duplication, make easier

to maintain, add missing flag (#491) (29c0731)


https://etcd.io/docs/v3.5/learning/api
https://etcd.io/docs/v3.5/op-guide/clustering
https://etcd.io/docs/v3.5/op-guide/configuration
https://etcd.io/docs/v3.5/integrations
https://etcd.io/docs/v3.5/op-guide/security
https://etcd.io/docs/v3.5/tuning
https://github.com/etcd-io/website/commit/29c07319e2f7b01f9b6b4ed9b8c389d534bb2e8b
https://github.com/etcd-io/website/commit/29c07319e2f7b01f9b6b4ed9b8c389d534bb2e8b
https://github.com/etcd-io/website/commit/29c07319e2f7b01f9b6b4ed9b8c389d534bb2e8b
https://github.com/etcd-io/website/commit/29c07319e2f7b01f9b6b4ed9b8c389d534bb2e8b


Demo

Procedures for working with an etcd cluster

This series of examples shows the basic procedures for working with an etcd cluster.

Auth

auth , user , role  for authentication:

export ETCDCTL_API=3
ENDPOINTS=localhost:2379

etcdctl --endpoints=${ENDPOINTS} role add root
etcdctl --endpoints=${ENDPOINTS} role get root

etcdctl --endpoints=${ENDPOINTS} user add root
etcdctl --endpoints=${ENDPOINTS} user grant-role root root
etcdctl --endpoints=${ENDPOINTS} user get root

etcdctl --endpoints=${ENDPOINTS} role add role0
etcdctl --endpoints=${ENDPOINTS} role grant-permission role0 readwrite foo
etcdctl --endpoints=${ENDPOINTS} user add user0
etcdctl --endpoints=${ENDPOINTS} user grant-role user0 role0

etcdctl --endpoints=${ENDPOINTS} auth enable
# now all client requests go through auth

etcdctl --endpoints=${ENDPOINTS} --user=user0:123 put foo bar
etcdctl --endpoints=${ENDPOINTS} get foo
# permission denied, user name is empty because the request does not issue an authenticat
etcdctl --endpoints=${ENDPOINTS} --user=user0:123 get foo
# user0 can read the key foo
etcdctl --endpoints=${ENDPOINTS} --user=user0:123 get foo1



etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Last modified October 27, 2021: Created "How to setup an etcd cluster" page (#511)

(4398b0f)


https://github.com/etcd-io/website/commit/4398b0ffc5957413e77c360c98a6e4a739549428
https://github.com/etcd-io/website/commit/4398b0ffc5957413e77c360c98a6e4a739549428
https://github.com/etcd-io/website/commit/4398b0ffc5957413e77c360c98a6e4a739549428
https://github.com/etcd-io/website/commit/4398b0ffc5957413e77c360c98a6e4a739549428


Tutorials

How to Set Up a Demo etcd Cluster
Guide to setting up a cluster in etcd

Reading from etcd
Reading a value in an etcd cluster

Writing to etcd
Adding a KV pair to an etcd cluster

How to get keys by prefix
Guide to extracting etcd keys by their prefix

How to delete keys
Describes a way to delete etcd keys

How to make multiple writes in a transaction
Guide to making transactional writes

How to watch keys
Guide to watching etcd keys

How to create lease
Guide to creating a lease in etcd

How to create locks
Guide to creating distributed locks in etcd

How to conduct leader election in etcd cluster

etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/tutorials/how-to-setup-cluster/
https://etcd.io/docs/v3.5/tutorials/reading-from-etcd/
https://etcd.io/docs/v3.5/tutorials/writing-to-etcd/
https://etcd.io/docs/v3.5/tutorials/how-to-get-key-by-prefix/
https://etcd.io/docs/v3.5/tutorials/how-to-delete-keys/
https://etcd.io/docs/v3.5/tutorials/how-to-transactional-write/
https://etcd.io/docs/v3.5/tutorials/how-to-watch-keys/
https://etcd.io/docs/v3.5/tutorials/how-to-create-lease/
https://etcd.io/docs/v3.5/tutorials/how-to-create-locks/
https://etcd.io/docs/v3.5/tutorials/how-to-conduct-elections/
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Guide to conducting leader election in an etcd cluster

How to check Cluster status
Guide to checking etcd cluster status

How to save the database
Guide to taking a snapshot of the etcd database

How to migrate etcd from v2 to v3
etcd v2 to v3 migration guide

How to Add and Remove Members
Guide to dealing with membership in etcd cluster

Last modified October 25, 2021: adding weights to tutorials section. Setting weight for the

Tutorials page to be just below old Demos page. Setting weight in individual pages to match

order in old Demos page. (#530) (f54f357)


https://etcd.io/docs/v3.5/tutorials/how-to-check-cluster-status/
https://etcd.io/docs/v3.5/tutorials/how-to-save-database/
https://etcd.io/docs/v3.5/tutorials/how-to-migrate/
https://etcd.io/docs/v3.5/tutorials/how-to-deal-with-membership/
https://github.com/etcd-io/website/commit/f54f3577a986cf608346020679191c46b910742a
https://github.com/etcd-io/website/commit/f54f3577a986cf608346020679191c46b910742a
https://github.com/etcd-io/website/commit/f54f3577a986cf608346020679191c46b910742a
https://github.com/etcd-io/website/commit/f54f3577a986cf608346020679191c46b910742a
https://github.com/etcd-io/website/commit/f54f3577a986cf608346020679191c46b910742a


How to Set Up a Demo etcd Cluster

Guide to setting up a cluster in etcd

On each etcd node, specify the cluster members:

Run this on each machine:

TOKEN=token-01
CLUSTER_STATE=new
NAME_1=machine-1
NAME_2=machine-2
NAME_3=machine-3
HOST_1=10.240.0.17
HOST_2=10.240.0.18
HOST_3=10.240.0.19
CLUSTER=${NAME_1}=http://${HOST_1}:2380,${NAME_2}=http://${HOST_2}:2380,${NAME_3}=http://



# For machine 1
THIS_NAME=${NAME_1}
THIS_IP=${HOST_1}



etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Or use our public discovery service:

etcd --data-dir=data.etcd --name ${THIS_NAME} \
--initial-advertise-peer-urls http://${THIS_IP}:2380 --listen-peer-urls http://${THIS
--advertise-client-urls http://${THIS_IP}:2379 --listen-client-urls http://${THIS_IP
--initial-cluster ${CLUSTER} \
--initial-cluster-state ${CLUSTER_STATE} --initial-cluster-token ${TOKEN}

# For machine 2
THIS_NAME=${NAME_2}
THIS_IP=${HOST_2}
etcd --data-dir=data.etcd --name ${THIS_NAME} \

--initial-advertise-peer-urls http://${THIS_IP}:2380 --listen-peer-urls http://${THIS
--advertise-client-urls http://${THIS_IP}:2379 --listen-client-urls http://${THIS_IP
--initial-cluster ${CLUSTER} \
--initial-cluster-state ${CLUSTER_STATE} --initial-cluster-token ${TOKEN}

# For machine 3
THIS_NAME=${NAME_3}
THIS_IP=${HOST_3}
etcd --data-dir=data.etcd --name ${THIS_NAME} \

--initial-advertise-peer-urls http://${THIS_IP}:2380 --listen-peer-urls http://${THIS
--advertise-client-urls http://${THIS_IP}:2379 --listen-client-urls http://${THIS_IP
--initial-cluster ${CLUSTER} \
--initial-cluster-state ${CLUSTER_STATE} --initial-cluster-token ${TOKEN}

curl https://discovery.etcd.io/new?size=3
https://discovery.etcd.io/a81b5818e67a6ea83e9d4daea5ecbc92

# grab this token
TOKEN=token-01
CLUSTER_STATE=new
NAME_1=machine-1
NAME_2=machine-2
NAME_3=machine-3
HOST_1=10.240.0.17
HOST_2=10.240.0.18
HOST_3=10.240.0.19
DISCOVERY=https://discovery.etcd.io/a81b5818e67a6ea83e9d4daea5ecbc92

THIS_NAME=${NAME_1}
THIS_IP=${HOST_1}
etcd --data-dir=data.etcd --name ${THIS_NAME} \

--initial-advertise-peer-urls http://${THIS_IP}:2380 --listen-peer-urls http://${THIS
--advertise-client-urls http://${THIS_IP}:2379 --listen-client-urls http://${THIS_IP
--discovery ${DISCOVERY} \
--initial-cluster-state ${CLUSTER_STATE} --initial-cluster-token ${TOKEN}





Now etcd is ready! To connect to etcd with etcdctl:

Last modified October 27, 2021: Created "How to setup an etcd cluster" page (#511)

(4398b0f)

THIS_NAME=${NAME_2}
THIS_IP=${HOST_2}
etcd --data-dir=data.etcd --name ${THIS_NAME} \

--initial-advertise-peer-urls http://${THIS_IP}:2380 --listen-peer-urls http://${THIS
--advertise-client-urls http://${THIS_IP}:2379 --listen-client-urls http://${THIS_IP
--discovery ${DISCOVERY} \
--initial-cluster-state ${CLUSTER_STATE} --initial-cluster-token ${TOKEN}

THIS_NAME=${NAME_3}
THIS_IP=${HOST_3}
etcd --data-dir=data.etcd --name ${THIS_NAME} \

--initial-advertise-peer-urls http://${THIS_IP}:2380 --listen-peer-urls http://${THIS
--advertise-client-urls http://${THIS_IP}:2379 --listen-client-urls http://${THIS_IP
--discovery ${DISCOVERY} \
--initial-cluster-state ${CLUSTER_STATE} --initial-cluster-token ${TOKEN}

export ETCDCTL_API=3
HOST_1=10.240.0.17
HOST_2=10.240.0.18
HOST_3=10.240.0.19
ENDPOINTS=$HOST_1:2379,$HOST_2:2379,$HOST_3:2379

etcdctl --endpoints=$ENDPOINTS member list





https://github.com/etcd-io/website/commit/4398b0ffc5957413e77c360c98a6e4a739549428
https://github.com/etcd-io/website/commit/4398b0ffc5957413e77c360c98a6e4a739549428
https://github.com/etcd-io/website/commit/4398b0ffc5957413e77c360c98a6e4a739549428
https://github.com/etcd-io/website/commit/4398b0ffc5957413e77c360c98a6e4a739549428


Reading from etcd

Reading a value in an etcd cluster

Prerequisites

Install etcdctl

Procedure

Use the get  subcommand to read from etcd:

where:

foo  is the requested key

Hello World!  is the retrieved value

Or, for formatted output:

$ etcdctl --endpoints=$ENDPOINTS --write-out="json" get foo
{"header":{"cluster_id":289318470931837780,"member_id":14947050114012957595,"revision":3,
"kvs":[{"key":"Zm9v","create_revision":2,"mod_revision":3,"version":2,"value":"SGVsbG8gV2
$

where write-out="json"  causes the value to be output in JSON format (note that the key is

not returned).

$ etcdctl --endpoints=$ENDPOINTS get foo
foo
Hello World!
$



etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Last modified March 28, 2024: Update how-to-access-etcd (#812) (dd230ad)


https://github.com/etcd-io/website/commit/dd230ad0fd916272d67985a888d844c4bb183476
https://github.com/etcd-io/website/commit/dd230ad0fd916272d67985a888d844c4bb183476
https://github.com/etcd-io/website/commit/dd230ad0fd916272d67985a888d844c4bb183476


Writing to etcd

Adding a KV pair to an etcd cluster

Prerequisites

Install etcdctl

Procedure

Use the put  subcommand to write a key-value pair:

where:

foo  is the key name

"Hello World!"  is the quote-delimited value

Last modified March 28, 2024: Update how-to-access-etcd (#812) (dd230ad)

etcdctl --endpoints=$ENDPOINTS put foo "Hello World!"




etcd

Docs Blog Community Install Play

https://github.com/etcd-io/website/commit/dd230ad0fd916272d67985a888d844c4bb183476
https://github.com/etcd-io/website/commit/dd230ad0fd916272d67985a888d844c4bb183476
https://github.com/etcd-io/website/commit/dd230ad0fd916272d67985a888d844c4bb183476
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play




How to get keys by prefix

Guide to extracting etcd keys by their prefix

Pre-requisites

Install etcdctl

Setup a local cluster

Get keys by prefix

Global Options

Options

Example





$ etcdctl --endpoints=$ENDPOINTS get PREFIX --prefix


--endpoints=[127.0.0.1:2379], gRPC endpoints


--prefix, get a range of keys with matching prefix


etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/install/
https://etcd.io/docs/v3.5/install/
https://etcd.io/docs/v3.5/install/
https://etcd.io/docs/v3.5/dev-guide/local_cluster/
https://etcd.io/docs/v3.5/dev-guide/local_cluster/
https://etcd.io/docs/v3.5/dev-guide/local_cluster/
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Last modified March 19, 2024: fix: 797 (0e8a83d)

etcdctl --endpoints=$ENDPOINTS put web1 value1
etcdctl --endpoints=$ENDPOINTS put web2 value2
etcdctl --endpoints=$ENDPOINTS put web3 value3

etcdctl --endpoints=$ENDPOINTS get web --prefix





https://github.com/etcd-io/website/commit/0e8a83dda5523270f6d132c49235d282e7e774e2
https://github.com/etcd-io/website/commit/0e8a83dda5523270f6d132c49235d282e7e774e2
https://github.com/etcd-io/website/commit/0e8a83dda5523270f6d132c49235d282e7e774e2


How to delete keys

Describes a way to delete etcd keys

Prerequisites

Install etcd and etcdctl

Add or delete keys

del  to remove the specified key or range of keys:

Options

Options inherited from parent commands

Examples



etcdctl del $KEY [$END_KEY]


--prefix[=false]: delete keys with matching prefix
--prev-kv[=false]: return deleted key-value pairs
--from-key[=false]: delete keys that are greater than or equal to the given key using byt
--range[=false]: delete range of keys without delay



--endpoints="127.0.0.1:2379": gRPC endpoints


etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/install/
https://etcd.io/docs/v3.5/install/
https://etcd.io/docs/v3.5/install/
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Last modified March 19, 2024: Update how-to-delete-keys doc. (704e186)

etcdctl --endpoints=$ENDPOINTS put key myvalue
etcdctl --endpoints=$ENDPOINTS del key

etcdctl --endpoints=$ENDPOINTS put k1 value1
etcdctl --endpoints=$ENDPOINTS put k2 value2
etcdctl --endpoints=$ENDPOINTS del k --prefix





https://github.com/etcd-io/website/commit/704e1862a74da33210b359bcd145e8821671f5d3
https://github.com/etcd-io/website/commit/704e1862a74da33210b359bcd145e8821671f5d3
https://github.com/etcd-io/website/commit/704e1862a74da33210b359bcd145e8821671f5d3


How to make multiple writes in a
transaction

Guide to making transactional writes

txn  to wrap multiple requests into one transaction:

etcdctl --endpoints=$ENDPOINTS put user1 bad
etcdctl --endpoints=$ENDPOINTS txn --interactive

compares:
value("user1") = "bad"

success requests (get, put, delete):
del user1

failure requests (get, put, delete):
put user1 good



etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Last modified October 25, 2021: adding weights to tutorials section. Setting weight for the

Tutorials page to be just below old Demos page. Setting weight in individual pages to match

order in old Demos page. (#530) (f54f357)


https://github.com/etcd-io/website/commit/f54f3577a986cf608346020679191c46b910742a
https://github.com/etcd-io/website/commit/f54f3577a986cf608346020679191c46b910742a
https://github.com/etcd-io/website/commit/f54f3577a986cf608346020679191c46b910742a
https://github.com/etcd-io/website/commit/f54f3577a986cf608346020679191c46b910742a
https://github.com/etcd-io/website/commit/f54f3577a986cf608346020679191c46b910742a


How to watch keys

Guide to watching etcd keys

Prerequisites

Install etcd and etcdctl

Watching keys

watch  to get notified of future changes:

Options

Options inherited from parent commands

Examples



etcdctl watch $KEY [$END_KEY]


-i, --interactive[=false]: interactive mode
--prefix[=false]: watch on a prefix if prefix is set
--rev=0: Revision to start watching
--prev-kv[=false]: get the previous key-value pair before the event happens
--progress-notify[=false]: get periodic watch progress notification from server



--endpoints="127.0.0.1:2379": gRPC endpoints


etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/install/
https://etcd.io/docs/v3.5/install/
https://etcd.io/docs/v3.5/install/
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Last modified March 19, 2024: Update how-to-watch-keys doc. (cdeb0a7)

etcdctl --endpoints=$ENDPOINTS watch stock1
etcdctl --endpoints=$ENDPOINTS put stock1 1000

etcdctl --endpoints=$ENDPOINTS watch stock --prefix
etcdctl --endpoints=$ENDPOINTS put stock1 10
etcdctl --endpoints=$ENDPOINTS put stock2 20





https://github.com/etcd-io/website/commit/cdeb0a743039e4a2afcf6fc44d93ea1ccd779db7
https://github.com/etcd-io/website/commit/cdeb0a743039e4a2afcf6fc44d93ea1ccd779db7
https://github.com/etcd-io/website/commit/cdeb0a743039e4a2afcf6fc44d93ea1ccd779db7


How to create lease

Guide to creating a lease in etcd

lease  to write with TTL:

Last modified February 23, 2022: docs: fix typo in how-to-create-lease.md (#562) (2077364)

etcdctl --endpoints=$ENDPOINTS lease grant 300
# lease 2be7547fbc6a5afa granted with TTL(300s)

etcdctl --endpoints=$ENDPOINTS put sample value --lease=2be7547fbc6a5afa
etcdctl --endpoints=$ENDPOINTS get sample

etcdctl --endpoints=$ENDPOINTS lease keep-alive 2be7547fbc6a5afa
etcdctl --endpoints=$ENDPOINTS lease revoke 2be7547fbc6a5afa
# or after 300 seconds
etcdctl --endpoints=$ENDPOINTS get sample





etcd

Docs Blog Community Install Play

https://github.com/etcd-io/website/commit/20773649fae96488debc874d09e6fe9ab1f8aa68
https://github.com/etcd-io/website/commit/20773649fae96488debc874d09e6fe9ab1f8aa68
https://github.com/etcd-io/website/commit/20773649fae96488debc874d09e6fe9ab1f8aa68
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play




How to create locks

Guide to creating distributed locks in etcd

lock  for distributed lock:

Last modified October 25, 2021: adding weights to tutorials section. Setting weight for the

Tutorials page to be just below old Demos page. Setting weight in individual pages to match

order in old Demos page. (#530) (f54f357)

etcdctl --endpoints=$ENDPOINTS lock mutex1

# another client with the same name blocks
etcdctl --endpoints=$ENDPOINTS lock mutex1





etcd

Docs Blog Community Install Play

https://github.com/etcd-io/website/commit/f54f3577a986cf608346020679191c46b910742a
https://github.com/etcd-io/website/commit/f54f3577a986cf608346020679191c46b910742a
https://github.com/etcd-io/website/commit/f54f3577a986cf608346020679191c46b910742a
https://github.com/etcd-io/website/commit/f54f3577a986cf608346020679191c46b910742a
https://github.com/etcd-io/website/commit/f54f3577a986cf608346020679191c46b910742a
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play




How to conduct leader election in etcd

cluster

Guide to conducting leader election in an etcd cluster

Prerequisites

Ensure etcd  and etcdctl  is installed.

Check for active etcd cluster.

elect  for leader election:

1. The etcdctl  command is used to conduct leader elections in an etcd cluster. It makes

sure that only one client become leader at a time.

2. Ensure the ENDPOINTS  variable is set with the addresses of each etcd cluster members.

3. Set a unique name for the election for different clients (’one’ in the given code below).

4. Lastly, set different leaders name for each clients (p1 and p2).

Command format : etcdctl --endpoints=$ENDPOINTS elect <election-name> <leader-name>

Last modified September 10, 2024: Update how-to-conduct-elections.md (36fb227)

 

etcdctl --endpoints=$ENDPOINTS elect one p1

# another client with the same election name block
etcdctl --endpoints=$ENDPOINTS elect one p2





etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/install/
https://etcd.io/docs/v3.5/install/
https://etcd.io/docs/v3.5/install/
https://etcd.io/docs/v3.5/install/
https://etcd.io/docs/v3.5/install/
https://etcd.io/docs/v3.5/install/
https://github.com/etcd-io/website/commit/36fb227a1b5171ad093edf2495b888778c401cfc
https://github.com/etcd-io/website/commit/36fb227a1b5171ad093edf2495b888778c401cfc
https://github.com/etcd-io/website/commit/36fb227a1b5171ad093edf2495b888778c401cfc
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play




How to check Cluster status

Guide to checking etcd cluster status

Prerequisites

Install etcd and etcdctl

Check Overall Status

endpoint status  to check the overall status of each endpoint specified in --endpoints  flag:

Options

Check Health

endpoint health  to check the healthiness of each endpoint specified in --endpoints  flag:

Options



etcdctl endpoint status (--endpoints=$ENDPOINTS|--cluster)


--cluster[=false]: use all endpoints from the cluster member list


etcdctl endpoint health (--endpoints=$ENDPOINTS|--cluster)


--cluster[=false]: use all endpoints from the cluster member list


etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.6/install/
https://etcd.io/docs/v3.6/install/
https://etcd.io/docs/v3.6/install/
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Check KV Hash

endpoint hashkv  to check the KV history hash of each endpoint specified in --endpoints  flag:

Options

Options inherited from parent commands

Examples

etcdctl endpoint hashkv (--endpoints=$ENDPOINTS|--cluster) [rev=$REV]


--cluster[=false]: use all endpoints from the cluster member list
--rev=0: maximum revision to hash (default: latest revision)



--endpoints="127.0.0.1:2379": gRPC endpoints
-w, --write-out="simple": set the output format (fields, json, protobuf, simple, table)



etcdctl --write-out=table --endpoints=$ENDPOINTS endpoint status

+------------------+------------------+---------+---------+-----------+------------+----
|    ENDPOINT      |        ID        | VERSION | DB SIZE | IS LEADER | IS LEARNER | RAFT
+------------------+------------------+---------+---------+-----------+------------+----
| 10.240.0.17:2379 | 4917a7ab173fabe7 |  3.5.0  |   45 kB |      true |      false |     
| 10.240.0.18:2379 | 59796ba9cd1bcd72 |  3.5.0  |   45 kB |     false |      false |     
| 10.240.0.19:2379 | 94df724b66343e6c |  3.5.0  |   45 kB |     false |      false |     
+------------------+------------------+---------+---------+-----------+------------+----



etcdctl --endpoints=$ENDPOINTS endpoint health

10.240.0.17:2379 is healthy: successfully committed proposal: took = 3.345431ms
10.240.0.19:2379 is healthy: successfully committed proposal: took = 3.767967ms
10.240.0.18:2379 is healthy: successfully committed proposal: took = 4.025451ms





Last modified May 13, 2024: update tutorial for endpoint status check. (5e604c8)

etcdctl --cluster endpoint hashkv  --write-out=table

+------------------+------------+---------------+
|     ENDPOINT     |    HASH    | HASH REVISION |
+------------------+------------+---------------+
| 10.240.0.17:2379 | 3892279174 |             3 |
| 10.240.0.18:2379 | 3892279174 |             3 |
| 10.240.0.19:2379 | 3892279174 |             3 |
+------------------+------------+---------------+





https://github.com/etcd-io/website/commit/5e604c8e1e0175dfaa0429bcfa4709864082c011
https://github.com/etcd-io/website/commit/5e604c8e1e0175dfaa0429bcfa4709864082c011
https://github.com/etcd-io/website/commit/5e604c8e1e0175dfaa0429bcfa4709864082c011


How to save the database

Guide to taking a snapshot of the etcd database

Pre-requisites

Install etcdctl, etcdutl

Setup a local cluster

Snapshot a database

snapshot  to save point-in-time snapshot of etcd database:

Global Options

etcdctl

Snapshot can only be requested from one etcd node, so --endpoints  flag should contain only

one endpoint.

etcdutl





etcdctl --endpoints=$ENDPOINT snapshot save DB_NAME


--endpoints=[127.0.0.1:2379], gRPC endpoints


-w, --write-out string   set the output format (fields, json, protobuf, simple, table) (d


etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/install/
https://etcd.io/docs/v3.5/install/
https://etcd.io/docs/v3.5/install/
https://etcd.io/docs/v3.5/dev-guide/local_cluster/
https://etcd.io/docs/v3.5/dev-guide/local_cluster/
https://etcd.io/docs/v3.5/dev-guide/local_cluster/
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Example

Last modified March 19, 2024: fix: issue #799 (cfbe0c3)

ENDPOINTS=$HOST_1:2379
etcdctl --endpoints=$ENDPOINTS snapshot save my.db

Snapshot saved at my.db



etcdutl --write-out=table snapshot status my.db

+---------+----------+------------+------------+
|  HASH   | REVISION | TOTAL KEYS | TOTAL SIZE |
+---------+----------+------------+------------+
| c55e8b8 |        9 |         13 | 25 kB      |
+---------+----------+------------+------------+





https://github.com/etcd-io/website/commit/cfbe0c32a043df58a768685f5bc8e320894edd51
https://github.com/etcd-io/website/commit/cfbe0c32a043df58a768685f5bc8e320894edd51
https://github.com/etcd-io/website/commit/cfbe0c32a043df58a768685f5bc8e320894edd51


How to migrate etcd from v2 to v3

etcd v2 to v3 migration guide

migrate  to transform etcd v2 to v3 data:

# write key in etcd version 2 store
export ETCDCTL_API=2
etcdctl --endpoints=http://$ENDPOINT set foo bar

# read key in etcd v2
etcdctl --endpoints=$ENDPOINTS --output="json" get foo

# stop etcd node to migrate, one by one

# migrate v2 data
export ETCDCTL_API=3
etcdctl --endpoints=$ENDPOINT migrate --data-dir="default.etcd" --wal-dir="default.etcd/m

# restart etcd node after migrate, one by one

# confirm that the key got migrated
etcdctl --endpoints=$ENDPOINTS get /foo



etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Last modified November 16, 2021: Update how-to-migrate.md file titles (#533) (0ac2212)


https://github.com/etcd-io/website/commit/0ac2212286397d117f563b2dbe293c0c775740cc
https://github.com/etcd-io/website/commit/0ac2212286397d117f563b2dbe293c0c775740cc
https://github.com/etcd-io/website/commit/0ac2212286397d117f563b2dbe293c0c775740cc


How to Add and Remove Members

Guide to dealing with membership in etcd cluster

member  to add,remove,update membership:

# For each machine
TOKEN=my-etcd-token-1
CLUSTER_STATE=new
NAME_1=etcd-node-1
NAME_2=etcd-node-2
NAME_3=etcd-node-3
HOST_1=10.240.0.13
HOST_2=10.240.0.14
HOST_3=10.240.0.15
CLUSTER=${NAME_1}=http://${HOST_1}:2380,${NAME_2}=http://${HOST_2}:2380,${NAME_3}=http://

# For node 1
THIS_NAME=${NAME_1}
THIS_IP=${HOST_1}
etcd --data-dir=data.etcd --name ${THIS_NAME} \

--initial-advertise-peer-urls http://${THIS_IP}:2380 \
--listen-peer-urls http://${THIS_IP}:2380 \
--advertise-client-urls http://${THIS_IP}:2379 \



etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Then replace a member with member remove  and member add  commands:

--listen-client-urls http://${THIS_IP}:2379 \
--initial-cluster ${CLUSTER} \
--initial-cluster-state ${CLUSTER_STATE} \
--initial-cluster-token ${TOKEN}

# For node 2
THIS_NAME=${NAME_2}
THIS_IP=${HOST_2}
etcd --data-dir=data.etcd --name ${THIS_NAME} \

--initial-advertise-peer-urls http://${THIS_IP}:2380 \
--listen-peer-urls http://${THIS_IP}:2380 \
--advertise-client-urls http://${THIS_IP}:2379 \
--listen-client-urls http://${THIS_IP}:2379 \
--initial-cluster ${CLUSTER} \
--initial-cluster-state ${CLUSTER_STATE} \
--initial-cluster-token ${TOKEN}

# For node 3
THIS_NAME=${NAME_3}
THIS_IP=${HOST_3}
etcd --data-dir=data.etcd --name ${THIS_NAME} \

--initial-advertise-peer-urls http://${THIS_IP}:2380 \
--listen-peer-urls http://${THIS_IP}:2380 \
--advertise-client-urls http://${THIS_IP}:2379 \
--listen-client-urls http://${THIS_IP}:2379 \
--initial-cluster ${CLUSTER} \
--initial-cluster-state ${CLUSTER_STATE} \
--initial-cluster-token ${TOKEN}

# get member ID
export ETCDCTL_API=3
HOST_1=10.240.0.13
HOST_2=10.240.0.14
HOST_3=10.240.0.15
etcdctl --endpoints=${HOST_1}:2379,${HOST_2}:2379,${HOST_3}:2379 member list

# remove the member
MEMBER_ID=278c654c9a6dfd3b
etcdctl --endpoints=${HOST_1}:2379,${HOST_2}:2379,${HOST_3}:2379 \

member remove ${MEMBER_ID}

# add a new member (node 4)
export ETCDCTL_API=3
NAME_1=etcd-node-1
NAME_2=etcd-node-2





Next, start the new member with --initial-cluster-state existing  flag:

Last modified October 25, 2021: adding weights to tutorials section. Setting weight for the

Tutorials page to be just below old Demos page. Setting weight in individual pages to match

order in old Demos page. (#530) (f54f357)

NAME_4=etcd-node-4
HOST_1=10.240.0.13
HOST_2=10.240.0.14
HOST_4=10.240.0.16 # new member
etcdctl --endpoints=${HOST_1}:2379,${HOST_2}:2379 \

member add ${NAME_4} \
--peer-urls=http://${HOST_4}:2380

# [WARNING] If the new member starts from the same disk space,
# make sure to remove the data directory of the old member
#
# restart with 'existing' flag
TOKEN=my-etcd-token-1
CLUSTER_STATE=existing
NAME_1=etcd-node-1
NAME_2=etcd-node-2
NAME_4=etcd-node-4
HOST_1=10.240.0.13
HOST_2=10.240.0.14
HOST_4=10.240.0.16 # new member
CLUSTER=${NAME_1}=http://${HOST_1}:2380,${NAME_2}=http://${HOST_2}:2380,${NAME_4}=http://

THIS_NAME=${NAME_4}
THIS_IP=${HOST_4}
etcd --data-dir=data.etcd --name ${THIS_NAME} \

--initial-advertise-peer-urls http://${THIS_IP}:2380 \
--listen-peer-urls http://${THIS_IP}:2380 \
--advertise-client-urls http://${THIS_IP}:2379 \
--listen-client-urls http://${THIS_IP}:2379 \
--initial-cluster ${CLUSTER} \
--initial-cluster-state ${CLUSTER_STATE} \
--initial-cluster-token ${TOKEN}





https://github.com/etcd-io/website/commit/f54f3577a986cf608346020679191c46b910742a
https://github.com/etcd-io/website/commit/f54f3577a986cf608346020679191c46b910742a
https://github.com/etcd-io/website/commit/f54f3577a986cf608346020679191c46b910742a
https://github.com/etcd-io/website/commit/f54f3577a986cf608346020679191c46b910742a
https://github.com/etcd-io/website/commit/f54f3577a986cf608346020679191c46b910742a


Install

Instructions for installing etcd from pre-built binaries or from source.

Requirements

Before installing etcd, see the following pages:

Supported platforms

Hardware recommendations

Install pre-built binaries

The easiest way to install etcd is from pre-built binaries:

1. Download the compressed archive file for your platform from Releases , choosing

release v3.5.16  or later.

2. Unpack the archive file. This results in a directory containing the binaries.

3. Add the executable binaries to your path. For example, rename and/or move the binaries

to a directory in your path (like /usr/local/bin ), or add the directory created by the

previous step to your path.

4. From a shell, test that etcd  is in your path:

Build from source

If you have Go version 1.2+ , you can build etcd from source by following these steps:





$ etcd --version
etcd Version: 3.5.16
...





etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/op-guide/supported-platform/
https://etcd.io/docs/v3.5/op-guide/hardware/
https://github.com/etcd-io/etcd/releases/
https://github.com/etcd-io/etcd/releases/
https://github.com/etcd-io/etcd/releases/
https://github.com/etcd-io/etcd/releases/tag/v3.5.16
https://github.com/etcd-io/etcd/releases/tag/v3.5.16
https://github.com/etcd-io/etcd/releases/tag/v3.5.16
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


1. Download the etcd repo as a zip file  and unzip it, or clone the repo using the following

command.

To build from main@HEAD , omit the -b v3.5.16  flag.

2. Change directory:

3. Run the build script:

The binaries are under the bin  directory.

4. Add the full path to the bin  directory to your path, for example:

5. Test that etcd  is in your path:

Installation via OS packages

Disclaimer: etcd installations through OS package managers can deliver outdated versions since

they are not being automatically maintained nor officially supported by etcd project. Therefore use

OS packages with caution.

There are various ways of installing etcd on different operating systems and these are just

some examples how it can be done.



$ git clone -b v3.5.16 https://github.com/etcd-io/etcd.git


$ cd etcd


$ ./build.sh


$ export PATH="$PATH:`pwd`/bin"


$ etcd --version


https://github.com/etcd-io/etcd/archive/v3.5.16.zip
https://github.com/etcd-io/etcd/archive/v3.5.16.zip
https://github.com/etcd-io/etcd/archive/v3.5.16.zip


MacOS (Homebrew)

1. Update homebrew:

2. Install etcd:

3. Verify install

Linux

Although installing etcd through many major Linux distributions’ official repositories and

package managers is possible, the published versions can be significantly outdated. So,

installing this way is strongly discouraged.

The recommended way to install etcd on Linux is either through pre-built binaries or by using

Homebrew.

Homebrew on Linux

Homebrew can run on Linux , and can provide recent software versions.

Prerequisites

Update Homebrew:

Procedure

Install using brew :

$ brew update


$ brew install etcd


$ etcd --version




$ brew update


https://docs.brew.sh/Homebrew-on-Linux
https://docs.brew.sh/Homebrew-on-Linux
https://docs.brew.sh/Homebrew-on-Linux


Result

Verify installation by getting the version:

Installation as part of Kubernetes installation

Running etcd as a Kubernetes StatefulSet

Installation on Kubernetes, using a statefulset or helm
chart

The etcd project does not currently maintain a helm chart, however you can follow the

instructions provided by Bitnami’s etcd Helm chart .

Installation check

For a slightly more involved sanity check of your installation, see Quickstart.

Last modified August 4, 2024: mirror kubernetes instructions from 3.6 in 3.5 (a8ddfb6)

$ brew install etcd


$ etcd --version
etcd Version: 3.5.16
...







https://etcd.io/docs/v3.5/op-guide/kubernetes/
https://bitnami.com/stack/etcd/helm
https://bitnami.com/stack/etcd/helm
https://bitnami.com/stack/etcd/helm
https://etcd.io/docs/v3.5/quickstart/
https://github.com/etcd-io/website/commit/a8ddfb67f8c0e323d0bc21428097a89409526b4d
https://github.com/etcd-io/website/commit/a8ddfb67f8c0e323d0bc21428097a89409526b4d
https://github.com/etcd-io/website/commit/a8ddfb67f8c0e323d0bc21428097a89409526b4d


FAQ

Frequently asked questions

etcd, general

What is etcd?

etcd is a consistent distributed key-value store. Mainly used as a separate coordination

service, in distributed systems. And designed to hold small amounts of data that can fit

entirely in memory.

How do you pronounce etcd?

etcd is pronounced /ˈɛtsiːdiː/, and means “distributed etc  directory.”

Do clients have to send requests to the etcd leader?

Raft  is leader-based; the leader handles all client requests which need cluster consensus.

However, the client does not need to know which node is the leader. Any request that

requires consensus sent to a follower is automatically forwarded to the leader. Requests that

do not require consensus (e.g., serialized reads) can be processed by any cluster member.

Configuration

What is the difference between listen-<client,peer>-urls, advertise-
client-urls or initial-advertise-peer-urls?

listen-client-urls  and listen-peer-urls  specify the local addresses etcd server binds to for

accepting incoming connections. To listen on a port for all interfaces, specify 0.0.0.0  as the

listen IP address.

advertise-client-urls  and initial-advertise-peer-urls  specify the addresses etcd clients or

other etcd members should use to contact the etcd server. The advertise addresses must be

reachable from the remote machines. Do not advertise addresses like localhost  or 0.0.0.0

for a production setup since these addresses are unreachable from remote machines.



etcd

Docs Blog Community Install Play

https://raft.github.io/raft.pdf
https://raft.github.io/raft.pdf
https://raft.github.io/raft.pdf
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Why doesn’t changing --listen-peer-urls or --initial-advertise-
peer-urls update the advertised peer URLs in etcdctl member list?

A member’s advertised peer URLs come from --initial-advertise-peer-urls  on initial cluster

boot. Changing the listen peer URLs or the initial advertise peers after booting the member

won’t affect the exported advertise peer URLs since changes must go through quorum to

avoid membership configuration split brain. Use etcdctl member update  to update a

member’s peer URLs.

Deployment

System requirements

Since etcd writes data to disk, its performance strongly depends on disk performance. For

this reason, SSD is highly recommended. To assess whether a disk is fast enough for etcd,

one possibility is using a disk benchmarking tool such as fio . For an example on how to do

that, read here . To prevent performance degradation or unintentionally overloading the

key-value store, etcd enforces a configurable storage size quota set to 2GB by default. To

avoid swapping or running out of memory, the machine should have at least as much RAM to

cover the quota. 8GB is a suggested maximum size for normal environments and etcd warns

at startup if the configured value exceeds it. At CoreOS, an etcd cluster is usually deployed on

dedicated CoreOS Container Linux machines with dual-core processors, 2GB of RAM, and

80GB of SSD at the very least. Note that performance is intrinsically workload dependent;

please test before production deployment. See hardware for more recommendations.

Most stable production environment is Linux operating system with amd64 architecture; see

supported platform for more.

Why an odd number of cluster members?

An etcd cluster needs a majority of nodes, a quorum, to agree on updates to the cluster state.

For a cluster with n members, quorum is (n/2)+1. For any odd-sized cluster, adding one node

will always increase the number of nodes necessary for quorum. Although adding a node to

an odd-sized cluster appears better since there are more machines, the fault tolerance is

worse since exactly the same number of nodes may fail without losing quorum but there are

more nodes that can fail. If the cluster is in a state where it can’t tolerate any more failures,

adding a node before removing nodes is dangerous because if the new node fails to register

with the cluster (e.g., the address is misconfigured), quorum will be permanently lost.

What is maximum cluster size?





https://github.com/axboe/fio
https://github.com/axboe/fio
https://github.com/axboe/fio
https://prog.world/is-storage-speed-suitable-for-etcd-ask-fio/
https://prog.world/is-storage-speed-suitable-for-etcd-ask-fio/
https://prog.world/is-storage-speed-suitable-for-etcd-ask-fio/
https://etcd.io/docs/v3.5/op-guide/hardware/
https://etcd.io/docs/v3.5/op-guide/supported-platform/


Theoretically, there is no hard limit. However, an etcd cluster probably should have no more

than seven nodes. Google Chubby lock service , similar to etcd and widely deployed within

Google for many years, suggests running five nodes. A 5-member etcd cluster can tolerate

two member failures, which is enough in most cases. Although larger clusters provide better

fault tolerance, the write performance suffers because data must be replicated across more

machines.

What is failure tolerance?

An etcd cluster operates so long as a member quorum can be established. If quorum is lost

through transient network failures (e.g., partitions), etcd automatically and safely resumes

once the network recovers and restores quorum; Raft enforces cluster consistency. For

power loss, etcd persists the Raft log to disk; etcd replays the log to the point of failure and

resumes cluster participation. For permanent hardware failure, the node may be removed

from the cluster through runtime reconfiguration.

It is recommended to have an odd number of members in a cluster. An odd-size cluster

tolerates the same number of failures as an even-size cluster but with fewer nodes. The

difference can be seen by comparing even and odd sized clusters:

Cluster Size Majority Failure Tolerance

1 1 0

2 2 0

3 2 1

4 3 1

5 3 2

6 4 2

7 4 3

8 5 3

9 5 4

Adding a member to bring the size of cluster up to an even number doesn’t buy additional

fault tolerance. Likewise, during a network partition, an odd number of members guarantees

that there will always be a majority partition that can continue to operate and be the source

of truth when the partition ends.

Does etcd work in cross-region or cross data center deployments?



http://static.googleusercontent.com/media/research.google.com/en//archive/chubby-osdi06.pdf
http://static.googleusercontent.com/media/research.google.com/en//archive/chubby-osdi06.pdf
http://static.googleusercontent.com/media/research.google.com/en//archive/chubby-osdi06.pdf
https://etcd.io/docs/v3.5/op-guide/runtime-configuration/


Deploying etcd across regions improves etcd’s fault tolerance since members are in separate

failure domains. The cost is higher consensus request latency from crossing data center

boundaries. Since etcd relies on a member quorum for consensus, the latency from crossing

data centers will be somewhat pronounced because at least a majority of cluster members

must respond to consensus requests. Additionally, cluster data must be replicated across all

peers, so there will be bandwidth cost as well.

With longer latencies, the default etcd configuration may cause frequent elections or

heartbeat timeouts. See tuning for adjusting timeouts for high latency deployments.

Operation

How to backup a etcd cluster?

etcdctl provides a snapshot  command to create backups. See backup for more details.

Should I add a member before removing an unhealthy member?

When replacing an etcd node, it’s important to remove the member first and then add its

replacement.

etcd employs distributed consensus based on a quorum model; (n/2)+1 members, a majority,

must agree on a proposal before it can be committed to the cluster. These proposals include

key-value updates and membership changes. This model totally avoids any possibility of split

brain inconsistency. The downside is permanent quorum loss is catastrophic.

How this applies to membership: If a 3-member cluster has 1 downed member, it can still

make forward progress because the quorum is 2 and 2 members are still live. However,

adding a new member to a 3-member cluster will increase the quorum to 3 because 3 votes

are required for a majority of 4 members. Since the quorum increased, this extra member

buys nothing in terms of fault tolerance; the cluster is still one node failure away from being

unrecoverable.

Additionally, that new member is risky because it may turn out to be misconfigured or

incapable of joining the cluster. In that case, there’s no way to recover quorum because the

cluster has two members down and two members up, but needs three votes to change

membership to undo the botched membership addition. etcd will by default reject member

add attempts that could take down the cluster in this manner.

On the other hand, if the downed member is removed from cluster membership first, the

number of members becomes 2 and the quorum remains at 2. Following that removal by

adding a new member will also keep the quorum steady at 2. So, even if the new node can’t

be brought up, it’s still possible to remove the new member through quorum on the

remaining live members.

https://etcd.io/docs/v3.5/tuning/
https://etcd.io/docs/v3.5/op-guide/recovery/#snapshotting-the-keyspace


Why won’t etcd accept my membership changes?

etcd sets strict-reconfig-check  in order to reject reconfiguration requests that would cause

quorum loss. Abandoning quorum is really risky (especially when the cluster is already

unhealthy). Although it may be tempting to disable quorum checking if there’s quorum loss to

add a new member, this could lead to full fledged cluster inconsistency. For many

applications, this will make the problem even worse (“disk geometry corruption” being a

candidate for most terrifying).

Why does etcd lose its leader from disk latency spikes?

This is intentional; disk latency is part of leader liveness. Suppose the cluster leader takes a

minute to fsync a raft log update to disk, but the etcd cluster has a one second election

timeout. Even though the leader can process network messages within the election interval

(e.g., send heartbeats), it’s effectively unavailable because it can’t commit any new proposals;

it’s waiting on the slow disk. If the cluster frequently loses its leader due to disk latencies, try

tuning the disk settings or etcd time parameters.

What does the etcd warning “request ignored (cluster ID
mismatch)” mean?

Every new etcd cluster generates a new cluster ID based on the initial cluster configuration

and a user-provided unique initial-cluster-token  value. By having unique cluster ID’s, etcd

is protected from cross-cluster interaction which could corrupt the cluster.

Usually this warning happens after tearing down an old cluster, then reusing some of the

peer addresses for the new cluster. If any etcd process from the old cluster is still running it

will try to contact the new cluster. The new cluster will recognize a cluster ID mismatch, then

ignore the request and emit this warning. This warning is often cleared by ensuring peer

addresses among distinct clusters are disjoint.

What does “mvcc: database space exceeded” mean and how do I
fix it?

The multi-version concurrency control data model in etcd keeps an exact history of the

keyspace. Without periodically compacting this history (e.g., by setting --auto-compaction ),

etcd will eventually exhaust its storage space. If etcd runs low on storage space, it raises a

space quota alarm to protect the cluster from further writes. So long as the alarm is raised,

etcd responds to write requests with the error mvcc: database space exceeded .

To recover from the low space quota alarm:

1. Compact etcd’s history.

2. Defragment every etcd endpoint.

https://etcd.io/docs/v3.5/tuning/
https://etcd.io/docs/v3.5/learning/api/#revisions
https://etcd.io/docs/v3.5/op-guide/maintenance/#history-compaction-v3-api-key-value-database
https://etcd.io/docs/v3.5/op-guide/maintenance/#defragmentation


3. Disarm  the alarm.

What does the etcd warning “etcdserver/api/v3rpc: transport:
http2Server.HandleStreams failed to read frame: read tcp
127.0.0.1:2379->127.0.0.1:43020: read: connection reset by peer”
mean?

This is gRPC-side warning when a server receives a TCP RST flag with client-side streams being

prematurely closed. For example, a client closes its connection, while gRPC server has not yet

processed all HTTP/2 frames in the TCP queue. Some data may have been lost in server side,

but it is ok so long as client connection has already been closed.

Only old versions of gRPC  log this. etcd >=v3.2.13 by default log this with DEBUG level , thus

only visible with --log-level=debug  flag enabled.

Performance

How should I benchmark etcd?

Try the benchmark  tool. Current benchmark results are available for comparison.

What does the etcd warning “apply entries took too long” mean?

After a majority of etcd members agree to commit a request, each etcd server applies the

request to its data store and persists the result to disk. Even with a slow mechanical disk or a

virtualized network disk, such as Amazon’s EBS or Google’s PD, applying a request should

normally take fewer than 50 milliseconds. If the average apply duration exceeds 100

milliseconds, etcd will warn that entries are taking too long to apply.

Usually this issue is caused by a slow disk. The disk could be experiencing contention among

etcd and other applications, or the disk is too simply slow (e.g., a shared virtualized disk). To

rule out a slow disk from causing this warning, monitor backend_commit_duration_seconds

(p99 duration should be less than 25ms) to confirm the disk is reasonably fast. If the disk is

too slow, assigning a dedicated disk to etcd or using faster disk will typically solve the

problem.

The second most common cause is CPU starvation. If monitoring of the machine’s CPU usage

shows heavy utilization, there may not be enough compute capacity for etcd. Moving etcd to

dedicated machine, increasing process resource isolation cgroups, or renicing the etcd server

process into a higher priority can usually solve the problem.

Expensive user requests which access too many keys (e.g., fetching the entire keyspace) can

also cause long apply latencies. Accessing fewer than a several hundred keys per request,



 



https://github.com/etcd-io/etcd/blob/master/etcdctl/README.md#alarm-disarm
https://github.com/etcd-io/etcd/blob/master/etcdctl/README.md#alarm-disarm
https://github.com/etcd-io/etcd/blob/master/etcdctl/README.md#alarm-disarm
https://github.com/grpc/grpc-go/issues/1362
https://github.com/grpc/grpc-go/issues/1362
https://github.com/grpc/grpc-go/issues/1362
https://github.com/etcd-io/etcd/pull/9080
https://github.com/etcd-io/etcd/pull/9080
https://github.com/etcd-io/etcd/pull/9080
https://github.com/etcd-io/etcd/tree/master/tools/benchmark
https://github.com/etcd-io/etcd/tree/master/tools/benchmark
https://github.com/etcd-io/etcd/tree/master/tools/benchmark
https://etcd.io/docs/v3.5/op-guide/performance/
https://etcd.io/docs/v3.5/metrics/#disk


however, should always be performant.

If none of the above suggestions clear the warnings, please open an issue  with detailed

logging, monitoring, metrics and optionally workload information.

What does the etcd warning “failed to send out heartbeat on time”
mean?

etcd uses a leader-based consensus protocol for consistent data replication and log

execution. Cluster members elect a single leader, all other members become followers. The

elected leader must periodically send heartbeats to its followers to maintain its leadership.

Followers infer leader failure if no heartbeats are received within an election interval and

trigger an election. If a leader doesn’t send its heartbeats in time but is still running, the

election is spurious and likely caused by insufficient resources. To catch these soft failures, if

the leader skips two heartbeat intervals, etcd will warn it failed to send a heartbeat on time.

Usually this issue is caused by a slow disk. Before the leader sends heartbeats attached with

metadata, it may need to persist the metadata to disk. The disk could be experiencing

contention among etcd and other applications, or the disk is too simply slow (e.g., a shared

virtualized disk). To rule out a slow disk from causing this warning, monitor

wal_fsync_duration_seconds (p99 duration should be less than 10ms) to confirm the disk is

reasonably fast. If the disk is too slow, assigning a dedicated disk to etcd or using faster disk

will typically solve the problem. To tell whether a disk is fast enough for etcd, a benchmarking

tool such as fio  can be used. Read here  for an example.

The second most common cause is CPU starvation. If monitoring of the machine’s CPU usage

shows heavy utilization, there may not be enough compute capacity for etcd. Moving etcd to

dedicated machine, increasing process resource isolation with cgroups, or renicing the etcd

server process into a higher priority can usually solve the problem.

A slow network can also cause this issue. If network metrics among the etcd machines shows

long latencies or high drop rate, there may not be enough network capacity for etcd. Moving

etcd members to a less congested network will typically solve the problem. However, if the

etcd cluster is deployed across data centers, long latency between members is expected. For

such deployments, tune the heartbeat-interval  configuration to roughly match the round

trip time between the machines, and the election-timeout  configuration to be at least 5 *

heartbeat-interval . See tuning documentation for detailed information.

If none of the above suggestions clear the warnings, please open an issue  with detailed

logging, monitoring, metrics and optionally workload information.

What does the etcd warning “snapshotting is taking more than x
seconds to finish …” mean?



 



https://github.com/etcd-io/etcd/issues/new
https://github.com/etcd-io/etcd/issues/new
https://github.com/etcd-io/etcd/issues/new
https://etcd.io/docs/v3.5/metrics/#disk
https://github.com/axboe/fio
https://github.com/axboe/fio
https://github.com/axboe/fio
https://prog.world/is-storage-speed-suitable-for-etcd-ask-fio/
https://prog.world/is-storage-speed-suitable-for-etcd-ask-fio/
https://prog.world/is-storage-speed-suitable-for-etcd-ask-fio/
https://etcd.io/docs/v3.5/tuning/
https://github.com/etcd-io/etcd/issues/new
https://github.com/etcd-io/etcd/issues/new
https://github.com/etcd-io/etcd/issues/new


etcd sends a snapshot of its complete key-value store to refresh slow followers and for

backups. Slow snapshot transfer times increase MTTR; if the cluster is ingesting data with

high throughput, slow followers may livelock by needing a new snapshot before finishing

receiving a snapshot. To catch slow snapshot performance, etcd warns when sending a

snapshot takes more than thirty seconds and exceeds the expected transfer time for a 1Gbps

connection.

Last modified May 14, 2024: fix broken url in faq.md (6918905)


https://etcd.io/docs/v3.5/op-guide/recovery/#snapshotting-the-keyspace
https://github.com/etcd-io/website/commit/6918905341bc01bc8f906bc4440ba2a285cab767
https://github.com/etcd-io/website/commit/6918905341bc01bc8f906bc4440ba2a285cab767
https://github.com/etcd-io/website/commit/6918905341bc01bc8f906bc4440ba2a285cab767


Libraries and tools

A listing of etcd tools and client libraries

Note that third-party libraries and tools (not hosted on https://github.com/etcd-io )

mentioned below are not tested or maintained by the etcd team. Before using them, users

are recommended to read and investigate them.

Tools

etcdctl  - A command line client for etcd

etcd-dump  - Command line utility for dumping/restoring etcd.

etcd-fs  - FUSE filesystem for etcd

etcddir  - Realtime sync etcd and local directory. Work with windows and linux.

etcd-browser  - A web-based key/value editor for etcd using AngularJS

etcd-lock  - Master election & distributed r/w lock implementation using etcd - Supports

v2

etcd-console  - A web-base key/value editor for etcd using PHP

etcd-viewer  - An etcd key-value store editor/viewer written in Java

etcdtool  - Export/Import/Edit etcd directory as JSON/YAML/TOML and Validate directory

using JSON schema

etcdloadtest  - A command line load test client for etcd version 3.0 and above.

lucas  - A web-based key-value viewer for kubernetes etcd3.0+ cluster.

etcd-manager  - A modern, efficient, multi-platform and free etcd 3.x GUI & client tool.

Available for Windows, Linux and Mac.

etcd-backup-restore  - Utility to periodically and incrementally backup and restore the

etcd.

etcd-druid  - A Kubernetes operator to deploy etcd clusters and manage day-2

operations.

etcdadm  - A command-line tool for operating an etcd cluster.

etcd-defrag  - An easier to use and smarter etcd defragmentation tool.

etcdhelper  - An intellij platform plugin for etcd.





































etcd

Docs Blog Community Install Play

https://github.com/etcd-io
https://github.com/etcd-io
https://github.com/etcd-io
https://github.com/etcd-io/etcd/tree/master/etcdctl
https://github.com/etcd-io/etcd/tree/master/etcdctl
https://github.com/etcd-io/etcd/tree/master/etcdctl
https://npmjs.org/package/etcd-dump
https://npmjs.org/package/etcd-dump
https://npmjs.org/package/etcd-dump
https://github.com/xetorthio/etcd-fs
https://github.com/xetorthio/etcd-fs
https://github.com/xetorthio/etcd-fs
https://github.com/rekby/etcddir
https://github.com/rekby/etcddir
https://github.com/rekby/etcddir
https://github.com/henszey/etcd-browser
https://github.com/henszey/etcd-browser
https://github.com/henszey/etcd-browser
https://github.com/datawisesystems/etcd-lock
https://github.com/datawisesystems/etcd-lock
https://github.com/datawisesystems/etcd-lock
https://github.com/matishsiao/etcd-console
https://github.com/matishsiao/etcd-console
https://github.com/matishsiao/etcd-console
https://github.com/nikfoundas/etcd-viewer
https://github.com/nikfoundas/etcd-viewer
https://github.com/nikfoundas/etcd-viewer
https://github.com/mickep76/etcdtool
https://github.com/mickep76/etcdtool
https://github.com/mickep76/etcdtool
https://github.com/sinsharat/etcdloadtest
https://github.com/sinsharat/etcdloadtest
https://github.com/sinsharat/etcdloadtest
https://github.com/ringtail/lucas
https://github.com/ringtail/lucas
https://github.com/ringtail/lucas
https://etcdmanager.io/
https://etcdmanager.io/
https://etcdmanager.io/
https://github.com/gardener/etcd-backup-restore
https://github.com/gardener/etcd-backup-restore
https://github.com/gardener/etcd-backup-restore
https://github.com/gardener/etcd-druid
https://github.com/gardener/etcd-druid
https://github.com/gardener/etcd-druid
https://github.com/kubernetes-sigs/etcdadm
https://github.com/kubernetes-sigs/etcdadm
https://github.com/kubernetes-sigs/etcdadm
https://github.com/ahrtr/etcd-defrag
https://github.com/ahrtr/etcd-defrag
https://github.com/ahrtr/etcd-defrag
https://github.com/tsonglew/intellij-etcdhelper
https://github.com/tsonglew/intellij-etcdhelper
https://github.com/tsonglew/intellij-etcdhelper
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Libraries

The sections below list etcd client libraries by language.

Go

etcd/client/v3  - the officially maintained Go client for v3

etcd/client/v2  - the officially maintained Go client for v2

go-etcd  - the deprecated official client. May be useful for older (<2.0.0) versions of etcd.

encWrapper  - encWrapper is an encryption wrapper for the etcd client Keys API/KV.

Java

coreos/jetcd  - Supports v3

boonproject/etcd  - Supports v2, Async/Sync and waits

justinsb/jetcd

diwakergupta/jetcd  - Supports v2

jurmous/etcd4j  - Supports v2, Async/Sync, waits and SSL

AdoHe/etcd4j  - Supports v2 (enhance for real production cluster)

cdancy/etcd-rest  - Uses jclouds to provide a complete implementation of v2 API.

IBM/etcd-java

Scala

maciej/etcd-client  - Supports v2. Akka HTTP-based fully async client

eiipii/etcdhttpclient  - Supports v2. Async HTTP client based on Netty and Scala Futures.

mingchuno/etcd4s  - Supports v3 using gRPC with optional Akka Stream support.

Perl

hexfusion/perl-net-etcd  - Supports v3 grpc gateway HTTP API

robn/p5-etcd  - Supports v2

Python

kragniz/python-etcd3  - Client for v3

jplana/python-etcd  - Supports v2

russellhaering/txetcd  - a Twisted Python library

cholcombe973/autodock  - A docker deployment automation tool

lisael/aioetcd  - (Python 3.4+) Asyncio coroutines client (Supports v2)













































https://github.com/etcd-io/etcd/tree/main/client/v3
https://github.com/etcd-io/etcd/tree/main/client/v3
https://github.com/etcd-io/etcd/tree/main/client/v3
https://github.com/etcd-io/etcd/tree/release-3.5/client/v2
https://github.com/etcd-io/etcd/tree/release-3.5/client/v2
https://github.com/etcd-io/etcd/tree/release-3.5/client/v2
https://github.com/coreos/go-etcd
https://github.com/coreos/go-etcd
https://github.com/coreos/go-etcd
https://github.com/lumjjb/etcd/tree/enc_wrapper/clientwrap/encwrapper
https://github.com/lumjjb/etcd/tree/enc_wrapper/clientwrap/encwrapper
https://github.com/lumjjb/etcd/tree/enc_wrapper/clientwrap/encwrapper
https://github.com/etcd-io/jetcd
https://github.com/etcd-io/jetcd
https://github.com/etcd-io/jetcd
https://github.com/boonproject/boon/blob/master/etcd/README.md
https://github.com/boonproject/boon/blob/master/etcd/README.md
https://github.com/boonproject/boon/blob/master/etcd/README.md
https://github.com/justinsb/jetcd
https://github.com/justinsb/jetcd
https://github.com/justinsb/jetcd
https://github.com/diwakergupta/jetcd
https://github.com/diwakergupta/jetcd
https://github.com/diwakergupta/jetcd
https://github.com/jurmous/etcd4j
https://github.com/jurmous/etcd4j
https://github.com/jurmous/etcd4j
http://github.com/AdoHe/etcd4j
http://github.com/AdoHe/etcd4j
http://github.com/AdoHe/etcd4j
https://github.com/cdancy/etcd-rest
https://github.com/cdancy/etcd-rest
https://github.com/cdancy/etcd-rest
https://github.com/IBM/etcd-java
https://github.com/IBM/etcd-java
https://github.com/IBM/etcd-java
https://github.com/maciej/etcd-client
https://github.com/maciej/etcd-client
https://github.com/maciej/etcd-client
https://bitbucket.org/eiipii/etcdhttpclient
https://bitbucket.org/eiipii/etcdhttpclient
https://bitbucket.org/eiipii/etcdhttpclient
https://github.com/mingchuno/etcd4s
https://github.com/mingchuno/etcd4s
https://github.com/mingchuno/etcd4s
https://github.com/hexfusion/perl-net-etcd
https://github.com/hexfusion/perl-net-etcd
https://github.com/hexfusion/perl-net-etcd
https://github.com/robn/p5-etcd
https://github.com/robn/p5-etcd
https://github.com/robn/p5-etcd
https://github.com/kragniz/python-etcd3
https://github.com/kragniz/python-etcd3
https://github.com/kragniz/python-etcd3
https://github.com/jplana/python-etcd
https://github.com/jplana/python-etcd
https://github.com/jplana/python-etcd
https://github.com/russellhaering/txetcd
https://github.com/russellhaering/txetcd
https://github.com/russellhaering/txetcd
https://github.com/cholcombe973/autodock
https://github.com/cholcombe973/autodock
https://github.com/cholcombe973/autodock
https://github.com/lisael/aioetcd
https://github.com/lisael/aioetcd
https://github.com/lisael/aioetcd


txaio-etcd  - Asynchronous etcd v3-only client library for Twisted (today) and asyncio

(future)

aioetcd3  - (Python 3.6+) etcd v3 API for asyncio

Revolution1/etcd3-py  - (python2.7 and python3.5+) Python client for etcd v3, using

gRPC-JSON-Gateway

Node

mixer/etcd3  - Supports v3

stianeikeland/node-etcd  - Supports v2 (w Coffeescript)

lavagetto/nodejs-etcd  - Supports v2

deedubs/node-etcd-config  - Supports v2

Ruby

iconara/etcd-rb

jpfuentes2/etcd-ruby

ranjib/etcd-ruby  - Supports v2

davissp14/etcdv3-ruby  - Supports v3

C

apache/celix/etcdlib  - Supports v2

jdarcy/etcd-api  - Supports v2

shafreeck/cetcd  - Supports v2

C++

edwardcapriolo/etcdcpp  - Supports v2

suryanathan/etcdcpp  - Supports v2 (with waits)

nokia/etcd-cpp-api  - Supports v2

nokia/etcd-cpp-apiv3  - Supports v3

Clojure

aterreno/etcd-clojure

dwwoelfel/cetcd  - Supports v2

rthomas/clj-etcd  - Supports v2

Erlang











































https://github.com/crossbario/txaio-etcd
https://github.com/crossbario/txaio-etcd
https://github.com/crossbario/txaio-etcd
https://github.com/gaopeiliang/aioetcd3
https://github.com/gaopeiliang/aioetcd3
https://github.com/gaopeiliang/aioetcd3
https://github.com/Revolution1/etcd3-py
https://github.com/Revolution1/etcd3-py
https://github.com/Revolution1/etcd3-py
https://github.com/mixer/etcd3
https://github.com/mixer/etcd3
https://github.com/mixer/etcd3
https://github.com/stianeikeland/node-etcd
https://github.com/stianeikeland/node-etcd
https://github.com/stianeikeland/node-etcd
https://github.com/lavagetto/nodejs-etcd
https://github.com/lavagetto/nodejs-etcd
https://github.com/lavagetto/nodejs-etcd
https://github.com/deedubs/node-etcd-config
https://github.com/deedubs/node-etcd-config
https://github.com/deedubs/node-etcd-config
https://github.com/iconara/etcd-rb
https://github.com/iconara/etcd-rb
https://github.com/iconara/etcd-rb
https://github.com/jpfuentes2/etcd-ruby
https://github.com/jpfuentes2/etcd-ruby
https://github.com/jpfuentes2/etcd-ruby
https://github.com/ranjib/etcd-ruby
https://github.com/ranjib/etcd-ruby
https://github.com/ranjib/etcd-ruby
https://github.com/davissp14/etcdv3-ruby
https://github.com/davissp14/etcdv3-ruby
https://github.com/davissp14/etcdv3-ruby
https://github.com/apache/celix/tree/master/libs/etcdlib
https://github.com/apache/celix/tree/master/libs/etcdlib
https://github.com/apache/celix/tree/master/libs/etcdlib
https://github.com/jdarcy/etcd-api
https://github.com/jdarcy/etcd-api
https://github.com/jdarcy/etcd-api
https://github.com/shafreeck/cetcd
https://github.com/shafreeck/cetcd
https://github.com/shafreeck/cetcd
https://github.com/edwardcapriolo/etcdcpp
https://github.com/edwardcapriolo/etcdcpp
https://github.com/edwardcapriolo/etcdcpp
https://github.com/suryanathan/etcdcpp
https://github.com/suryanathan/etcdcpp
https://github.com/suryanathan/etcdcpp
https://github.com/nokia/etcd-cpp-api
https://github.com/nokia/etcd-cpp-api
https://github.com/nokia/etcd-cpp-api
https://github.com/nokia/etcd-cpp-apiv3
https://github.com/nokia/etcd-cpp-apiv3
https://github.com/nokia/etcd-cpp-apiv3
https://github.com/aterreno/etcd-clojure
https://github.com/aterreno/etcd-clojure
https://github.com/aterreno/etcd-clojure
https://github.com/dwwoelfel/cetcd
https://github.com/dwwoelfel/cetcd
https://github.com/dwwoelfel/cetcd
https://github.com/rthomas/clj-etcd
https://github.com/rthomas/clj-etcd
https://github.com/rthomas/clj-etcd


marshall-lee/etcd.erl  - Supports v2

zhongwencool/eetcd  - Supports v3+ (GRPC only)

Elixir

team-telnyx/etcdex  - Supports v3+ (GRPC only)

.NET

wangjia184/etcdnet  - Supports v2

drusellers/etcetera

shubhamranjan/dotnet-etcd  - Supports v3+ (GRPC only)

SimplifyNet/Etcd.Microsoft.Extensions.Configuration

PHP

linkorb/etcd-php

activecollab/etcd

ouqiang/etcd-php  - Client for v3 gRPC gateway

Haskell

wereHamster/etcd-hs

R

ropensci/etseed

Nim

etcd_client

Tcl

efrecon/etcd-tcl  - Supports v2, except wait.

Rust

jimmycuadra/rust-etcd  - Supports v2

Gradle































https://github.com/marshall-lee/etcd.erl
https://github.com/marshall-lee/etcd.erl
https://github.com/marshall-lee/etcd.erl
https://github.com/zhongwencool/eetcd
https://github.com/zhongwencool/eetcd
https://github.com/zhongwencool/eetcd
https://github.com/team-telnyx/etcdex
https://github.com/team-telnyx/etcdex
https://github.com/team-telnyx/etcdex
https://github.com/wangjia184/etcdnet
https://github.com/wangjia184/etcdnet
https://github.com/wangjia184/etcdnet
https://github.com/drusellers/etcetera
https://github.com/drusellers/etcetera
https://github.com/drusellers/etcetera
https://github.com/shubhamranjan/dotnet-etcd
https://github.com/shubhamranjan/dotnet-etcd
https://github.com/shubhamranjan/dotnet-etcd
https://github.com/SimplifyNet/Etcd.Microsoft.Extensions.Configuration
https://github.com/SimplifyNet/Etcd.Microsoft.Extensions.Configuration
https://github.com/SimplifyNet/Etcd.Microsoft.Extensions.Configuration
https://github.com/linkorb/etcd-php
https://github.com/linkorb/etcd-php
https://github.com/linkorb/etcd-php
https://github.com/activecollab/etcd
https://github.com/activecollab/etcd
https://github.com/activecollab/etcd
https://github.com/ouqiang/etcd-php
https://github.com/ouqiang/etcd-php
https://github.com/ouqiang/etcd-php
https://github.com/wereHamster/etcd-hs
https://github.com/wereHamster/etcd-hs
https://github.com/wereHamster/etcd-hs
https://github.com/ropensci/etseed
https://github.com/ropensci/etseed
https://github.com/ropensci/etseed
https://github.com/FedericoCeratto/nim-etcd-client
https://github.com/FedericoCeratto/nim-etcd-client
https://github.com/FedericoCeratto/nim-etcd-client
https://github.com/efrecon/etcd-tcl
https://github.com/efrecon/etcd-tcl
https://github.com/efrecon/etcd-tcl
https://github.com/jimmycuadra/rust-etcd
https://github.com/jimmycuadra/rust-etcd
https://github.com/jimmycuadra/rust-etcd


gradle-etcd-rest-plugin  - Supports v2

Lua

api7/lua-resty-etcd  - Supports v2 and v3 (grpc gateway HTTP API)

Deployment tools

Chef integrations

coderanger/etcd-chef

Chef cookbooks

spheromak/etcd-cookbook

BOSH releases

cloudfoundry-community/etcd-boshrelease

cloudfoundry/cf-release

Projects using etcd

etcd Raft users  - projects using etcd’s raft library implementation.

apache/celix  - an implementation of the OSGi specification adapted to C and C++

binocarlos/yoda  - etcd + ZeroMQ

blox/blox  - a collection of open source projects for container management and

orchestration with AWS ECS

calavera/active-proxy  - HTTP Proxy configured with etcd

chain/chain  - software designed to operate and connect to highly scalable permissioned

blockchain networks

derekchiang/etcdplus  - A set of distributed synchronization primitives built upon etcd

go-discover  - service discovery in Go

gleicon/goreman  - Branch of the Go Foreman clone with etcd support

garethr/hiera-etcd  - Puppet hiera backend using etcd

mattn/etcd-vim  - SET and GET keys from inside vim

mattn/etcdenv  - “env” shebang with etcd integration

kelseyhightower/confd  - Manage local app config files using templates and data from

etcd







































https://github.com/cdancy/gradle-etcd-rest-plugin
https://github.com/cdancy/gradle-etcd-rest-plugin
https://github.com/cdancy/gradle-etcd-rest-plugin
https://github.com/api7/lua-resty-etcd
https://github.com/api7/lua-resty-etcd
https://github.com/api7/lua-resty-etcd
https://github.com/coderanger/etcd-chef
https://github.com/coderanger/etcd-chef
https://github.com/coderanger/etcd-chef
https://github.com/spheromak/etcd-cookbook
https://github.com/spheromak/etcd-cookbook
https://github.com/spheromak/etcd-cookbook
https://github.com/cloudfoundry-community/etcd-boshrelease
https://github.com/cloudfoundry-community/etcd-boshrelease
https://github.com/cloudfoundry-community/etcd-boshrelease
https://github.com/cloudfoundry/cf-release/tree/master/jobs/etcd
https://github.com/cloudfoundry/cf-release/tree/master/jobs/etcd
https://github.com/cloudfoundry/cf-release/tree/master/jobs/etcd
https://github.com/etcd-io/etcd/blob/master/raft/README.md#notable-users
https://github.com/etcd-io/etcd/blob/master/raft/README.md#notable-users
https://github.com/etcd-io/etcd/blob/master/raft/README.md#notable-users
https://github.com/apache/celix
https://github.com/apache/celix
https://github.com/apache/celix
https://github.com/binocarlos/yoda
https://github.com/binocarlos/yoda
https://github.com/binocarlos/yoda
https://github.com/blox/blox
https://github.com/blox/blox
https://github.com/blox/blox
https://github.com/calavera/active-proxy
https://github.com/calavera/active-proxy
https://github.com/calavera/active-proxy
https://github.com/chain/chain
https://github.com/chain/chain
https://github.com/chain/chain
https://github.com/derekchiang/etcdplus
https://github.com/derekchiang/etcdplus
https://github.com/derekchiang/etcdplus
https://github.com/flynn/go-discover
https://github.com/flynn/go-discover
https://github.com/flynn/go-discover
https://github.com/gleicon/goreman/tree/etcd
https://github.com/gleicon/goreman/tree/etcd
https://github.com/gleicon/goreman/tree/etcd
https://github.com/garethr/hiera-etcd
https://github.com/garethr/hiera-etcd
https://github.com/garethr/hiera-etcd
https://github.com/mattn/etcd-vim
https://github.com/mattn/etcd-vim
https://github.com/mattn/etcd-vim
https://github.com/mattn/etcdenv
https://github.com/mattn/etcdenv
https://github.com/mattn/etcdenv
https://github.com/kelseyhightower/confd
https://github.com/kelseyhightower/confd
https://github.com/kelseyhightower/confd


configdb  - A REST relational abstraction on top of arbitrary database backends, aimed at

storing configs and inventories.

kubernetes/kubernetes  - Container cluster manager introduced by Google.

mailgun/vulcand  - HTTP proxy that uses etcd as a configuration backend.

duedil-ltd/discodns  - Simple DNS nameserver using etcd as a database for names and

records.

skynetservices/skydns  - RFC compliant DNS server

xordataexchange/crypt  - Securely store values in etcd using GPG encryption

spf13/viper  - Go configuration library, reads values from ENV, pflags, files, and etcd with

optional encryption

lytics/metafora  - Go distributed task library

ryandoyle/nss-etcd  - A GNU libc NSS module for resolving names from etcd.

Gru  - Orchestration made easy with Go

Vitess  - Vitess is a database clustering system for horizontal scaling of MySQL.

lclarkmichalek/etcdhcp  - DHCP server that uses etcd for persistence and coordination.

openstack/networking-vpp  - A networking driver that programs the FD.io VPP dataplane

 to provide OpenStack  cloud virtual networking

OpenStack  - OpenStack services can rely on etcd as a base service.

CoreDNS  - CoreDNS is a DNS server that chains plugins, part of CNCF and Kubernetes

Uber M3  - M3: Uber’s Open Source, Large-scale Metrics Platform for Prometheus

Rook  - Storage Orchestration for Kubernetes

Patroni  - A template for PostgreSQL High Availability with ZooKeeper, etcd, or Consul

Trillian  - Trillian implements a Merkle tree whose contents are served from a data

storage layer, to allow scalability to extremely large trees.

Apache APISIX  - Apache APISIX is a dynamic, real-time, high-performance API gateway.

purpleidea/mgmt  - Next generation distributed, event-driven, parallel config

management!

Portworx/kvdb  - The internal kvdb for storing Portworx cluster configuration.

Apache Pulsar  - Apache Pulsar is an open-source, distributed messaging and streaming

platform built for the cloud.

Last modified May 25, 2024: [add] SimplifyNet/Etcd.Microsoft.Extensions.Configuration .NET

library link (c7e4a1a)



























 























https://git.autistici.org/ai/configdb/tree/master
https://git.autistici.org/ai/configdb/tree/master
https://git.autistici.org/ai/configdb/tree/master
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/mailgun/vulcand
https://github.com/mailgun/vulcand
https://github.com/mailgun/vulcand
https://github.com/duedil-ltd/discodns
https://github.com/duedil-ltd/discodns
https://github.com/duedil-ltd/discodns
https://github.com/skynetservices/skydns
https://github.com/skynetservices/skydns
https://github.com/skynetservices/skydns
https://github.com/xordataexchange/crypt
https://github.com/xordataexchange/crypt
https://github.com/xordataexchange/crypt
https://github.com/spf13/viper
https://github.com/spf13/viper
https://github.com/spf13/viper
https://github.com/lytics/metafora
https://github.com/lytics/metafora
https://github.com/lytics/metafora
https://github.com/ryandoyle/nss-etcd
https://github.com/ryandoyle/nss-etcd
https://github.com/ryandoyle/nss-etcd
https://github.com/dnaeon/gru
https://github.com/dnaeon/gru
https://github.com/dnaeon/gru
http://vitess.io/
http://vitess.io/
http://vitess.io/
https://github.com/lclarkmichalek/etcdhcp
https://github.com/lclarkmichalek/etcdhcp
https://github.com/lclarkmichalek/etcdhcp
https://github.com/openstack/networking-vpp
https://github.com/openstack/networking-vpp
https://github.com/openstack/networking-vpp
https://wiki.fd.io/view/VPP
https://wiki.fd.io/view/VPP
https://wiki.fd.io/view/VPP
https://wiki.fd.io/view/VPP
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://github.com/openstack/governance/blob/master/reference/base-services.rst
https://github.com/openstack/governance/blob/master/reference/base-services.rst
https://github.com/openstack/governance/blob/master/reference/base-services.rst
https://github.com/coredns/coredns/tree/master/plugin/etcd
https://github.com/coredns/coredns/tree/master/plugin/etcd
https://github.com/coredns/coredns/tree/master/plugin/etcd
https://github.com/m3db/m3
https://github.com/m3db/m3
https://github.com/m3db/m3
https://github.com/rook/rook
https://github.com/rook/rook
https://github.com/rook/rook
https://github.com/zalando/patroni
https://github.com/zalando/patroni
https://github.com/zalando/patroni
https://github.com/google/trillian
https://github.com/google/trillian
https://github.com/google/trillian
https://github.com/apache/apisix
https://github.com/apache/apisix
https://github.com/apache/apisix
https://github.com/purpleidea/mgmt
https://github.com/purpleidea/mgmt
https://github.com/purpleidea/mgmt
https://docs.portworx.com/concepts/internal-kvdb/
https://docs.portworx.com/concepts/internal-kvdb/
https://docs.portworx.com/concepts/internal-kvdb/
https://pulsar.apache.org/
https://pulsar.apache.org/
https://pulsar.apache.org/
https://github.com/etcd-io/website/commit/c7e4a1ae994f2ae903b3e5dd77af217a29797982
https://github.com/etcd-io/website/commit/c7e4a1ae994f2ae903b3e5dd77af217a29797982
https://github.com/etcd-io/website/commit/c7e4a1ae994f2ae903b3e5dd77af217a29797982
https://github.com/etcd-io/website/commit/c7e4a1ae994f2ae903b3e5dd77af217a29797982


Metrics

Metrics for real-time monitoring and debugging

etcd uses Prometheus  for metrics reporting. The metrics can be used for real-time

monitoring and debugging. etcd does not persist its metrics; if a member restarts, the metrics

will be reset.

The simplest way to see the available metrics is to cURL the metrics endpoint /metrics . The

format is described here .

Follow the Prometheus getting started doc  to spin up a Prometheus server to collect etcd

metrics.

The naming of metrics follows the suggested Prometheus best practices . A metric name has

an etcd  or etcd_debugging  prefix as its namespace and a subsystem prefix (for example wal

and etcdserver ).

etcd namespace metrics

The metrics under the etcd  prefix are for monitoring and alerting. They are stable high level

metrics. If there is any change of these metrics, it will be included in release notes.

Metrics that are etcd2 related are documented in the v2 metrics guide.

Server

These metrics describe the status of the etcd server. In order to detect outages or problems

for troubleshooting, the server metrics of every production etcd cluster should be closely

monitored.

All these metrics are prefixed with etcd_server_

Name Description Type

has_leader Whether or not a leader exists. 1 is existence, 0 is

not.

Gauge









etcd

Docs Blog Community Install Play

https://prometheus.io/
https://prometheus.io/
https://prometheus.io/
http://prometheus.io/docs/instrumenting/exposition_formats/
http://prometheus.io/docs/instrumenting/exposition_formats/
http://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/introduction/getting_started/
https://prometheus.io/docs/introduction/getting_started/
https://prometheus.io/docs/introduction/getting_started/
https://prometheus.io/docs/practices/naming/
https://prometheus.io/docs/practices/naming/
https://prometheus.io/docs/practices/naming/
https://etcd.io/docs/v2.3/metrics/#http-requests
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Name Description Type

leader_changes_seen_total The number of leader changes seen. Counter

proposals_committed_total The total number of consensus proposals

committed.

Gauge

proposals_applied_total The total number of consensus proposals applied. Gauge

proposals_pending The current number of pending proposals. Gauge

proposals_failed_total The total number of failed proposals seen. Counter

has_leader  indicates whether the member has a leader. If a member does not have a leader,

it is totally unavailable. If all the members in the cluster do not have any leader, the entire

cluster is totally unavailable.

leader_changes_seen_total  counts the number of leader changes the member has seen since

its start. Rapid leadership changes impact the performance of etcd significantly. It also signals

that the leader is unstable, perhaps due to network connectivity issues or excessive load

hitting the etcd cluster.

proposals_committed_total  records the total number of consensus proposals committed. This

gauge should increase over time if the cluster is healthy. Several healthy members of an etcd

cluster may have different total committed proposals at once. This discrepancy may be due

to recovering from peers after starting, lagging behind the leader, or being the leader and

therefore having the most commits. It is important to monitor this metric across all the

members in the cluster; a consistently large lag between a single member and its leader

indicates that member is slow or unhealthy.

proposals_applied_total  records the total number of consensus proposals applied. The etcd

server applies every committed proposal asynchronously. The difference between

proposals_committed_total  and proposals_applied_total  should usually be small (within a few

thousands even under high load). If the difference between them continues to rise, it

indicates that the etcd server is overloaded. This might happen when applying expensive

queries like heavy range queries or large txn operations.

proposals_pending  indicates how many proposals are queued to commit. Rising pending

proposals suggests there is a high client load or the member cannot commit proposals.

proposals_failed_total  are normally related to two issues: temporary failures related to a

leader election or longer downtime caused by a loss of quorum in the cluster.

Disk

These metrics describe the status of the disk operations.



All these metrics are prefixed with etcd_disk_ .

Name Description Type

wal_fsync_duration_seconds The latency distributions of fsync called

by wal

Histogram

backend_commit_duration_seconds The latency distributions of commit

called by backend.

Histogram

A wal_fsync  is called when etcd persists its log entries to disk before applying them.

A backend_commit  is called when etcd commits an incremental snapshot of its most recent

changes to disk.

High disk operation latencies ( wal_fsync_duration_seconds  or

backend_commit_duration_seconds ) often indicate disk issues. It may cause high request latency

or make the cluster unstable.

Network

These metrics describe the status of the network.

All these metrics are prefixed with etcd_network_

Name Description Type

peer_sent_bytes_total The total number of bytes sent to the

peer with ID To .

Counter(To)

peer_received_bytes_total The total number of bytes received from

the peer with ID From .

Counter(From)

peer_sent_failures_total The total number of send failures from

the peer with ID To .

Counter(To)

peer_received_failures_total The total number of receive failures

from the peer with ID From .

Counter(From)

peer_round_trip_time_seconds Round-Trip-Time histogram between

peers.

Histogram(To)

client_grpc_sent_bytes_total The total number of bytes sent to grpc

clients.

Counter



Name Description Type

client_grpc_received_bytes_total The total number of bytes received to

grpc clients.

Counter

peer_sent_bytes_total  counts the total number of bytes sent to a specific peer. Usually the

leader member sends more data than other members since it is responsible for transmitting

replicated data.

peer_received_bytes_total  counts the total number of bytes received from a specific peer.

Usually follower members receive data only from the leader member.

gRPC requests

These metrics are exposed via go-grpc-prometheus .

etcd_debugging namespace metrics

The metrics under the etcd_debugging  prefix are for debugging. They are very

implementation dependent and volatile. They might be changed or removed without any

warning in new etcd releases. Some of the metrics might be moved to the etcd  prefix when

they become more stable.

Snapshot

Name Description Type

snapshot_save_total_duration_seconds The total latency distributions of save

called by snapshot

Histogram

Abnormally high snapshot duration ( snapshot_save_total_duration_seconds ) indicates disk

issues and might cause the cluster to be unstable.

Prometheus supplied metrics

The Prometheus client library provides a number of metrics under the go  and process

namespaces. There are a few that are particularly interesting.

Name Description Type

process_open_fds Number of open file descriptors. Gauge



https://github.com/grpc-ecosystem/go-grpc-prometheus
https://github.com/grpc-ecosystem/go-grpc-prometheus
https://github.com/grpc-ecosystem/go-grpc-prometheus


Name Description Type

process_max_fds Maximum number of open file descriptors. Gauge

Note: The process metrics, such as process_open_fds  and process_max_fds , are not

supported on Darwin (macOS) systems at this time.

Heavy file descriptor ( process_open_fds ) usage (i.e., near the process’s file descriptor limit,

process_max_fds ) indicates a potential file descriptor exhaustion issue. If the file descriptors

are exhausted, etcd may panic because it cannot create new WAL files.

Generated list of metrics

latest

Last modified March 23, 2024: website: add note on lack of process metrics support for

Darwin (8adf69f)


https://etcd.io/docs/v3.5/metrics/etcd-metrics-latest.txt
https://github.com/etcd-io/website/commit/8adf69fd8bd55991b735bcea5d5edc88abc4b7c9
https://github.com/etcd-io/website/commit/8adf69fd8bd55991b735bcea5d5edc88abc4b7c9
https://github.com/etcd-io/website/commit/8adf69fd8bd55991b735bcea5d5edc88abc4b7c9
https://github.com/etcd-io/website/commit/8adf69fd8bd55991b735bcea5d5edc88abc4b7c9


Reporting bugs

How to file issue reports for the etcd project

If any part of the etcd project has bugs or documentation mistakes, please let us know by

opening an issue . We treat bugs and mistakes very seriously and believe no issue is too

small. Before creating a bug report, please check that an issue reporting the same problem

does not already exist.

To make the bug report accurate and easy to understand, please try to create bug reports

that are:

Specific. Include as much details as possible: which version, what environment, what

configuration, etc. If the bug is related to running the etcd server, please attach the etcd

log (the starting log with etcd configuration is especially important).

Reproducible. Include the steps to reproduce the problem. We understand some issues

might be hard to reproduce, please includes the steps that might lead to the problem. If

possible, please attach the affected etcd data dir and stack strace to the bug report.

Isolated. Please try to isolate and reproduce the bug with minimum dependencies. It

would significantly slow down the speed to fix a bug if too many dependencies are

involved in a bug report. Debugging external systems that rely on etcd is out of scope,

but we are happy to provide guidance in the right direction or help with using etcd itself.

Unique. Do not duplicate existing bug report.

Scoped. One bug per report. Do not follow up with another bug inside one report.

It may be worthwhile to read Elika Etemad’s article on filing good bug reports  before

creating a bug report.

We might ask for further information to locate a bug. A duplicated bug report will be closed.

Frequently asked questions

How to get a stack trace







etcd

Docs Blog Community Install Play

https://github.com/etcd-io/etcd/issues/new
https://github.com/etcd-io/etcd/issues/new
https://github.com/etcd-io/etcd/issues/new
http://fantasai.inkedblade.net/style/talks/filing-good-bugs/
http://fantasai.inkedblade.net/style/talks/filing-good-bugs/
http://fantasai.inkedblade.net/style/talks/filing-good-bugs/
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


How to get etcd version

How to get etcd configuration and log when it runs as systemd
service ‘etcd2.service’

Due to an upstream systemd bug, journald may miss the last few log lines when its processes

exit. If journalctl says etcd stopped without fatal or panic message, try sudo journalctl -f -t

etcd2  to get full log.

Last modified June 14, 2021: Renaming content/en/next folder to content/en/v3.5. Updating

redirects, links, and config as needed. (#363) (138926b)

$ kill -QUIT $PID

$ etcd --version


$ sudo systemctl cat etcd2
$ sudo journalctl -u etcd2





https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c


Tuning

When to update the heartbeat interval and election timeout settings

The default settings in etcd should work well for installations on a local network where the

average network latency is low. However, when using etcd across multiple data centers or

over networks with high latency, the heartbeat interval and election timeout settings may

need tuning.

The network isn’t the only source of latency. Each request and response may be impacted by

slow disks on both the leader and follower. Each of these timeouts represents the total time

from request to successful response from the other machine.

Time parameters

The underlying distributed consensus protocol relies on two separate time parameters to

ensure that nodes can handoff leadership if one stalls or goes offline. The first parameter is

called the Heartbeat Interval. This is the frequency with which the leader will notify followers

that it is still the leader. For best practices, the parameter should be set around round-trip

time between members. By default, etcd uses a 100ms  heartbeat interval.

The second parameter is the Election Timeout. This timeout is how long a follower node will go

without hearing a heartbeat before attempting to become leader itself. By default, etcd uses

a 1000ms  election timeout.

Adjusting these values is a trade off. The value of heartbeat interval is recommended to be

around the maximum of average round-trip time (RTT) between members, normally around

0.5-1.5x the round-trip time. If heartbeat interval is too low, etcd will send unnecessary

messages that increase the usage of CPU and network resources. On the other side, a too

high heartbeat interval leads to high election timeout. Higher election timeout takes longer

time to detect a leader failure. The easiest way to measure round-trip time (RTT) is to use

PING utility .

The election timeout should be set based on the heartbeat interval and average round-trip

time between members. Election timeouts must be at least 10 times the round-trip time so it

can account for variance in the network. For example, if the round-trip time between

members is 10ms then the election timeout should be at least 100ms.



etcd

Docs Blog Community Install Play

https://en.wikipedia.org/wiki/Ping_%28networking_utility%29
https://en.wikipedia.org/wiki/Ping_%28networking_utility%29
https://en.wikipedia.org/wiki/Ping_%28networking_utility%29
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


The upper limit of election timeout is 50000ms (50s), which should only be used when

deploying a globally-distributed etcd cluster. A reasonable round-trip time for the continental

United States is 130ms, and the time between US and Japan is around 350-400ms. If the

network has uneven performance or regular packet delays/loss then it is possible that a

couple of retries may be necessary to successfully send a packet. So 5s is a safe upper limit of

global round-trip time. As the election timeout should be an order of magnitude bigger than

broadcast time, in the case of ~5s for a globally distributed cluster, then 50 seconds becomes

a reasonable maximum.

The heartbeat interval and election timeout value should be the same for all members in one

cluster. Setting different values for etcd members may disrupt cluster stability.

The default values can be overridden on the command line:

The values are specified in milliseconds.

Snapshots

etcd appends all key changes to a log file. This log grows forever and is a complete linear

history of every change made to the keys. A complete history works well for lightly used

clusters but clusters that are heavily used would carry around a large log.

To avoid having a huge log etcd makes periodic snapshots. These snapshots provide a way

for etcd to compact the log by saving the current state of the system and removing old logs.

Snapshot tuning

Creating snapshots with the V2 backend can be expensive, so snapshots are only created

after a given number of changes to etcd. By default, snapshots will be made after every

10,000 changes. If etcd’s memory usage and disk usage are too high, try lowering the

snapshot threshold by setting the following on the command line:

# Command line arguments:
$ etcd --heartbeat-interval=100 --election-timeout=500

# Environment variables:
$ ETCD_HEARTBEAT_INTERVAL=100 ETCD_ELECTION_TIMEOUT=500 etcd



# Command line arguments:
$ etcd --snapshot-count=5000





Disk

An etcd cluster is very sensitive to disk latencies. Since etcd must persist proposals to its log,

disk activity from other processes may cause long fsync  latencies. The upshot is etcd may

miss heartbeats, causing request timeouts and temporary leader loss. An etcd server can

sometimes stably run alongside these processes when given a high disk priority.

On Linux, etcd’s disk priority can be configured with ionice :

Network

If the etcd leader serves a large number of concurrent client requests, it may delay

processing follower peer requests due to network congestion. This manifests as send buffer

error messages on the follower nodes:

dropped MsgProp to 247ae21ff9436b2d since streamMsg's sending buffer is full
dropped MsgAppResp to 247ae21ff9436b2d since streamMsg's sending buffer is full

These errors may be resolved by prioritizing etcd’s peer traffic over its client traffic. On Linux,

peer traffic can be prioritized by using the traffic control mechanism:

tc qdisc add dev eth0 root handle 1: prio bands 3
tc filter add dev eth0 parent 1: protocol ip prio 1 u32 match ip sport 2380 0xffff flowid
tc filter add dev eth0 parent 1: protocol ip prio 1 u32 match ip dport 2380 0xffff flowid
tc filter add dev eth0 parent 1: protocol ip prio 2 u32 match ip sport 2379 0xffff flowid
tc filter add dev eth0 parent 1: protocol ip prio 2 u32 match ip dport 2379 0xffff flowid

To cancel tc , execute:

tc qdisc del dev eth0 root

# Environment variables:
$ ETCD_SNAPSHOT_COUNT=5000 etcd

# best effort, highest priority
$ sudo ionice -c2 -n0 -p `pgrep etcd`





CPU

As etcd is very sensitive to latency, performance can further be optimized on Linux systems

by setting the CPU governor to performance or conservative mode.

On Linux, the CPU governor can be configured to performance mode:

echo performance | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

Last modified August 6, 2021: Add tc cancel command. (#428) (29b874f)


https://github.com/etcd-io/website/commit/29b874f031ddbb78c82f498a04b39bb7eaa3835b
https://github.com/etcd-io/website/commit/29b874f031ddbb78c82f498a04b39bb7eaa3835b
https://github.com/etcd-io/website/commit/29b874f031ddbb78c82f498a04b39bb7eaa3835b


Discovery service protocol

Discover other etcd members in a cluster bootstrap phase

Discovery service protocol helps new etcd member to discover all other members in cluster

bootstrap phase using a shared discovery URL.

Discovery service protocol is only used in cluster bootstrap phase, and cannot be used for

runtime reconfiguration or cluster monitoring.

The protocol uses a new discovery token to bootstrap one unique etcd cluster. Remember

that one discovery token can represent only one etcd cluster. As long as discovery protocol

on this token starts, even if it fails halfway, it must not be used to bootstrap another etcd

cluster.

The rest of this article will walk through the discovery process with examples that correspond

to a self-hosted discovery cluster. The public discovery service, discovery.etcd.io, functions

the same way, but with a layer of polish to abstract away ugly URLs, generate UUIDs

automatically, and provide some protections against excessive requests. At its core, the

public discovery service still uses an etcd cluster as the data store as described in this

document.

Protocol workflow

The idea of discovery protocol is to use an internal etcd cluster to coordinate bootstrap of a

new cluster. First, all new members interact with discovery service and help to generate the

expected member list. Then each new member bootstraps its server using this list, which

performs the same functionality as -initial-cluster flag.

In the following example workflow, we will list each step of protocol in curl format for ease of

understanding.

By convention the etcd discovery protocol uses the key prefix _etcd/registry . If

http://example.com  hosts an etcd cluster for discovery service, a full URL to discovery

keyspace will be http://example.com/v2/keys/_etcd/registry . We will use this as the URL prefix

in the example.

Creating a new discovery token

etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Generate a unique token that will identify the new cluster. This will be used as a unique prefix

in discovery keyspace in the following steps. An easy way to do this is to use uuidgen :

UUID=$(uuidgen)

Specifying the expected cluster size

The discovery token expects a cluster size that must be specified. The size is used by the

discovery service to know when it has found all members that will initially form the cluster.

curl -X PUT http://example.com/v2/keys/_etcd/registry/${UUID}/_config/size -d value=${clu

Usually the cluster size is 3, 5 or 7. Check optimal cluster size for more details.

Bringing up etcd processes

Given the discovery URL, use it as -discovery  flag and bring up etcd processes. Every etcd

process will follow this next few steps internally if given a -discovery  flag.

Registering itself

The first thing for etcd process is to register itself into the discovery URL as a member. This is

done by creating member ID as a key in the discovery URL.

curl -X PUT http://example.com/v2/keys/_etcd/registry/${UUID}/${member_id}?prevExist=fals

Checking the status

It checks the expected cluster size and registration status in discovery URL, and decides what

the next action is.

curl -X GET http://example.com/v2/keys/_etcd/registry/${UUID}/_config/size
curl -X GET http://example.com/v2/keys/_etcd/registry/${UUID}

If registered members are still not enough, it will wait for left members to appear.

If the number of registered members is bigger than the expected size N, it treats the first N

registered members as the member list for the cluster. If the member itself is in the member

list, the discovery procedure succeeds and it fetches all peers through the member list. If it is

https://etcd.io/docs/v2.3/admin_guide#optimal-cluster-size


not in the member list, the discovery procedure finishes with the failure that the cluster has

been full.

In etcd implementation, the member may check the cluster status even before registering

itself. So it could fail quickly if the cluster has been full.

Waiting for all members

The wait process is described in detail in the etcd API documentation.

curl -X GET http://example.com/v2/keys/_etcd/registry/${UUID}?wait=true&waitIndex=${curre

It keeps waiting until finding all members.

Public discovery service

CoreOS Inc. hosts a public discovery service at https://discovery.etcd.io/  , which provides

some nice features for ease of use.

Mask key prefix

Public discovery service will redirect https://discovery.etcd.io/${UUID}  to etcd cluster behind

for the key at /v2/keys/_etcd/registry . It masks register key prefix for short and readable

discovery url.

Get new token

GET /new

Sent query:
size=${cluster_size}

Possible status codes:
200 OK
400 Bad Request

200 Body:
generated discovery url

The generation process in the service follows the steps from Creating a New Discovery Token

to Specifying the Expected Cluster Size.

Check discovery status



https://etcd.io/docs/v2.3/api#waiting-for-a-change
https://discovery.etcd.io/
https://discovery.etcd.io/
https://discovery.etcd.io/


GET /${UUID}

The status for this discovery token, including the machines that have been registered, can be

checked by requesting the value of the UUID.

Open-source repository

The repository is located at https://github.com/coreos/discovery.etcd.io . It could be used to

build a custom discovery service.

Last modified June 14, 2021: Renaming content/en/next folder to content/en/v3.5. Updating

redirects, links, and config as needed. (#363) (138926b)





https://github.com/coreos/discovery.etcd.io
https://github.com/coreos/discovery.etcd.io
https://github.com/coreos/discovery.etcd.io
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c


Logging conventions

Logging level categories

etcd uses the zap  library for logging application output categorized into levels. A log

message’s level is determined according to these conventions:

Error: Data has been lost, a request has failed for a bad reason, or a required resource

has been lost

Examples:

A failure to allocate disk space for WAL

Warning: (Hopefully) Temporary conditions that may cause errors, but may work fine. A

replica disappearing (that may reconnect) is a warning.

Examples:

Failure to send raft message to a remote peer

Failure to receive heartbeat message within the configured election timeout

Notice: Normal, but important (uncommon) log information.

Examples:

Add a new node into the cluster

Add a new user into auth subsystem

Info: Normal, working log information, everything is fine, but helpful notices for auditing

or common operations.

Examples:

Startup configuration

Start to do snapshot

Debug: Everything is still fine, but even common operations may be logged, and less

helpful but more quantity of notices.

Examples:

Send a normal message to a remote peer

Write a log entry to disk



etcd

Docs Blog Community Install Play

https://github.com/uber-go/zap
https://github.com/uber-go/zap
https://github.com/uber-go/zap
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Last modified February 23, 2023: Update logging.md for 3.5+ to show zap as default.

(3de08c8)


https://github.com/etcd-io/website/commit/3de08c80c5f9be69d72ff07d421c2e83cffa64f3
https://github.com/etcd-io/website/commit/3de08c80c5f9be69d72ff07d421c2e83cffa64f3
https://github.com/etcd-io/website/commit/3de08c80c5f9be69d72ff07d421c2e83cffa64f3
https://github.com/etcd-io/website/commit/3de08c80c5f9be69d72ff07d421c2e83cffa64f3


Golang modules

Organization of the etcd project’s golang modules

The etcd project (since version 3.5) is organized into multiple golang modules  hosted in a

single repository .

There are following modules:

go.etcd.io/etcd/api/v3 - contains API definitions (like protos & proto-generated libraries)

that defines communication protocol between etcd clients and server.

go.etcd.io/etcd/pkg/v3 - collection of utility packages used by etcd without being

specific to etcd itself. A package belongs here only if it could possibly be moved out into

its own repository in the future. Please avoid adding here code that has a lot of

dependencies on its own, as they automatically becoming dependencies of the client

library (that we want to keep lightweight).

go.etcd.io/etcd/client/v3 - client library used to contact etcd over the network (grpc).

Recommended for all new usage of etcd.

go.etcd.io/etcd/client/v2 - legacy client library used to contact etcd over HTTP protocol.

Deprecated. All new usage should depend on /v3 library.





etcd

Docs Blog Community Install Play

https://golang.org/ref/mod
https://golang.org/ref/mod
https://golang.org/ref/mod
https://golang.org/ref/mod#vcs-dir
https://golang.org/ref/mod#vcs-dir
https://golang.org/ref/mod#vcs-dir
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


go.etcd.io/etcd/raft/v3 - implementation of distributed consensus protocol. Should

have no etcd specific code.

go.etcd.io/etcd/server/v3 - etcd implementation. The code in this package is etcd

internal and should not be consumed by external projects. The package layout and API

can change within the minor versions.

go.etcd.io/etcd/etcdctl/v3 - a command line tool to access and manage etcd.

go.etcd.io/etcd/tests/v3 - a module that contains all integration tests of etcd. Notice: All

unit-tests (fast and not requiring cross-module dependencies) should be kept in the local

modules to the code under the test.

go.etcd.io/bbolt - implementation of persistent b-tree. Hosted in a separate repository:

https://github.com/etcd-io/bbolt .

Operations

1. All etcd modules should be released in the same versions, e.g.

go.etcd.io/etcd/client/v3@v3.5.10  must depend on go.etcd.io/etcd/api/v3@v3.5.10 .

The consistent updating of versions can by performed using:

2. The released modules should be tagged according to https://golang.org/ref/mod#vcs-

version  rules, i.e. each module should get its own tag. The tagging can be performed

using:

3. All etcd modules should depend on the same versions of underlying dependencies. This

can be verified using:

4. The go.mod files must not contain dependencies not being used and must conform to go

mod tidy  format. This is being verified by:



% DRY_RUN=false TARGET_VERSION="v3.5.10" ./scripts/release_mod.sh update_versions




% DRY_RUN=false REMOTE_REPO="origin" ./scripts/release_mod.sh push_mod_tags


% PASSES="dep" ./test.sh


https://github.com/etcd-io/bbolt
https://github.com/etcd-io/bbolt
https://github.com/etcd-io/bbolt
https://golang.org/ref/mod#vcs-version
https://golang.org/ref/mod#vcs-version
https://golang.org/ref/mod#vcs-version
https://golang.org/ref/mod#vcs-version


% PASSES="mod_tidy" ./test.sh

5. To trigger actions across all modules (e.g. auto-format all files), please use/expand the

following script:

Future

As a North Star, we would like to evaluate etcd modules towards following model:

This assumes:

Splitting etcdmigrate/etcdadm out of etcdctl binary. Thanks to this etcdctl would become

clearly a command-line wrapper around network client API, while etcdmigrate/etcdadm

would support direct physical operations on the etcd storage files.

Splitting etcd-proxy out of ./etcd binary, as it contains more experimental code so carries

additional risk & dependencies.

Deprecation of support for v2 protocol.

Last modified June 14, 2021: Renaming content/en/next folder to content/en/v3.5. Updating

redirects, links, and config as needed. (#363) (138926b)

% ./scripts/fix.sh




https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c




Learning

Learning resources

Data model
etcd data storage methodologies

etcd client design
Client architectural decisions & their implementation details

etcd learner design
Mitigating common challenges with membership reconfiguration

etcd v3 authentication design
etcd v3 authentication

etcd API
etcd API central design overview

etcd persistent storage files
Reference of the persistent storage format and files

etcd API guarantees
API guarantees made by etcd

etcd versus other key-value stores
History and use of etcd & comparison with other tools

Glossary
Terms used in etcd documentation, command line, and source code

etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/learning/data_model/
https://etcd.io/docs/v3.5/learning/design-client/
https://etcd.io/docs/v3.5/learning/design-learner/
https://etcd.io/docs/v3.5/learning/design-auth-v3/
https://etcd.io/docs/v3.5/learning/api/
https://etcd.io/docs/v3.5/learning/persistent-storage-files/
https://etcd.io/docs/v3.5/learning/api_guarantees/
https://etcd.io/docs/v3.5/learning/why/
https://etcd.io/docs/v3.5/learning/glossary/
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Last modified June 14, 2021: Renaming content/en/next folder to content/en/v3.5. Updating

redirects, links, and config as needed. (#363) (138926b)


https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c


Data model

etcd data storage methodologies

etcd is designed to reliably store infrequently updated data and provide reliable watch

queries. etcd exposes previous versions of key-value pairs to support inexpensive snapshots

and watch history events (“time travel queries”). A persistent, multi-version, concurrency-

control data model is a good fit for these use cases.

etcd stores data in a multiversion persistent  key-value store. The persistent key-value store

preserves the previous version of a key-value pair when its value is superseded with new

data. The key-value store is effectively immutable; its operations do not update the structure

in-place, but instead always generate a new updated structure. All past versions of keys are

still accessible and watchable after modification. To prevent the data store from growing

indefinitely over time and from maintaining old versions, the store may be compacted to

shed the oldest versions of superseded data.

Logical view

The store’s logical view is a flat binary key space. The key space has a lexically sorted index on

byte string keys so range queries are inexpensive.

The key space maintains multiple revisions. When the store is created, the initial revision is 1.

Each atomic mutative operation (e.g., a transaction operation may contain multiple

operations) creates a new revision on the key space. All data held by previous revisions

remains unchanged. Old versions of keys can still be accessed through previous revisions.

Likewise, revisions are indexed as well; ranging over revisions with watchers is efficient. If the

store is compacted to save space, revisions before the compact revision will be removed.

Revisions are monotonically increasing over the lifetime of a cluster.

A key’s life spans a generation, from creation to deletion. Each key may have one or multiple

generations. Creating a key increments the version of that key, starting at 1 if the key does

not exist at the current revision. Deleting a key generates a key tombstone, concluding the

key’s current generation by resetting its version to 0. Each modification of a key increments

its version; so, versions are monotonically increasing within a key’s generation. Once a

compaction happens, any generation ended before the compaction revision will be removed,

and values set before the compaction revision except the latest one will be removed.



etcd

Docs Blog Community Install Play

https://en.wikipedia.org/wiki/Persistent_data_structure
https://en.wikipedia.org/wiki/Persistent_data_structure
https://en.wikipedia.org/wiki/Persistent_data_structure
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Physical view

etcd stores the physical data as key-value pairs in a persistent b+tree . Each revision of the

store’s state only contains the delta from its previous revision to be efficient. A single revision

may correspond to multiple keys in the tree.

The key of key-value pair is a 3-tuple (major, sub, type). Major is the store revision holding the

key. Sub differentiates among keys within the same revision. Type is an optional suffix for

special value (e.g., t  if the value contains a tombstone). The value of the key-value pair

contains the modification from previous revision, thus one delta from previous revision. The

b+tree is ordered by key in lexical byte-order. Ranged lookups over revision deltas are fast;

this enables quickly finding modifications from one specific revision to another. Compaction

removes out-of-date keys-value pairs.

etcd also keeps a secondary in-memory btree  index to speed up range queries over keys.

The keys in the btree index are the keys of the store exposed to user. The value is a pointer to

the modification of the persistent b+tree. Compaction removes dead pointers.

Overall, etcd gets the revision information from btree and then uses the revision as key to

fetch value from b+tree(As shown below).

Last modified February 26, 2023: Update data_model.md (009fe6b)







https://en.wikipedia.org/wiki/B%2B_tree
https://en.wikipedia.org/wiki/B%2B_tree
https://en.wikipedia.org/wiki/B%2B_tree
https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/B-tree
https://github.com/etcd-io/website/commit/009fe6b1cfe50ed286b0c550bb293fa66b042233
https://github.com/etcd-io/website/commit/009fe6b1cfe50ed286b0c550bb293fa66b042233
https://github.com/etcd-io/website/commit/009fe6b1cfe50ed286b0c550bb293fa66b042233


etcd client design

Client architectural decisions & their implementation details

etcd Client Design
Gyuho Lee (github.com/gyuho, Amazon Web Services, Inc.), Joe Betz (github.com/jpbetz, Google

Inc.)

Introduction

etcd server has proven its robustness with years of failure injection testing. Most complex

application logic is already handled by etcd server and its data stores (e.g. cluster

membership is transparent to clients, with Raft-layer forwarding proposals to leader).

Although server components are correct, its composition with client requires a different set

of intricate protocols to guarantee its correctness and high availability under faulty

conditions. Ideally, etcd server provides one logical cluster view of many physical machines,

and client implements automatic failover between replicas. This documents client

architectural decisions and its implementation details.

Glossary
clientv3: etcd Official Go client for etcd v3 API.

clientv3-grpc1.0: Official client implementation, with grpc-go v1.0.x , which is used in latest

etcd v3.1.

clientv3-grpc1.7: Official client implementation, with grpc-go v1.7.x , which is used in latest

etcd v3.2 and v3.3.

clientv3-grpc1.23: Official client implementation, with grpc-go v1.23.x , which is used in latest

etcd v3.4.

Balancer: etcd client load balancer that implements retry and failover mechanism. etcd client

should automatically balance loads between multiple endpoints.

Endpoints: A list of etcd server endpoints that clients can connect to. Typically, 3 or 5 client

URLs of an etcd cluster.







etcd

Docs Blog Community Install Play

https://github.com/grpc/grpc-go/releases/tag/v1.0.0
https://github.com/grpc/grpc-go/releases/tag/v1.0.0
https://github.com/grpc/grpc-go/releases/tag/v1.0.0
https://github.com/grpc/grpc-go/releases/tag/v1.7.0
https://github.com/grpc/grpc-go/releases/tag/v1.7.0
https://github.com/grpc/grpc-go/releases/tag/v1.7.0
https://github.com/grpc/grpc-go/releases/tag/v1.23.0
https://github.com/grpc/grpc-go/releases/tag/v1.23.0
https://github.com/grpc/grpc-go/releases/tag/v1.23.0
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Pinned endpoint: When configured with multiple endpoints, <= v3.3 client balancer chooses

only one endpoint to establish a TCP connection, in order to conserve total open connections

to etcd cluster. In v3.4, balancer round-robins pinned endpoints for every request, thus

distributing loads more evenly.

Client Connection: TCP connection that has been established to an etcd server, via gRPC Dial.

Sub Connection: gRPC SubConn interface. Each sub-connection contains a list of addresses.

Balancer creates a SubConn from a list of resolved addresses. gRPC ClientConn can map to

multiple SubConn (e.g. example.com resolves to 10.10.10.1  and 10.10.10.2  of two sub-

connections). etcd v3.4 balancer employs internal resolver to establish one sub-connection

for each endpoint.

Transient disconnect: When gRPC server returns a status error of code Unavailable .

Client Requirements
Correctness. Requests may fail in the presence of server faults. However, it never violates

consistency guarantees: global ordering properties, never write corrupted data, at-most once

semantics for mutable operations, watch never observes partial events, and so on.

Liveness. Servers may fail or disconnect briefly. Clients should make progress in either way.

Clients should never deadlock  waiting for a server to come back from offline, unless

configured to do so. Ideally, clients detect unavailable servers with HTTP/2 ping and failover

to other nodes with clear error messages.

Effectiveness. Clients should operate effectively with minimum resources: previous TCP

connections should be gracefully closed  after endpoint switch. Failover mechanism should

effectively predict the next replica to connect, without wastefully retrying on failed nodes.

Portability. Official client should be clearly documented and its implementation be applicable

to other language bindings. Error handling between different language bindings should be

consistent. Since etcd is fully committed to gRPC, implementation should be closely aligned

with gRPC long-term design goals (e.g. pluggable retry policy should be compatible with gRPC

retry ). Upgrades between two client versions should be non-disruptive.

Client Overview

etcd client implements the following components:

balancer that establishes gRPC connections to an etcd cluster,

API client that sends RPCs to an etcd server, and

error handler that decides whether to retry a failed request or switch endpoints.

Languages may differ in how to establish an initial connection (e.g. configure TLS), how to

encode and send Protocol Buffer messages to server, how to handle stream RPCs, and so on.









https://godoc.org/google.golang.org/grpc/codes#Code
https://godoc.org/google.golang.org/grpc/codes#Code
https://godoc.org/google.golang.org/grpc/codes#Code
https://github.com/etcd-io/etcd/issues/8980
https://github.com/etcd-io/etcd/issues/8980
https://github.com/etcd-io/etcd/issues/8980
https://github.com/etcd-io/etcd/issues/9212
https://github.com/etcd-io/etcd/issues/9212
https://github.com/etcd-io/etcd/issues/9212
https://github.com/grpc/proposal/blob/master/A6-client-retries.md
https://github.com/grpc/proposal/blob/master/A6-client-retries.md
https://github.com/grpc/proposal/blob/master/A6-client-retries.md
https://github.com/grpc/proposal/blob/master/A6-client-retries.md


However, errors returned from etcd server will be the same. So should be error handling and

retry policy.

For example, etcd server may return "rpc error: code = Unavailable desc = etcdserver:

request timed out" , which is transient error that expects retries. Or return rpc error: code =

InvalidArgument desc = etcdserver: key is not provided , which means request was invalid and

should not be retried. Go client can parse errors with

google.golang.org/grpc/status.FromError , and Java client with io.grpc.Status.fromThrowable .

clientv3-grpc1.0: Balancer Overview

clientv3-grpc1.0  maintains multiple TCP connections when configured with multiple etcd

endpoints. Then pick one address and use it to send all client requests. The pinned address is

maintained until the client object is closed (see Figure 1). When the client receives an error, it

randomly picks another and retries.

clientv3-grpc1.0: Balancer Limitation

clientv3-grpc1.0  opening multiple TCP connections may provide faster balancer failover but

requires more resources. The balancer does not understand node’s health status or cluster

membership. So, it is possible that balancer gets stuck with one failed or partitioned node.

clientv3-grpc1.7: Balancer Overview



clientv3-grpc1.7  maintains only one TCP connection to a chosen etcd server. When given

multiple cluster endpoints, a client first tries to connect to them all. As soon as one

connection is up, balancer pins the address, closing others (see Figure 2). The pinned address

is to be maintained until the client object is closed. An error, from server or client network

fault, is sent to client error handler (see Figure 3).

The client error handler takes an error from gRPC server, and decides whether to retry on the

same endpoint, or to switch to other addresses, based on the error code and message (see

Figure 4 and Figure 5).



Stream RPCs, such as Watch and KeepAlive, are often requested with no timeouts. Instead,

client can send periodic HTTP/2 pings to check the status of a pinned endpoint; if the server

does not respond to the ping, balancer switches to other endpoints (see Figure 6).



clientv3-grpc1.7: Balancer Limitation

clientv3-grpc1.7  balancer sends HTTP/2 keepalives to detect disconnects from streaming

requests. It is a simple gRPC server ping mechanism and does not reason about cluster

membership, thus unable to detect network partitions. Since partitioned gRPC server can still

respond to client pings, balancer may get stuck with a partitioned node. Ideally, keepalive

ping detects partition and triggers endpoint switch, before request time-out (see etcd#8673

and Figure 7).

clientv3-grpc1.7  balancer maintains a list of unhealthy endpoints. Disconnected addresses

are added to “unhealthy” list, and considered unavailable until after wait duration, which is

hard coded as dial timeout with default value 5-second. Balancer can have false positives on

which endpoints are unhealthy. For instance, endpoint A may come back right after being

blacklisted, but still unusable for next 5 seconds (see Figure 8).



https://github.com/etcd-io/etcd/issues/8673
https://github.com/etcd-io/etcd/issues/8673
https://github.com/etcd-io/etcd/issues/8673


clientv3-grpc1.0  suffered the same problems above.

Upstream gRPC Go had already migrated to new balancer interface. For example, clientv3-

grpc1.7  underlying balancer implementation uses new gRPC balancer and tries to be

consistent with old balancer behaviors. While its compatibility has been maintained

reasonably well, etcd client still suffered from subtle breaking changes . Furthermore, gRPC


https://github.com/grpc/grpc-go/issues/1649
https://github.com/grpc/grpc-go/issues/1649
https://github.com/grpc/grpc-go/issues/1649


maintainer recommends to not rely on the old balancer interface . In general, to get better

support from upstream, it is best to be in sync with latest gRPC releases. And new features,

such as retry policy, may not be backported to gRPC 1.7 branch. Thus, both etcd server and

client must migrate to latest gRPC versions.

clientv3-grpc1.23: Balancer Overview

clientv3-grpc1.7  is so tightly coupled with old gRPC interface, that every single gRPC

dependency upgrade broke client behavior. Majority of development and debugging efforts

were devoted to fixing those client behavior changes. As a result, its implementation has

become overly complicated with bad assumptions on server connectivities.

The primary goal of clientv3-grpc1.23  is to simplify balancer failover logic; rather than

maintaining a list of unhealthy endpoints, which may be stale, simply roundrobin to the next

endpoint whenever client gets disconnected from the current endpoint. It does not assume

endpoint status. Thus, no more complicated status tracking is needed (see Figure 8 and

above). Upgrading to clientv3-grpc1.23  should be no issue; all changes were internal while

keeping all the backward compatibilities.

Internally, when given multiple endpoints, clientv3-grpc1.23  creates multiple sub-

connections (one sub-connection per each endpoint), while clientv3-grpc1.7  creates only

one connection to a pinned endpoint (see Figure 9). For instance, in 5-node cluster, clientv3-

grpc1.23  balancer would require 5 TCP connections, while clientv3-grpc1.7  only requires

one. By preserving the pool of TCP connections, clientv3-grpc1.23  may consume more

resources but provide more flexible load balancer with better failover performance. The

default balancing policy is round robin but can be easily extended to support other types of

balancers (e.g. power of two, pick leader, etc.). clientv3-grpc1.23  uses gRPC resolver group

and implements balancer picker policy, in order to delegate complex balancing work to

upstream gRPC. On the other hand, clientv3-grpc1.7  manually handles each gRPC

connection and balancer failover, which complicates the implementation. clientv3-grpc1.23

implements retry in the gRPC interceptor chain that automatically handles gRPC internal

errors and enables more advanced retry policies like backoff, while clientv3-grpc1.7

manually interprets gRPC errors for retries.



https://github.com/grpc/grpc-go/issues/1942#issuecomment-375368665
https://github.com/grpc/grpc-go/issues/1942#issuecomment-375368665
https://github.com/grpc/grpc-go/issues/1942#issuecomment-375368665




clientv3-grpc1.23: Balancer Limitation

Improvements can be made by caching the status of each endpoint. For instance, balancer

can ping each server in advance to maintain a list of healthy candidates, and use this

information when doing round-robin. Or when disconnected, balancer can prioritize healthy

endpoints. This may complicate the balancer implementation, thus can be addressed in later

versions.

Client-side keepalive ping still does not reason about network partitions. Streaming request

may get stuck with a partitioned node. Advanced health checking service need to be

implemented to understand the cluster membership (see etcd#8673  for more detail).

Currently, retry logic is handled manually as an interceptor. This may be simplified via official

gRPC retries .

Last modified June 14, 2021: Renaming content/en/next folder to content/en/v3.5. Updating

redirects, links, and config as needed. (#363) (138926b)







https://github.com/etcd-io/etcd/issues/8673
https://github.com/etcd-io/etcd/issues/8673
https://github.com/etcd-io/etcd/issues/8673
https://github.com/grpc/proposal/blob/master/A6-client-retries.md
https://github.com/grpc/proposal/blob/master/A6-client-retries.md
https://github.com/grpc/proposal/blob/master/A6-client-retries.md
https://github.com/grpc/proposal/blob/master/A6-client-retries.md
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c


etcd learner design

Mitigating common challenges with membership reconfiguration

etcd Learner
Gyuho Lee (github.com/gyuho, Amazon Web Services, Inc.), Joe Betz (github.com/jpbetz, Google

Inc.)

Background

Membership reconfiguration has been one of the biggest operational challenges. Let’s review

common challenges.

1. New Cluster member overloads Leader

A newly joined etcd member starts with no data, thus demanding more updates from leader

until it catches up with leader’s logs. Then leader’s network is more likely to be overloaded,

blocking or dropping leader heartbeats to followers. In such case, a follower may election-

timeout to start a new leader election. That is, a cluster with a new member is more

vulnerable to leader election. Both leader election and the subsequent update propagation to

the new member are prone to causing periods of cluster unavailability (see Figure 1).

etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


2. Network Partitions scenarios

What if network partition happens? It depends on leader partition. If the leader still maintains

the active quorum, the cluster would continue to operate (see Figure 2).



2.1 Leader isolation

What if the leader becomes isolated from the rest of the cluster? Leader monitors progress of

each follower. When leader loses connectivity from the quorum, it reverts back to follower

which will affect the cluster availability (see Figure 3).

When a new node is added to 3 node cluster, the cluster size becomes 4 and the quorum size

becomes 3. What if a new node had joined the cluster, and then network partition happens?

It depends on which partition the new member gets located after partition.

2.2 Cluster Split 3+1

If the new node happens to be located in the same partition as leader’s, the leader still

maintains the active quorum of 3. No leadership election happens, and no cluster availability

gets affected (see Figure 4).



2.3 Cluster Split 2+2

If the cluster is 2-and-2 partitioned, then neither of partition maintains the quorum of 3. In

this case, leadership election happens (see Figure 5).



2.4 Quorum Lost

What if network partition happens first, and then a new member gets added? A partitioned 3-

node cluster already has one disconnected follower. When a new member is added, the

quorum changes from 2 to 3. Now, this cluster has only 2 active nodes out 4, thus losing

quorum and starting a new leadership election (see Figure 6).



Since member add operation can change the size of quorum, it is always recommended to

“member remove” first to replace an unhealthy node.

Adding a new member to a 1-node cluster changes the quorum size to 2, immediately

causing a leader election when the previous leader finds out quorum is not active. This is

because “member add” operation is a 2-step process where user needs to apply “member

add” command first, and then starts the new node process (see Figure 7).



3. Cluster Misconfigurations

An even worse case is when an added member is misconfigured. Membership

reconfiguration is a two-step process: “etcdctl member add” and starting an etcd server

process with the given peer URL. That is, “member add” command is applied regardless of

URL, even when the URL value is invalid. If the first step is applied with invalid URLs, the

second step cannot even start the new etcd. Once the cluster loses quorum, there is no way

to revert the membership change (see Figure 8).

Same applies to a multi-node cluster. For example, the cluster has two members down (one is

failed, the other is misconfigured) and two members up, but now it requires at least 3 votes

to change the cluster membership (see Figure 9).



As seen above, a simple misconfiguration can fail the whole cluster into an inoperative state.

In such case, an operator need manually recreate the cluster with etcd --force-new-cluster

flag. As etcd has become a mission-critical service for Kubernetes, even the slightest outage

may have significant impact on users. What can we better to make etcd such operations

easier? Among other things, leader election is most critical to cluster availability: Can we

make membership reconfiguration less disruptive by not changing the size of quorum? Can a

new node be idle, only requesting the minimum updates from leader, until it catches up? Can

membership misconfiguration be always reversible and handled in a more secure way (wrong

member add command run should never fail the cluster)? Should an user worry about

network topology when adding a new member? Can member add API work regardless of the

location of nodes and ongoing network partitions?

Raft Learner

In order to mitigate such availability gaps in the previous section, Raft §4.2.1  introduces a

new node state “Learner”, which joins the cluster as a non-voting member until it catches up

to leader’s logs.

Features in v3.4



https://github.com/ongardie/dissertation/blob/master/stanford.pdf
https://github.com/ongardie/dissertation/blob/master/stanford.pdf
https://github.com/ongardie/dissertation/blob/master/stanford.pdf


An operator should do the minimum amount of work possible to add a new learner node.

member add --learner  command to add a new learner, which joins cluster as a non-voting

member but still receives all data from leader (see Figure 10).

When a learner has caught up with leader’s progress, the learner can be promoted to a voting

member using member promote  API, which then counts towards the quorum (see Figure 11).



etcd server validates promote request to ensure its operational safety. Only after its log has

caught up to leader’s can learner be promoted to a voting member (see Figure 12).

Learner only serves as a standby node until promoted: Leadership cannot be transferred to

learner. Learner rejects client reads and writes (client balancer should not route requests to

learner). Which means learner does not need issue Read Index requests to leader. Such

limitation simplifies the initial learner implementation in v3.4 release (see Figure 13).



In addition, etcd limits the total number of learners that a cluster can have, and avoids

overloading the leader with log replication. Learner never promotes itself. While etcd

provides learner status information and safety checks, cluster operator must make the final

decision whether to promote learner or not.

Proposed features for future releases

Make learner state only and default: Defaulting a new member state to learner will greatly

improve membership reconfiguration safety, because learner does not change the size of

quorum. Misconfiguration will always be reversible without losing the quorum.

Make voting-member promotion fully automatic: Once a learner catches up to leader’s logs, a

cluster can automatically promote the learner. etcd requires certain thresholds to be defined

by the user, and once the requirements are satisfied, learner promotes itself to a voting

member. From a user’s perspective, “member add” command would work the same way as

today but with greater safety provided by learner feature.

Make learner standby failover node: A learner joins as a standby node, and gets automatically

promoted when the cluster availability is affected.

Make learner read-only: A learner can serve as a read-only node that never gets promoted. In

a weak consistency mode, learner only receives data from leader and never process writes.

Serving reads locally without consensus overhead would greatly decrease the workloads to

leader but may serve stale data. In a strong consistency mode, learner requests read index

from leader to serve latest data, but still rejects writes.

Learner vs. Mirror Maker



etcd implements “mirror maker” using watch API to continuously relay key creates and

updates to a separate cluster. Mirroring usually has low latency overhead once it completes

initial synchronization. Learner and mirroring overlap in that both can be used to replicate

existing data for read-only. However, mirroring does not guarantee linearizability. During

network disconnects, previous key-values might have been discarded, and clients are

expected to verify watch responses for correct ordering. Thus, there is no ordering guarantee

in mirror. Use mirror for minimum latency (e.g. cross data center) at the costs of consistency.

Use learner to retain all historical data and its ordering.

Appendix: Learner Implementation in v3.4
Expose “Learner” node type to “MemberAdd” API.

etcd client adds a flag to “MemberAdd” API for learner node. And etcd server handler applies

membership change entry with pb.ConfChangeAddLearnerNode  type. Once the command has

been applied, a server joins the cluster with etcd --initial-cluster-state=existing  flag. This

learner node can neither vote nor count as quorum.

etcd server must not transfer leadership to learner, since it may still lag behind and does not

count as quorum. etcd server limits the number of learners that cluster can have to one: the

more learners we have, the more data the leader has to propagate. Clients may talk to

learner node, but learner rejects all requests other than serializable read and member status

API. This is for simplicity of initial implementation. In the future, learner can be extended as a

read-only server that continuously mirrors cluster data. Client balancer must provide helper

function to exclude learner node endpoint. Otherwise, request sent to learner may fail. Client

sync member call should factor into learner node type. So should client endpoints update

call.

MemberList  and MemberStatus  responses should indicate which node is learner.

Add “MemberPromote” API.

Internally in Raft, second MemberAdd  call to learner node promotes it to a voting member.

Leader maintains the progress of each follower and learner. If learner has not completed its

snapshot message, reject promote request. Only accept promote request if and only if: The

learner node is in a healthy state. The learner is in sync with leader or the delta is within the

threshold (e.g. the number of entries to replicate to learner is less than 1/10 of snapshot

count, which means it is less likely that even after promotion leader would not need send

snapshot to the learner). All these logic are hard-coded in etcdserver  package and not

configurable.

Reference

Original github issue: etcd#9161

Use case: etcd#3715





https://github.com/etcd-io/etcd/issues/9161
https://github.com/etcd-io/etcd/issues/9161
https://github.com/etcd-io/etcd/issues/9161
https://github.com/etcd-io/etcd/issues/3715
https://github.com/etcd-io/etcd/issues/3715
https://github.com/etcd-io/etcd/issues/3715


Use case: etcd#8888

Use case: etcd#10114

Last modified July 23, 2021: learners: clarify features as future vs v3.5 (9dea14b)







https://github.com/etcd-io/etcd/issues/8888
https://github.com/etcd-io/etcd/issues/8888
https://github.com/etcd-io/etcd/issues/8888
https://github.com/etcd-io/etcd/issues/10114
https://github.com/etcd-io/etcd/issues/10114
https://github.com/etcd-io/etcd/issues/10114
https://github.com/etcd-io/website/commit/9dea14b852024a303e97f7d0e3a3ff68bfcb187c
https://github.com/etcd-io/website/commit/9dea14b852024a303e97f7d0e3a3ff68bfcb187c
https://github.com/etcd-io/website/commit/9dea14b852024a303e97f7d0e3a3ff68bfcb187c


etcd v3 authentication design

etcd v3 authentication

Why not reuse the v2 auth system?

The v3 protocol uses gRPC as its transport instead of a RESTful interface like v2. This new

protocol provides an opportunity to iterate on and improve the v2 design. For example, v3

auth has connection based authentication, rather than v2’s slower per-request

authentication. Additionally, v2 auth’s semantics tend to be unwieldy in practice with respect

to reasoning about consistency, which will be described in the next sections. For v3, there is a

well-defined description and implementation of the authentication mechanism which fixes

the deficiencies in the v2 auth system.

Functionality requirements

Per connection authentication, not per request

User ID + password based authentication implemented for the gRPC API

Authentication must be refreshed after auth policy changes

Its functionality should be as simple and useful as v2

v3 provides a flat key space, unlike the directory structure of v2. Permission checking

will be provided as interval matching.

It should have stronger consistency guarantees than v2 auth

Main required changes

A client must create a dedicated connection only for authentication before sending

authenticated requests

Add permission information (user ID and authorized revision) to the Raft commands

( etcdserverpb.InternalRaftRequest )

Every request is permission checked in the state machine layer, rather than API layer

Permission metadata consistency

etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


The metadata for auth should also be stored and managed in the storage controlled by etcd’s

Raft protocol like other data stored in etcd. It is required for not sacrificing availability and

consistency of the entire etcd cluster. If reading or writing the metadata (e.g. permission

information) needs an agreement of every node (more than quorum), single node failure can

stop the entire cluster. Requiring all nodes to agree at once means that checking ordinary

read/write requests cannot be completed if any cluster member is down, even if the cluster

has an available quorum. This unanimous scheme ultimately degrades cluster availability;

quorum based consensus from raft should suffice since agreement follows from consistent

ordering.

The authentication mechanism in the etcd v2 protocol has a tricky part because the metadata

consistency should work as in the above, but does not: each permission check is processed

by the etcd member that receives the client request (server/etcdserver/api/v2http/client.go),

including follower members. Therefore, it’s possible the check may be based on stale

metadata.

This staleness means that auth configuration cannot be reflected as soon as operators

execute etcdctl. Therefore there is no way to know how long the stale metadata is active.

Practically, the configuration change is reflected immediately after the command execution.

However, in some cases of heavy load, the inconsistent state can be prolonged and it might

result in counter-intuitive situations for users and developers. It requires a workaround like

this: https://github.com/etcd-io/etcd/pull/4317#issuecomment-179037582

Inconsistent permissions are unsafe for linearized requests

Inconsistent authentication state is most serious for writes. Even if an operator disables write

on a user, if the write is only ordered with respect to the key value store but not the

authentication system, it’s possible the write will complete successfully. Without ordering on

both the auth store and the key-value store, the system will be susceptible to stale

permission attacks.

Therefore, the permission checking logic should be added to the state machine of etcd. Each

state machine should check the requests based on its permission information in the apply

phase (so the auth information must not be stale).

Design and implementation

Authentication

At first, a client must create a gRPC connection only to authenticate its user ID and password.

An etcd server will respond with an authentication reply. The response will be an

authentication token on success or an error on failure. The client can use its authentication

token to present its credentials to etcd when making API requests.



https://github.com/etcd-io/etcd/pull/4317#issuecomment-179037582
https://github.com/etcd-io/etcd/pull/4317#issuecomment-179037582
https://github.com/etcd-io/etcd/pull/4317#issuecomment-179037582


The client connection used to request the authentication token is typically thrown away; it

cannot carry the new token’s credentials. This is because gRPC doesn’t provide a way for

adding per RPC credential after creation of the connection (calling grpc.Dial() ). Therefore, a

client cannot assign a token to its connection that is obtained through the connection. The

client needs a new connection for using the token.

Notes on the implementation of Authenticate() RPC

Authenticate()  RPC generates an authentication token based on a given user name and

password. etcd saves and checks a configured password and a given password using Go’s

bcrypt  package. By design, bcrypt ’s password checking mechanism is computationally

expensive, taking nearly 100ms on an ordinary x64 server. Therefore, performing this check

in the state machine apply phase would cause performance trouble: the entire etcd cluster

can only serve almost 10 Authenticate()  requests per second.

For good performance, the v3 auth mechanism checks passwords in etcd’s API layer, where it

can be parallelized outside of raft. However, this can lead to potential time-of-check/time-of-

use (TOCTOU) permission lapses:

1. client A sends a request Authenticate()

2. the API layer processes the password checking part of Authenticate()

3. another client B sends a request of ChangePassword()  and the server completes it

4. the state machine layer processes the part of getting a revision number for the

Authenticate()  from A

5. the server returns a success to A

6. now A is authenticated on an obsolete password

For avoiding such a situation, the API layer performs version number validation based on the

revision number of the auth store. During password checking, the API layer saves the revision

number of auth store. After successful password checking, the API layer compares the saved

revision number and the latest revision number. If the numbers differ, it means someone

else updated the auth metadata. So it retries the checking. With this mechanism, the

successful password checking based on the obsolete password can be avoided.

Resolving a token in the API layer

After authenticating with Authenticate() , a client can create a gRPC connection as it would

without auth. In addition to the existing initialization process, the client must associate the

token with the newly created connection. grpc.WithPerRPCCredentials()  provides the

functionality for this purpose.

Every authenticated request from the client has a token. The token can be obtained with

grpc.metadata.FromIncomingContext()  in the server side. The server can obtain who is issuing

the request and when the user was authorized. The information will be filled by the API layer



in the header ( etcdserverpb.RequestHeader.Username  and

etcdserverpb.RequestHeader.AuthRevision ) of a raft log entry

( etcdserverpb.InternalRaftRequest ).

Checking permission in the state machine

The auth info in etcdserverpb.RequestHeader  is checked in the apply phase of the state

machine. This step checks the user is granted permission to requested keys on the latest

revision of auth store.

Two types of tokens: simple and JWT

There are two kinds of token types: simple and JWT. The simple token isn’t designed for

production use cases. Its tokens aren’t cryptographically signed and servers must statefully

track token-user correspondence; it is meant for development testing. JWT tokens should be

used for production deployments since it is cryptographically signed and verified. From the

implementation perspective, JWT is stateless. Its token can include metadata including

username and revision, so servers don’t need to remember correspondence between tokens

and the metadata.

Note : There is a known issue #18437  with simple tokens. Within etcd servers, tokens are

resolved at the API layer and simple tokens are stateful. The process is not protected by a

linearizable check, meaning an etcd member may not have completed processing a previous

authentication request before receiving the next one. In such cases, the member might

return an “invalid auth token” error to the client. This issue is usually rare on a node with

good network conditions but can occur if there is significant latency. As a workaround,

applications can implement a retry mechanism to handle this error.

Notes on the difference between KVS models and file
system models

etcd v3 is a KVS, not a file system. So the permissions can be granted to the users in form of

an exact key name or a key range like ["start key", "end key") . It means that granting a

permission of a nonexistent key is possible. Users should care about unintended permission

granting. In a case of file system like system (e.g. Chubby or ZooKeeper), an inode like data

structure can include the permission information. So granting permission to a nonexist key

won’t be possible (except the case of sticky bits).

The etcd v3 model requires multiple lookup of the metadata unlike the file system like

systems. The worst case lookup cost will be sum the user’s total granted keys and intervals.

The cost cannot be avoided because v3’s flat key space is completely different from Unix’s file



https://github.com/etcd-io/etcd/issues/18437
https://github.com/etcd-io/etcd/issues/18437
https://github.com/etcd-io/etcd/issues/18437


system model (every inode includes permission metadata). Practically the cost won’t be a

serious problem because the metadata is small enough to benefit from caching.

Last modified August 19, 2024: update doc auth design with simple token known issue

(65d913f)


https://github.com/etcd-io/website/commit/65d913f443df0253c17d816b8dd31fbad89c7c47
https://github.com/etcd-io/website/commit/65d913f443df0253c17d816b8dd31fbad89c7c47
https://github.com/etcd-io/website/commit/65d913f443df0253c17d816b8dd31fbad89c7c47
https://github.com/etcd-io/website/commit/65d913f443df0253c17d816b8dd31fbad89c7c47


etcd API

etcd API central design overview

This document is meant to give an overview of the v3 etcd APIs central design. This should

not be mistaken with etcd v2 API, deprecated in etcd v3.5. It is by no means all encompassing,

but intended to focus on the basic ideas needed to understand etcd without the distraction

of less common API calls. All etcd APIs are defined in gRPC services , which categorize remote

procedure calls (RPCs) understood by the etcd server. A full listing of all etcd RPCs are

documented in markdown in the gRPC API listing.

gRPC Services

Every API request sent to an etcd server is a gRPC remote procedure call. RPCs in etcd are

categorized based on functionality into services.

Services important for dealing with etcd’s key space include:

KV - Creates, updates, fetches, and deletes key-value pairs.

Watch - Monitors changes to keys.

Lease - Primitives for consuming client keep-alive messages.

Services which manage the cluster itself include:

Auth - Role based authentication mechanism for authenticating users.

Cluster - Provides membership information and configuration facilities.

Maintenance - Takes recovery snapshots, defragments the store, and returns per-

member status information.

Requests and Responses

All RPCs in etcd follow the same format. Each RPC has a function Name  which takes

NameRequest  as an argument and returns NameResponse  as a response. For example, here is

the Range  RPC description:



service KV {


etcd

Docs Blog Community Install Play

https://github.com/etcd-io/etcd/blob/master/api/etcdserverpb/rpc.proto
https://github.com/etcd-io/etcd/blob/master/api/etcdserverpb/rpc.proto
https://github.com/etcd-io/etcd/blob/master/api/etcdserverpb/rpc.proto
https://etcd.io/docs/v3.5/dev-guide/api_reference_v3/
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Response header

All Responses from etcd API have an attached response header which includes cluster

metadata for the response:

Cluster_ID - the ID of the cluster generating the response.

Member_ID - the ID of the member generating the response.

Revision - the revision of the key-value store when generating the response.

Raft_Term - the Raft term of the member when generating the response.

An application may read the Cluster_ID  or Member_ID  field to ensure it is communicating

with the intended cluster (member).

Applications can use the Revision  field to know the latest revision of the key-value store. This

is especially useful when applications specify a historical revision to make a time travel

query  and wish to know the latest revision at the time of the request.

Applications can use Raft_Term  to detect when the cluster completes a new leader election.

Key-Value API

The Key-Value API manipulates key-value pairs stored inside etcd. The majority of requests

made to etcd are usually key-value requests.

System primitives

Key-Value pair

  Range(RangeRequest) returns (RangeResponse)
  ...
}

message ResponseHeader {
  uint64 cluster_id = 1;
  uint64 member_id = 2;
  int64 revision = 3;
  uint64 raft_term = 4;
}





A key-value pair is the smallest unit that the key-value API can manipulate. Each key-value

pair has a number of fields, defined in protobuf format :

Key - key in bytes. An empty key is not allowed.

Value - value in bytes.

Version - version is the version of the key. A deletion resets the version to zero and any

modification of the key increases its version.

Create_Revision - revision of the last creation on the key.

Mod_Revision - revision of the last modification on the key.

Lease - the ID of the lease attached to the key. If lease is 0, then no lease is attached to

the key.

In addition to just the key and value, etcd attaches additional revision metadata as part of the

key message. This revision information orders keys by time of creation and modification,

which is useful for managing concurrency for distributed synchronization. The etcd client’s

distributed shared locks  use the creation revision to wait for lock ownership. Similarly, the

modification revision is used for detecting software transactional memory  read set conflicts

and waiting on leader election  updates.

Revisions

etcd maintains a 64-bit cluster-wide counter, the store revision, that is incremented each time

the key space is modified. The revision serves as a global logical clock, sequentially ordering

all updates to the store. The change represented by a new revision is incremental; the data

associated with a revision is the data that changed the store. Internally, a new revision means

writing the changes to the backend’s B+tree, keyed by the incremented revision.

Revisions become more valuable when considering etcd’s multi-version concurrency control

backend. The MVCC model means that the key-value store can be viewed from past revisions

since historical key revisions are retained. The retention policy for this history can be

configured by cluster administrators for fine-grained storage management; usually etcd

discards old revisions of keys on a timer. A typical etcd cluster retains superseded key data

for hours. This also provides reliable handling for long client disconnection, not just transient



message KeyValue {
  bytes key = 1;
  int64 create_revision = 2;
  int64 mod_revision = 3;
  int64 version = 4;
  bytes value = 5;
  int64 lease = 6;
}











https://github.com/etcd-io/etcd/blob/master/api/mvccpb/kv.proto
https://github.com/etcd-io/etcd/blob/master/api/mvccpb/kv.proto
https://github.com/etcd-io/etcd/blob/master/api/mvccpb/kv.proto
https://github.com/etcd-io/etcd/blob/master/client/v3/concurrency/mutex.go
https://github.com/etcd-io/etcd/blob/master/client/v3/concurrency/mutex.go
https://github.com/etcd-io/etcd/blob/master/client/v3/concurrency/mutex.go
https://github.com/etcd-io/etcd/blob/master/client/v3/concurrency/stm.go
https://github.com/etcd-io/etcd/blob/master/client/v3/concurrency/stm.go
https://github.com/etcd-io/etcd/blob/master/client/v3/concurrency/stm.go
https://github.com/etcd-io/etcd/blob/master/client/v3/concurrency/election.go
https://github.com/etcd-io/etcd/blob/master/client/v3/concurrency/election.go
https://github.com/etcd-io/etcd/blob/master/client/v3/concurrency/election.go
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Multiversion_concurrency_control


network disruptions: watchers simply resume from the last observed historical revision.

Similarly, to read from the store at a particular point-in-time, read requests can be tagged

with a revision to return keys from a view of the key space at the point-in-time that revision

was committed.

Key ranges

The etcd data model indexes all keys over a flat binary key space. This differs from other key-

value store systems that use a hierarchical system of organizing keys into directories. Instead

of listing keys by directory, keys are listed by key intervals [a, b) .

These intervals are often referred to as “ranges” in etcd. Operations over ranges are more

powerful than operations on directories. Like a hierarchical store, intervals support single key

lookups via [a, a+1)  (e.g., [‘a’, ‘a\x00’) looks up ‘a’) and directory lookups by encoding keys by

directory depth. In addition to those operations, intervals can also encode prefixes; for

example the interval ['a', 'b')  looks up all keys prefixed by the string ‘a’.

By convention, ranges for a request are denoted by the fields key  and range_end . The key

field is the first key of the range and should be non-empty. The range_end  is the key following

the last key of the range. If range_end  is not given or empty, the range is defined to contain

only the key argument. If range_end  is key  plus one (e.g., “aa”+1 == “ab”, “a\xff”+1 == “b”),

then the range represents all keys prefixed with key. If both key  and range_end  are ‘\0’, then

range represents all keys. If range_end  is ‘\0’, the range is all keys greater than or equal to the

key argument.

Range

Keys are fetched from the key-value store using the Range  API call, which takes a

RangeRequest :

message RangeRequest {
  enum SortOrder {

NONE = 0; // default, no sorting
ASCEND = 1; // lowest target value first
DESCEND = 2; // highest target value first

  }
  enum SortTarget {

KEY = 0;
VERSION = 1;
CREATE = 2;
MOD = 3;
VALUE = 4;

  }

  bytes key = 1;





Key, Range_End - The key range to fetch.

Limit - the maximum number of keys returned for the request. When limit is set to 0, it is

treated as no limit.

Revision - the point-in-time of the key-value store to use for the range. If revision is less

or equal to zero, the range is over the latest key-value store. If the revision is compacted,

ErrCompacted is returned as a response.

Sort_Order - the ordering for sorted requests.

Sort_Target - the key-value field to sort.

Serializable - sets the range request to use serializable member-local reads. By default,

Range is linearizable; it reflects the current consensus of the cluster. For better

performance and availability, in exchange for possible stale reads, a serializable range

request is served locally without needing to reach consensus with other nodes in the

cluster.

Keys_Only - return only the keys and not the values.

Count_Only - return only the count of the keys in the range.

Min_Mod_Revision - the lower bound for key mod revisions; filters out lesser mod

revisions.

Max_Mod_Revision - the upper bound for key mod revisions; filters out greater mod

revisions.

Min_Create_Revision - the lower bound for key create revisions; filters out lesser create

revisions.

Max_Create_Revision - the upper bound for key create revisions; filters out greater create

revisions.

The client receives a RangeResponse  message from the Range  call:

  bytes range_end = 2;
  int64 limit = 3;
  int64 revision = 4;
  SortOrder sort_order = 5;
  SortTarget sort_target = 6;
  bool serializable = 7;
  bool keys_only = 8;
  bool count_only = 9;
  int64 min_mod_revision = 10;
  int64 max_mod_revision = 11;
  int64 min_create_revision = 12;
  int64 max_create_revision = 13;
}

message RangeResponse {
  ResponseHeader header = 1;





Kvs - the list of key-value pairs matched by the range request. When Count_Only  is set,

Kvs  is empty.

More - indicates if there are more keys to return in the requested range if limit  is set.

Count - the total number of keys satisfying the range request.

Put

Keys are saved into the key-value store by issuing a Put  call, which takes a PutRequest :

Key - the name of the key to put into the key-value store.

Value - the value, in bytes, to associate with the key in the key-value store.

Lease - the lease ID to associate with the key in the key-value store. A lease value of 0

indicates no lease.

Prev_Kv - when set, responds with the key-value pair data before the update from this

Put  request.

Ignore_Value - when set, update the key without changing its current value. Returns an

error if the key does not exist.

Ignore_Lease - when set, update the key without changing its current lease. Returns an

error if the key does not exist.

The client receives a PutResponse  message from the Put  call:

  repeated mvccpb.KeyValue kvs = 2;
  bool more = 3;
  int64 count = 4;
}

message PutRequest {
  bytes key = 1;
  bytes value = 2;
  int64 lease = 3;
  bool prev_kv = 4;
  bool ignore_value = 5;
  bool ignore_lease = 6;
}







Prev_Kv - the key-value pair overwritten by the Put , if Prev_Kv  was set in the

PutRequest .

Delete Range

Ranges of keys are deleted using the DeleteRange  call, which takes a DeleteRangeRequest :

Key, Range_End - The key range to delete.

Prev_Kv - when set, return the contents of the deleted key-value pairs.

The client receives a DeleteRangeResponse  message from the DeleteRange  call:

Deleted - number of keys deleted.

Prev_Kv - a list of all key-value pairs deleted by the DeleteRange  operation.

Transaction

A transaction is an atomic If/Then/Else construct over the key-value store. It provides a

primitive for grouping requests together in atomic blocks (i.e., then/else) whose execution is

guarded (i.e., if) based on the contents of the key-value store. Transactions can be used for

protecting keys from unintended concurrent updates, building compare-and-swap

operations, and developing higher-level concurrency control.

message PutResponse {
  ResponseHeader header = 1;
  mvccpb.KeyValue prev_kv = 2;
}

message DeleteRangeRequest {
  bytes key = 1;
  bytes range_end = 2;
  bool prev_kv = 3;
}



message DeleteRangeResponse {
  ResponseHeader header = 1;
  int64 deleted = 2;
  repeated mvccpb.KeyValue prev_kvs = 3;
}





A transaction can atomically process multiple requests in a single request. For modifications

to the key-value store, this means the store’s revision is incremented only once for the

transaction and all events generated by the transaction will have the same revision. However,

modifications to the same key multiple times within a single transaction are forbidden.

All transactions are guarded by a conjunction of comparisons, similar to an If  statement.

Each comparison checks a single key in the store. It may check for the absence or presence of

a value, compare with a given value, or check a key’s revision or version. Two different

comparisons may apply to the same or different keys. All comparisons are applied atomically;

if all comparisons are true, the transaction is said to succeed and etcd applies the

transaction’s then / success  request block, otherwise it is said to fail and applies the else /

failure  request block.

Each comparison is encoded as a Compare  message:

Result - the kind of logical comparison operation (e.g., equal, less than, etc).

Target - the key-value field to be compared. Either the key’s version, create revision,

modification revision, or value.

Key - the key for the comparison.

message Compare {
  enum CompareResult {
    EQUAL = 0;
    GREATER = 1;
    LESS = 2;
    NOT_EQUAL = 3;
  }
  enum CompareTarget {
    VERSION = 0;
    CREATE = 1;
    MOD = 2;
    VALUE= 3;
  }
  CompareResult result = 1;
  // target is the key-value field to inspect for the comparison.
  CompareTarget target = 2;
  // key is the subject key for the comparison operation.
  bytes key = 3;
  oneof target_union {
    int64 version = 4;
    int64 create_revision = 5;
    int64 mod_revision = 6;
    bytes value = 7;
  }
}





Target_Union - the user-specified data for the comparison.

After processing the comparison block, the transaction applies a block of requests. A block is

a list of RequestOp  messages:

Request_Range - a RangeRequest .

Request_Put - a PutRequest . The keys must be unique. It may not share keys with any

other Puts or Deletes.

Request_Delete_Range - a DeleteRangeRequest . It may not share keys with any Puts or

Deletes requests.

All together, a transaction is issued with a Txn  API call, which takes a TxnRequest :

Compare - A list of predicates representing a conjunction of terms for guarding the

transaction.

Success - A list of requests to process if all compare tests evaluate to true.

Failure - A list of requests to process if any compare test evaluates to false.

The client receives a TxnResponse  message from the Txn  call:

message RequestOp {
  // request is a union of request types accepted by a transaction.
  oneof request {
    RangeRequest request_range = 1;
    PutRequest request_put = 2;
    DeleteRangeRequest request_delete_range = 3;
  }
}



message TxnRequest {
  repeated Compare compare = 1;
  repeated RequestOp success = 2;
  repeated RequestOp failure = 3;
}



message TxnResponse {
  ResponseHeader header = 1;
  bool succeeded = 2;
  repeated ResponseOp responses = 3;
}





Succeeded - Whether Compare  evaluated to true or false.

Responses - A list of responses corresponding to the results from applying the Success

block if succeeded is true or the Failure  if succeeded is false.

The Responses  list corresponds to the results from the applied RequestOp  list, with each

response encoded as a ResponseOp :

The ResponseHeader  included in each inner response shouldn’t be interpreted in any way. If

clients need to get the latest revision, then they should always check the top level

ResponseHeader  in TxnResponse .

Watch API

The Watch  API provides an event-based interface for asynchronously monitoring changes to

keys. An etcd watch waits for changes to keys by continuously watching from a given revision,

either current or historical, and streams key updates back to the client.

Events

Every change to every key is represented with Event  messages. An Event  message provides

both the update’s data and the type of update:

message ResponseOp {
  oneof response {
    RangeResponse response_range = 1;
    PutResponse response_put = 2;
    DeleteRangeResponse response_delete_range = 3;
  }
}



message Event {
  enum EventType {
    PUT = 0;
    DELETE = 1;
  }
  EventType type = 1;
  KeyValue kv = 2;
  KeyValue prev_kv = 3;
}





Type - The kind of event. A PUT type indicates new data has been stored to the key. A

DELETE indicates the key was deleted.

KV - The KeyValue associated with the event. A PUT event contains current kv pair. A PUT

event with kv.Version=1 indicates the creation of a key. A DELETE event contains the

deleted key with its modification revision set to the revision of deletion.

Prev_KV - The key-value pair for the key from the revision immediately before the event.

To save bandwidth, it is only filled out if the watch has explicitly enabled it.

Watch streams

Watches are long-running requests and use gRPC streams to stream event data. A watch

stream is bi-directional; the client writes to the stream to establish watches and reads to

receive watch events. A single watch stream can multiplex many distinct watches by tagging

events with per-watch identifiers. This multiplexing helps reducing the memory footprint and

connection overhead on the core etcd cluster.

To read about guarantees made about watch events, please read etcd api guarantees.

A client creates a watch by sending a WatchCreateRequest  over a stream returned by Watch :

Key, Range_End - The key range to watch.

Start_Revision - An optional revision for where to inclusively begin watching. If not given,

it will stream events following the revision of the watch creation response header

revision. The entire available event history can be watched starting from the last

compaction revision.

Progress_Notify - When set, the watch will periodically receive a WatchResponse with no

events, if there are no recent events. It is useful when clients wish to recover a

disconnected watcher starting from a recent known revision. The etcd server decides

how often to send notifications based on current server load.

message WatchCreateRequest {
  bytes key = 1;
  bytes range_end = 2;
  int64 start_revision = 3;
  bool progress_notify = 4;

  enum FilterType {
    NOPUT = 0;
    NODELETE = 1;
  }
  repeated FilterType filters = 5;
  bool prev_kv = 6;
}



https://etcd.io/docs/v3.5/learning/api_guarantees/#watch-apis


Filters - A list of event types to filter away at server side.

Prev_Kv - When set, the watch receives the key-value data from before the event

happens. This is useful for knowing what data has been overwritten.

In response to a WatchCreateRequest  or if there is a new event for some established watch,

the client receives a WatchResponse :

Watch_ID - the ID of the watch that corresponds to the response.

Created - set to true if the response is for a create watch request. The client should store

the ID and expect to receive events for the watch on the stream. All events sent to the

created watcher will have the same watch_id.

Canceled - set to true if the response is for a cancel watch request. No further events will

be sent to the canceled watcher.

Compact_Revision - set to the minimum historical revision available to etcd if a watcher

tries watching at a compacted revision. This happens when creating a watcher at a

compacted revision or the watcher cannot catch up with the progress of the key-value

store. The watcher will be canceled; creating new watches with the same start_revision

will fail.

Events - a list of new events in sequence corresponding to the given watch ID.

If the client wishes to stop receiving events for a watch, it issues a WatchCancelRequest :

Watch_ID - the ID of the watch to cancel so that no more events are transmitted.

Lease API

message WatchResponse {
  ResponseHeader header = 1;
  int64 watch_id = 2;
  bool created = 3;
  bool canceled = 4;
  int64 compact_revision = 5;

  repeated mvccpb.Event events = 11;
}



message WatchCancelRequest {
   int64 watch_id = 1;
}





Leases are a mechanism for detecting client liveness. The cluster grants leases with a time-to-

live. A lease expires if the etcd cluster does not receive a keepAlive within a given TTL period.

To tie leases into the key-value store, each key may be attached to at most one lease. When a

lease expires or is revoked, all keys attached to that lease will be deleted. Each expired key

generates a delete event in the event history.

Obtaining leases

Leases are obtained through the LeaseGrant  API call, which takes a LeaseGrantRequest :

TTL - the advisory time-to-live, in seconds.

ID - the requested ID for the lease. If ID is set to 0, etcd will choose an ID.

The client receives a LeaseGrantResponse  from the LeaseGrant  call:

ID - the lease ID for the granted lease.

TTL - is the server selected time-to-live, in seconds, for the lease.

ID - the lease ID to revoke. When the lease is revoked, all attached keys are deleted.

Keep alives

message LeaseGrantRequest {
  int64 TTL = 1;
  int64 ID = 2;
}



message LeaseGrantResponse {
  ResponseHeader header = 1;
  int64 ID = 2;
  int64 TTL = 3;
}



message LeaseRevokeRequest {
  int64 ID = 1;
}





Leases are refreshed using a bi-directional stream created with the LeaseKeepAlive  API call.

When the client wishes to refresh a lease, it sends a LeaseKeepAliveRequest  over the stream:

ID - the lease ID for the lease to keep alive.

The keep alive stream responds with a LeaseKeepAliveResponse :

ID - the lease that was refreshed with a new TTL.

TTL - the new time-to-live, in seconds, that the lease has remaining.

Last modified April 6, 2024: Fix markdown links in api docs for v3.5 v3.4 Fixes issue #830

(8711d61)

message LeaseKeepAliveRequest {
  int64 ID = 1;
}



message LeaseKeepAliveResponse {
  ResponseHeader header = 1;
  int64 ID = 2;
  int64 TTL = 3;
}





https://github.com/etcd-io/website/commit/8711d6182a9da75ce79c813ed77e790513a065f4
https://github.com/etcd-io/website/commit/8711d6182a9da75ce79c813ed77e790513a065f4
https://github.com/etcd-io/website/commit/8711d6182a9da75ce79c813ed77e790513a065f4
https://github.com/etcd-io/website/commit/8711d6182a9da75ce79c813ed77e790513a065f4


etcd persistent storage files

Reference of the persistent storage format and files

This document explains the etcd persistent storage format: naming, content and tools that

allow developers to inspect them. Going forward the document should be extended with

changes to the storage model. This document is targeted at etcd developers to help with their

data recovery needs.

Prerequisites

The following articles provide helpful background information for this document:

etcd data model overview: https://etcd.io/docs/v3.5/learning/data_model

Raft overview: https://raft.github.io/raft.pdf  (especially “5.3 Log replication” section).

Overview

Long leaving files

File name High level purpose

./member/snap/db
bbolt b+tree  that stores all

the applied data, membership

authorization information &

metadata. It’s aware of what's

the last applied WAL log index

("consistent_index" ).

./member/snap/0000000000000002-0000000000049425.snap

./member/snap/0000000000000002-0000000000061ace.snap

Periodic snapshots of legacy

v2 store, containing:

basic membership

information

etcd-version









etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/learning/data_model
https://etcd.io/docs/v3.5/learning/data_model
https://etcd.io/docs/v3.5/learning/data_model
https://raft.github.io/raft.pdf
https://raft.github.io/raft.pdf
https://raft.github.io/raft.pdf
https://en.wikipedia.org/wiki/B%2B_tree
https://en.wikipedia.org/wiki/B%2B_tree
https://en.wikipedia.org/wiki/B%2B_tree
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/etcdserver/cindex/cindex.go#L92
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/etcdserver/cindex/cindex.go#L92
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/etcdserver/cindex/cindex.go#L92
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


As of etcd v3, the content is

redundant to the content of

/snap/db files.

Periodically (30s ) these files

are purged , and the last --

max-snapshots=5  are preserved.

/member/snap/000000000007a178.snap.db
A complete bbolt snapshot

downloaded from the etcd

leader if the replica was

lagging too much.

Has the same type of content

as ( ./member/snap/db ) file.

The file is used in 2 scenarios:

In response to the leader's

request to recover from

the snapshot.

During the server startup

, when the last snapshot

(.snap.db file) is found and

detected to be having a

newer index than the

consistent_index in the

current snap.db  file.

Note: Periodic snapshots

generated on each replica are

only emitted in the form of

*.snap file (not snap.db file).

So there is no guarantee the

most recent snapshot (in WAL

log) has the *.snap.db file. But

in such a case the backend

(snap/db) is expected to be

newer than the snapshot.

The file is not being deleted

when the recovery is over  (so

whole content is populated to

./member/snap/db file).

Periodically (30s ) the files are











https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/etcdserver/server.go#L87
https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/etcdserver/server.go#L87
https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/etcdserver/server.go#L87
https://github.com/etcd-io/etcd/blob/aa97484166d2b3fb6afeb4390344e68b02afb566/server/etcdserver/server.go#L597
https://github.com/etcd-io/etcd/blob/aa97484166d2b3fb6afeb4390344e68b02afb566/server/etcdserver/server.go#L597
https://github.com/etcd-io/etcd/blob/aa97484166d2b3fb6afeb4390344e68b02afb566/server/etcdserver/server.go#L597
https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/etcdserver/server.go#L444
https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/etcdserver/server.go#L444
https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/etcdserver/server.go#L444
https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/etcdserver/server.go#L1236
https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/etcdserver/server.go#L1236
https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/etcdserver/server.go#L1236
https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/etcdserver/server.go#L1236
https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/etcdserver/server.go#L87
https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/etcdserver/server.go#L87
https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/etcdserver/server.go#L87
https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/etcdserver/server.go#L774


 purged. Here also --max-

snapshots=5  are preserved. As

these files can be O(GBs) this

might create a risk of disk

space exhaustion.

./member/wal/000000000000000f-00000000000b38c7.wal

./member/wal/000000000000000e-00000000000a7fe3.wal

./member/wal/000000000000000d-000000000009c70c.wal

Raft’s Write Ahead Logs,

containing recent transactions

accepted by Raft, periodic

snapshots or CRC records.

Recent --max-wals=5  files are

being preserved. Each of these

files is ~64*10^6  bytes. The file

is cut when it exceeds this

hardcoded size, so the files

might slightly exceed that size

(so the preallocated 0.tmp

does not offer full disk-

exceeded protection).

If the snapshots are too

infrequent, there can be more

than --max-wals=5 , as file-

system level locks are

protecting the files preventing

them from being deleted too

early.

./member/wal/0.tmp (or .../1.tmp)
Preallocated space for the

next write ahead log file. Used

to avoid Raft being stuck by a

lack of WAL logs capacity

without the possibility to raise

an alarm.

Temporary files

During etcd internal processing, it is possible that several short living files might be

encountered:

File High level purpose



https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/etcdserver/server.go#L774
https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/etcdserver/server.go#L774
https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/etcdserver/server.go#L774


./member/snap/0000000000000002-000000000007a178.snap.broken
Snapshot files are

renamed as ‘broken’

when they cannot be

loaded .

The attempt to load the

newest file happens

when etcd is being

started .

Or during

backup/migrate

commands of etcdctl.

./member/snap/tmp071677638 (random suffix)
Temporary  (bbolt) file

created on replicas in

response to the

msgSnap leaders

request, so to the

demand from the

leader to recover

storage from the given

snapshot.

After successful

(complete) retrieval of

content the file is

renamed  to:

/member/snap/[SNAPSHOT-

INDEX].snap.db . In case

of a server dying /

being killed in the

middle of the files

download, the files

remain on disk and are

never automatically

cleaned.They can be

substantial in size

(GBs).

See etcd/issues/12837

. Fixed in etcd 3.5.











https://github.com/etcd-io/etcd/blob/aa97484166d2b3fb6afeb4390344e68b02afb566/server/etcdserver/api/snap/snapshotter.go#L144
https://github.com/etcd-io/etcd/blob/aa97484166d2b3fb6afeb4390344e68b02afb566/server/etcdserver/api/snap/snapshotter.go#L144
https://github.com/etcd-io/etcd/blob/aa97484166d2b3fb6afeb4390344e68b02afb566/server/etcdserver/api/snap/snapshotter.go#L144
https://github.com/etcd-io/etcd/blob/aa97484166d2b3fb6afeb4390344e68b02afb566/server/etcdserver/server.go#L302
https://github.com/etcd-io/etcd/blob/aa97484166d2b3fb6afeb4390344e68b02afb566/server/etcdserver/server.go#L302
https://github.com/etcd-io/etcd/blob/aa97484166d2b3fb6afeb4390344e68b02afb566/server/etcdserver/server.go#L302
https://github.com/etcd-io/etcd/blob/ae9734ed278b7a1a7dfc82e800471ebbf9fce56f/etcdserver/api/snap/db.go#L39
https://github.com/etcd-io/etcd/blob/ae9734ed278b7a1a7dfc82e800471ebbf9fce56f/etcdserver/api/snap/db.go#L39
https://github.com/etcd-io/etcd/blob/ae9734ed278b7a1a7dfc82e800471ebbf9fce56f/etcdserver/api/snap/db.go#L39
https://github.com/etcd-io/etcd/blob/ae9734ed278b7a1a7dfc82e800471ebbf9fce56f/etcdserver/api/snap/db.go#L55
https://github.com/etcd-io/etcd/blob/ae9734ed278b7a1a7dfc82e800471ebbf9fce56f/etcdserver/api/snap/db.go#L55
https://github.com/etcd-io/etcd/blob/ae9734ed278b7a1a7dfc82e800471ebbf9fce56f/etcdserver/api/snap/db.go#L55
https://github.com/etcd-io/etcd/issues/12837
https://github.com/etcd-io/etcd/issues/12837
https://github.com/etcd-io/etcd/issues/12837


/member/snap/db.tmp.071677638 (random suffix)
A temporary file that

contains a copy of the

backend content

(/member/snap/db),

during the process of

defragmentation .

After the successful

process the file is

renamed to

/member/snap/db,

replacing the original

backend.

On etcd server startup

these files get pruned .

bbolt b+tree: member/snap/db

This file contains the main etcd content, applied to a specific point of the Raft log (see

consistent_index ).

Physical organization

The better bolt storage is physically organized as a b+tree . The physical pages of b-tree are

never modified in-place . Instead, the content is copied to a new page (reclaimed from the

freepages list) and the old page is added to the free-pages list as soon as there is no open

transaction that might access it. Thanks to this process, an open RO transaction sees a

consistent historical state of the storage. The RW transaction is exclusive and blocking all

other RW transactions.

Big values are stored on multiple continuous pages. The process of page reclamation

combined with a need to allocate contiguous areas of pages of different sizes might lead to

growing fragmentation of the bbolt storage.

The bbolt file never shrinks on its own. Only in the defragmentation process, the file can be

rewritten to a new one that has some buffer of free pages on its end and has truncated size.

Logical organization

The bbolt storage is divided into buckets. In each bucket there are stored keys (byte[]->value

byte[] pairs), in lexicographical order. The list below represents buckets used by etcd (as of

version 3.5) and the keys in use.









1

https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/mvcc/backend/backend.go#L373
https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/mvcc/backend/backend.go#L373
https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/mvcc/backend/backend.go#L373
https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/mvcc/backend/backend.go#L373
https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/etcdserver/api/snap/snapshotter.go#L217
https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/etcdserver/api/snap/snapshotter.go#L217
https://github.com/etcd-io/etcd/blob/a4570a60e771402360755beb7d662bdbca1f87f2/server/etcdserver/api/snap/snapshotter.go#L217
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/etcdserver/cindex/cindex.go#L92
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/etcdserver/cindex/cindex.go#L92
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/etcdserver/cindex/cindex.go#L92
https://en.wikipedia.org/wiki/B%2B_tree
https://en.wikipedia.org/wiki/B%2B_tree
https://en.wikipedia.org/wiki/B%2B_tree


Bucket Key Exemplar value

alarm rpcpb.Alarm : {MemberID,

Alarm:

NONE|NOSPACE|CORRUPT}

nil

auth "authRevision" ""  (empty) or BigEndian.PutUint64

authRoles [roleName] as string authpb.Role  marshalled

authUsers [userName] as string authpb.User  marshalled

cluster "clusterVersion" "3.5.0"  (string)

"downgrade" JSON:

{
  "target-version": "3.4.0"
  "enabled": true/false
}

key [revisionId] encoded

using bytesToRev

{main,sub}

The key-value deletes are

marshalled with 't' at the

end (as a "Thumbstone")

mvccpb.KeyValue  marshalled proto ( key,

create_rev, mod_rev, version, value, lease 

lease leasepb.Lease  marshalled proto (ID, TTL,

RemainingTTL)

members [memberId] in hex as

string:

"8e9e05c52164694d"

JSON as string serialized Member  structure:

{
  "id":10276657743932975437,
  "peerURLs":[
  "http://localhost:2380 "],
  "name":"default",

















https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/api/etcdserverpb/rpc.proto#L976
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/api/etcdserverpb/rpc.proto#L976
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/api/etcdserverpb/rpc.proto#L976
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/api/authpb/auth.proto#L38
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/api/authpb/auth.proto#L38
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/api/authpb/auth.proto#L38
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/api/authpb/auth.proto#L17
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/api/authpb/auth.proto#L17
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/api/authpb/auth.proto#L17
https://github.com/etcd-io/etcd/blob/ae7862e8bc8007eb396099db4e0e04ac026c8df5/server/mvcc/revision.go#L56
https://github.com/etcd-io/etcd/blob/ae7862e8bc8007eb396099db4e0e04ac026c8df5/server/mvcc/revision.go#L56
https://github.com/etcd-io/etcd/blob/ae7862e8bc8007eb396099db4e0e04ac026c8df5/server/mvcc/revision.go#L56
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/api/mvccpb/kv.proto#L12
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/api/mvccpb/kv.proto#L12
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/api/mvccpb/kv.proto#L12
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/lease/leasepb/lease.proto#L13
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/lease/leasepb/lease.proto#L13
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/lease/leasepb/lease.proto#L13
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/etcdserver/api/membership/member.go#L43
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/etcdserver/api/membership/member.go#L43
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/etcdserver/api/membership/member.go#L43
http://localhost:2380/
http://localhost:2380/
http://localhost:2380/


  "clientURLs": ["http://localhost:2379"
}

members_removed [memberId] in hex as

string:

"8e9e05c52164694d"

[]byte("removed")

meta "consistent_index" uint64 bytes (BigEndian)

"scheduledCompactRev" bytesToRev {main,sub} encoded. (16 bytes

"finishedCompactRev" bytesToRev {main,sub} encoded. (16 bytes

"confState"

"term"

"storage-version"

Tools

bbolt

bbolt has a command line tool that enables inspecting the file content.

Examples of use:

List all buckets in given bbolt file:

% go run go.etcd.io/bbolt/cmd/bbolt buckets ./default.etcd/member/snap/db

Read a particular key/value pair:

% go run go.etcd.io/bbolt/cmd/bbolt get ./default.etcd/member/snap/db cluster clusterVers

etcd-dump-db



 

 

https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/etcdserver/cindex/cindex.go#L92
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/etcdserver/cindex/cindex.go#L92
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/etcdserver/cindex/cindex.go#L92
https://github.com/etcd-io/etcd/blob/ae7862e8bc8007eb396099db4e0e04ac026c8df5/server/mvcc/kvstore.go#L41
https://github.com/etcd-io/etcd/blob/ae7862e8bc8007eb396099db4e0e04ac026c8df5/server/mvcc/kvstore.go#L41
https://github.com/etcd-io/etcd/blob/ae7862e8bc8007eb396099db4e0e04ac026c8df5/server/mvcc/kvstore.go#L41
https://github.com/etcd-io/etcd/blob/ae7862e8bc8007eb396099db4e0e04ac026c8df5/server/mvcc/revision.go#L56
https://github.com/etcd-io/etcd/blob/ae7862e8bc8007eb396099db4e0e04ac026c8df5/server/mvcc/revision.go#L56
https://github.com/etcd-io/etcd/blob/ae7862e8bc8007eb396099db4e0e04ac026c8df5/server/mvcc/revision.go#L56
https://github.com/etcd-io/etcd/blob/ae7862e8bc8007eb396099db4e0e04ac026c8df5/server/mvcc/kvstore.go#L42
https://github.com/etcd-io/etcd/blob/ae7862e8bc8007eb396099db4e0e04ac026c8df5/server/mvcc/kvstore.go#L42
https://github.com/etcd-io/etcd/blob/ae7862e8bc8007eb396099db4e0e04ac026c8df5/server/mvcc/kvstore.go#L42
https://github.com/etcd-io/etcd/blob/ae7862e8bc8007eb396099db4e0e04ac026c8df5/server/mvcc/revision.go#L56
https://github.com/etcd-io/etcd/blob/ae7862e8bc8007eb396099db4e0e04ac026c8df5/server/mvcc/revision.go#L56
https://github.com/etcd-io/etcd/blob/ae7862e8bc8007eb396099db4e0e04ac026c8df5/server/mvcc/revision.go#L56


etcd-dump-db can be used to list content of v3 etcd backend (bbolt).

% go run go.etcd.io/etcd/v3/tools/etcd-dump-db  list-bucket default.etcd
alarm
auth
...

See more examples in: https://github.com/etcd-io/etcd/tree/master/tools/etcd-dump-db

WAL: Write ahead log

Write ahead log is a Raft persistent storage that is used to store proposals. First the leader

stores the proposal in its log and then (concurrently) replicates it using Raft protocol to

followers. Each follower persists the proposal in its WAL before confirming back replication to

the leader.

The WAL log used in etcd differs from canonical Raft model 2-fold:

It does persist not only indexed entries, but also Raft snapshots (lightweight) & hard-

state. So the entire Raft state of the member can be recovered from the WAL log alone.

It is append-only. Entries are not overridden in place, but an entry appended later in the

file (with the same index) is superseding the previous one.

File names

The WAL log files are named using following pattern:

"%016x-%016x.wal", seq, index

Example: ./member/wal/0000000000000010-00000000000bf1e6.wal

So the file names contains hex-encoded:

Sequential number of the WAL log file

Index of the first entry or snapshot in the file. In particular the first file

“0000000000000000-0000000000000000.wal” has the initial snapshot record with

index=0.

Physical content

The WAL log file contains a sequence of “Frames ”. Each frame contains:





https://github.com/etcd-io/etcd/tree/master/tools/etcd-dump-db
https://github.com/etcd-io/etcd/tree/master/tools/etcd-dump-db
https://github.com/etcd-io/etcd/tree/master/tools/etcd-dump-db
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/wal/encoder.go#L62
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/wal/encoder.go#L62
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/wal/encoder.go#L62


1. LittleEndian  encoded uint64 that contains the length of the marshalled walpb.Record

(3).

2. Padding: Some number of 0 bytes, such that whole frame has aligned (mod 8) size

3. Marshalled walpb.Record  data:

1. type  - int encoded enum driving interpretation of the data-field below

2. data - depending on type, usually marshalled proto

3. crc - RC-32 checksum of all “data” fields combined (no type) in all the log records on

this particular replica since WAL log creation. Please note that CRC takes in

consideration ALL records (even if they didn’t get committedcomitted by Raft).

The files are “cut” (new file is started) when the current file is exceeding 64*10^6  bytes.

Logical content

Write ahead log files in the logical layer contains:

Raftpb.Entry: recent proposals replicated by Raft leader. Some of these proposals are

considered ‘committed’ and the others are subject to be logically overridden.

Raftpb.HardState(term,commit,vote): periodic (very frequent) information about the

index of a log entry that is ‘committed’ (replicated to the majority of servers), so

guaranteed to be not changed/overridden and that can be applied to the backends (v2,

v3). It also contains a “term” (indicator whether there were any election related changes)

and a vote - a member the current replica voted for in the current term.

walpb.Snapshot(term, index): periodic snapshots of Raft state (no DB content, just

snapshot log index and Raft term)

V2 store content is stored in a separate *.store files.

V3 store content is maintained in the bbolt file, and it’s becoming an implicit

snapshot as soon as entries are applied there.

crc32 checksum record (at the beginning of each file), used to resume CRC checking for

the remainder of the file.

etcdserverpb.Metadata(node_id, cluster_id)  - identifying the cluster & replica the log

represents.

Each WAL-log file is build from (in order):

1. CRC-32 frame (running crc from all previous files, 0 for the first file).

2. Metadata frame (cluster & replica IDs)

3. For the initial WAL file only:

Empty Snapshot frame (Index:0, Term: 0). The purpose of this frame is to hold an

invariant that all entries are ‘preceded’ by a snapshot.

For not initial (2nd+) WAL file:

2 





https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/wal/encoder.go#L120
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/wal/encoder.go#L120
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/wal/encoder.go#L120
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/wal/walpb/record.proto#L11
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/wal/walpb/record.proto#L11
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/wal/walpb/record.proto#L11
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/wal/walpb/record.proto#L11
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/wal/walpb/record.proto#L11
https://github.com/etcd-io/etcd/blob/a1ff0d5373335665b3e5f4cb22a538ac63757cb6/server/wal/walpb/record.proto#L11
https://github.com/etcd-io/etcd/blob/aa97484166d2b3fb6afeb4390344e68b02afb566/server/storage/wal/wal.go#L39
https://github.com/etcd-io/etcd/blob/aa97484166d2b3fb6afeb4390344e68b02afb566/server/storage/wal/wal.go#L39
https://github.com/etcd-io/etcd/blob/aa97484166d2b3fb6afeb4390344e68b02afb566/server/storage/wal/wal.go#L39


HardState frame.

4. Mix of entry, hard-state & snapshot records

The WAL log can contain multiple entries for the same index. Such a situation can happen in

cases described in figure 7. of the Raft paper . The etcd WAL log is appended only, so the

entries are getting overridden, by appending a new entry with the same index.

In particular during the WAL reading, the logic is overriding old entries with newer entries .

Thus only the last version of entries with entry.index <= HardState.commit can be considered

as final. Entries with index > HardState.commit are subject to change.

The “terms” in the WAL log are expected to be monotonic.

The “indexes” in the WAL log are expected to:

1. start from some snapshot

2. be sequentially growing after that snapshot as long as they stay in the same ‘term’

3. if the term changes, the index can decrease, but to a new value that is higher than the

latest HardState.commit.

4. a new snapshot might happen with any index >= HardState.commit, that opens a new

sequence for indexes.





http://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14.pdf
http://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14.pdf
http://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14.pdf
https://github.com/etcd-io/etcd/blob/release-3.4/wal/wal.go#L448-L462
https://github.com/etcd-io/etcd/blob/release-3.4/wal/wal.go#L448-L462
https://github.com/etcd-io/etcd/blob/release-3.4/wal/wal.go#L448-L462


Tools

etcd-dump-logs

etcd WAL logs can be read using etcd-dump-logs  tool:

% go install go.etcd.io/etcd/v3/tools/etcd-dump-logs@latest

% go run go.etcd.io/etcd/v3/tools/etcd-dump-logs --start-index=0 aname.etcd

Be aware that:

The tool shows only Entries, and not all the WAL records (Snapshots, HardStates) that are

in the WAL log files.

The tool automatically applies ‘overrides’ on the entries. If an entry got overridden (by a

fresher entry under the same index), the tool will print only the final value.



https://github.com/etcd-io/etcd/tree/master/tools/etcd-dump-logs
https://github.com/etcd-io/etcd/tree/master/tools/etcd-dump-logs
https://github.com/etcd-io/etcd/tree/master/tools/etcd-dump-logs


The tool also prints uncommitted entries (from the tail of the LOG), without information

about HardState.commitIndex, so it’s not known whether entries are final or not.

Snapshots of (Store V2): member/snap/{term}-
{index}.snap

File names:

member/snap/{term}-{index}.snap

The filenames are generated here ("%016x-%016x.snap") and are using 2 hex-encoded

compounds:

term -> Raft term (period between elections) at the time snapshot is emitted

index -> of last applied proposal at the time snapshot is emitted

Creation

The *.snap files are created by Snapshotter.SaveSnap  method.

There are 2 triggers controlling creation of these files:

A new file is created every (approximately) --snapshotCount=(by default 100'000) applied

proposals. It’s an approximation as we might receive proposals in batches and we

consider snapshotting only at the end of batch, finally the snapshotting process is

asynchronously scheduled. The flag name (--snapshotCount) is pretty misleading as it

drives differences in index value between last snapshot index and last applied proposal

index.

Raft requests the replica to restore from the snapshot. As a replica is receiving the

snapshot over wire (msgSnap) message, it also checkpoints (lightweight) it into WAL log.

This guarantees that in the WAL logs tail there is always a valid snapshot followed by

entries. So it suppresses potential lack of continuity in the WAL logs.

Currently the files are roughly  associated 1-1 with WAL logs Snapshot entries. With store v2

decommissioning we expect the files to stop being written at all (opt-in: 3.5.x, mandatory

3.6.x).

Content

The file contains marshalled snapdb.snapshot proto (uint32 crc, bytes data) ,

that in the ‘data’ field holds Raftpb.Snapshot :

(bytes data, SnapshotMetadata{index, term, conf } metadata),







3







https://github.com/etcd-io/etcd/blob/ad5b30297a43daeb5ce7311fa606ce4c1f16618f/server/etcdserver/api/snap/snapshotter.go#L78
https://github.com/etcd-io/etcd/blob/ad5b30297a43daeb5ce7311fa606ce4c1f16618f/server/etcdserver/api/snap/snapshotter.go#L78
https://github.com/etcd-io/etcd/blob/ad5b30297a43daeb5ce7311fa606ce4c1f16618f/server/etcdserver/api/snap/snapshotter.go#L78
https://github.com/etcd-io/etcd/blob/ad5b30297a43daeb5ce7311fa606ce4c1f16618f/server/etcdserver/api/snap/snapshotter.go#L68
https://github.com/etcd-io/etcd/blob/ad5b30297a43daeb5ce7311fa606ce4c1f16618f/server/etcdserver/api/snap/snapshotter.go#L68
https://github.com/etcd-io/etcd/blob/ad5b30297a43daeb5ce7311fa606ce4c1f16618f/server/etcdserver/api/snap/snapshotter.go#L68
https://github.com/etcd-io/etcd/blob/ad5b30297a43daeb5ce7311fa606ce4c1f16618f/server/etcdserver/server.go#L1266
https://github.com/etcd-io/etcd/blob/ad5b30297a43daeb5ce7311fa606ce4c1f16618f/server/etcdserver/server.go#L1266
https://github.com/etcd-io/etcd/blob/ad5b30297a43daeb5ce7311fa606ce4c1f16618f/server/etcdserver/server.go#L1266
https://github.com/etcd-io/etcd/blob/ad5b30297a43daeb5ce7311fa606ce4c1f16618f/server/etcdserver/api/snap/snappb/snap.proto#L11
https://github.com/etcd-io/etcd/blob/ad5b30297a43daeb5ce7311fa606ce4c1f16618f/server/etcdserver/api/snap/snappb/snap.proto#L11
https://github.com/etcd-io/etcd/blob/ad5b30297a43daeb5ce7311fa606ce4c1f16618f/server/etcdserver/api/snap/snappb/snap.proto#L11
https://github.com/etcd-io/etcd/blob/ad5b30297a43daeb5ce7311fa606ce4c1f16618f/raft/raftpb/raft.proto#L31
https://github.com/etcd-io/etcd/blob/ad5b30297a43daeb5ce7311fa606ce4c1f16618f/raft/raftpb/raft.proto#L31
https://github.com/etcd-io/etcd/blob/ad5b30297a43daeb5ce7311fa606ce4c1f16618f/raft/raftpb/raft.proto#L31
https://github.com/etcd-io/etcd/blob/ad5b30297a43daeb5ce7311fa606ce4c1f16618f/raft/raftpb/raft.proto#L99
https://github.com/etcd-io/etcd/blob/ad5b30297a43daeb5ce7311fa606ce4c1f16618f/raft/raftpb/raft.proto#L99
https://github.com/etcd-io/etcd/blob/ad5b30297a43daeb5ce7311fa606ce4c1f16618f/raft/raftpb/raft.proto#L99


Finally the nested data holds a JSON serialized store v2 content.

In particular there is:

Term

Index

Membership data:

/0/members/8e9e05c52164694d/attributes -> {"name":"default","clientURLs":["

[http://localhost:2379](http://localhost:2379)"]}

/0/members/8e9e05c52164694d/RaftAttributes -> "{"peerURLs":

["http://localhost:2380"]}"

Storage version: /0/version-> 3.5.0

Tools

protoc

Following command allows you to see the file content when executed from etcd root

directory:

cat default.etcd/member/snap/0000000000000002-0000000000049425.snap |
  protoc --decode=snappb.snapshot \
    server/etcdserver/api/snap/snappb/snap.proto \
    -I $(go list -f '{{.Dir}}' github.com/gogo/protobuf/proto)/.. \
    -I . \
    -I $(go list -m -f '{{.Dir}}' github.com/gogo/protobuf)/protobuf

Analogously you can extract ‘data’ field and decode as ‘Raftpb.Snapshot '

Exemplar JSON serialized store v2 content in etcd 3.4 *.snap files:



{
  "Root":{
    "Path":"/",
    "CreatedIndex":0,
    "ModifiedIndex":0,
    "ExpireTime":"0001-01-01T00:00:00Z",
    "Value":"",
    "Children":{
      "0":{
        "Path":"/0",
        "CreatedIndex":0,
        "ModifiedIndex":0,



https://github.com/etcd-io/etcd/blob/ad5b30297a43daeb5ce7311fa606ce4c1f16618f/raft/raftpb/raft.proto#L31
https://github.com/etcd-io/etcd/blob/ad5b30297a43daeb5ce7311fa606ce4c1f16618f/raft/raftpb/raft.proto#L31
https://github.com/etcd-io/etcd/blob/ad5b30297a43daeb5ce7311fa606ce4c1f16618f/raft/raftpb/raft.proto#L31


        "ExpireTime":"0001-01-01T00:00:00Z",
        "Value":"",
        "Children":{
          "members":{
            "Path":"/0/members",
            "CreatedIndex":1,
            "ModifiedIndex":1,
            "ExpireTime":"0001-01-01T00:00:00Z",
            "Value":"",
            "Children":{
              "8e9e05c52164694d":{
                "Path":"/0/members/8e9e05c52164694d",
                "CreatedIndex":1,
                "ModifiedIndex":1,
                "ExpireTime":"0001-01-01T00:00:00Z",
                "Value":"",
                "Children":{
                  "attributes":{
                    "Path":"/0/members/8e9e05c52164694d/attributes",
                    "CreatedIndex":2,
                    "ModifiedIndex":2,
                    "ExpireTime":"0001-01-01T00:00:00Z",
                    "Value":"{\"name\":\"default\",\"clientURLs\":[\"http://localhost:237
                    "Children":null
                  },
                  "RaftAttributes":{
                    "Path":"/0/members/8e9e05c52164694d/RaftAttributes",
                    "CreatedIndex":1,
                    "ModifiedIndex":1,
                    "ExpireTime":"0001-01-01T00:00:00Z",
                    "Value":"{\"peerURLs\":[\"http://localhost:2380\"]}",
                    "Children":null
                  }
                }
              }
            }
          },
          "version":{
            "Path":"/0/version",
            "CreatedIndex":3,
            "ModifiedIndex":3,
            "ExpireTime":"0001-01-01T00:00:00Z",
            "Value":"3.5.0",
            "Children":null
          }
        }
      },
      "1":{
        "Path":"/1",



        "CreatedIndex":0,
        "ModifiedIndex":0,
        "ExpireTime":"0001-01-01T00:00:00Z",
        "Value":"",
        "Children":{

        }
      }
    }
  },
  "WatcherHub":{
    "EventHistory":{
      "Queue":{
        "Events":[
          {
            "action":"create",
            "node":{
              "key":"/0/members/8e9e05c52164694d/RaftAttributes",
              "value":"{\"peerURLs\":[\"http://localhost:2380\"]}",
              "modifiedIndex":1,
              "createdIndex":1
            }
          },
          {
            "action":"set",
            "node":{
              "key":"/0/members/8e9e05c52164694d/attributes",
              "value":"{\"name\":\"default\",\"clientURLs\":[\"http://localhost:2379\"]}
              "modifiedIndex":2,
              "createdIndex":2
            }
          },
          {
            "action":"set",
            "node":{
              "key":"/0/version",
              "value":"3.5.0",
              "modifiedIndex":3,
              "createdIndex":3
            }
          }
        ]
      }
    }
  }
}



Changes

This section is reserved to describe changes to the file formats introduces between different

etcd versions.

1. The metadata pages at the beginning of the bbolt file are modified in-place. ↩︎

2. Inconsistent, as majority of uint’s are written bigendian ↩︎

3. The initial (index:0) snapshot at the beginning of WAL log is not associated with *.snap

file. Also the old *.snap files (or WAL logs) might get purged. ↩︎

Last modified April 2, 2024: Fix missing backslash in learning/persistent-storage-files.md - Add

missing backslash in persistent-storage-files in v3.5, v3.6 in protoc sections (b8a189f)


https://github.com/etcd-io/website/commit/b8a189f4673c9c201cfab339713748a46c76db17
https://github.com/etcd-io/website/commit/b8a189f4673c9c201cfab339713748a46c76db17
https://github.com/etcd-io/website/commit/b8a189f4673c9c201cfab339713748a46c76db17
https://github.com/etcd-io/website/commit/b8a189f4673c9c201cfab339713748a46c76db17


etcd API guarantees

API guarantees made by etcd

etcd is a consistent and durable key value store. The key value store is exposed through gRPC

Services. etcd ensures the strongest consistency and durability guarantees for a distributed

system. This specification enumerates the API guarantees made by etcd.

APIs to consider

KV APIs

Range

Put

Delete

Transaction

Watch APIs

Watch

Lease APIs

Grant

[Revoke]

Keep alive

KV API allows for direct reading and manipulation of key value store. Watch API allows

subscribing to key value store changes. Lease API allows assigning a time to live to a key.

Both KV and Watch APIs allow access to not only the latest versions of keys, but also previous

versions are accessible within a continuous history window, limited by a compaction

operation.

Calling KV API will take an immediate effect, while Watch API will return with some

unbounded delay. In correctly working etcd cluster you should expect to see watch events to

appear with 10ms delay after them happening. However, there is no limit and events in

unhealthy clusters might never arrive.

KV APIs

etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/learning/api/#grpc-services
https://etcd.io/docs/v3.5/learning/api/#grpc-services
https://etcd.io/docs/v3.5/learning/api/#range
https://etcd.io/docs/v3.5/learning/api/#put
https://etcd.io/docs/v3.5/learning/api/#delete-range
https://etcd.io/docs/v3.5/learning/api/#transaction
https://etcd.io/docs/v3.5/learning/api/#watch-api
https://etcd.io/docs/v3.5/learning/api/#obtaining-leases
https://etcd.io/docs/v3.5/learning/api/#keep-alives
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


etcd ensures durability and strict serializability for all KV api calls. Those are the strongest

isolation guarantee of distributed transactional database systems.

Durability

Any completed operations are durable. All accessible data is also durable data. A read will

never return data that has not been made durable.

Strict serializability

KV Service operations are atomic and occur in a total order, consistent with real-time order of

those operations. Total order is implied through revision. Read more about strict

serializability .

Strict serializability implies other weaker guarantees that might be easier to understand:

Atomicity

All API requests are atomic; an operation either completes entirely or not at all. For watch

requests, all events generated by one operation will be in one watch response. Watch never

observes partial events for a single operation.

Linearizability

From the perspective of client, linearizability provides useful properties which make

reasoning easily. This is a clean description quoted from the original paper : Linearizability

provides the illusion that each operation applied by concurrent processes takes effect

instantaneously at some point between its invocation and its response.

For example, consider a client completing a write at time point 1 (t1). A client issuing a read at

t2 (for t2 > t1) should receive a value at least as recent as the previous write, completed at t1.

However, the read might actually complete only by t3. Linearizability guarantees the read

returns the most current value. Without linearizability guarantee, the returned value, current

at t2 when the read began, might be “stale” by t3 because a concurrent write might happen

between t2 and t3.

etcd ensures linearizability for all other operations by default. Linearizability comes with a

cost, however, because linearized requests must go through the Raft consensus process. To

obtain lower latencies and higher throughput for read requests, clients can configure a

request’s consistency mode to serializable , which may access stale data with respect to

quorum, but removes the performance penalty of linearized accesses’ reliance on live

consensus.





http://jepsen.io/consistency/models/strict-serializable
http://jepsen.io/consistency/models/strict-serializable
http://jepsen.io/consistency/models/strict-serializable
http://jepsen.io/consistency/models/strict-serializable
https://cs.brown.edu/~mph/HerlihyW90/p463-herlihy.pdf
https://cs.brown.edu/~mph/HerlihyW90/p463-herlihy.pdf
https://cs.brown.edu/~mph/HerlihyW90/p463-herlihy.pdf


Watch APIs

Watches make guarantees about events:

Ordered - events are ordered by revision. An event will never appear on a watch if it

precedes an event in time that has already been posted.

Unique - an event will never appear on a watch twice.

Reliable - a sequence of events will never drop any subsequence of events within the

available history window. If there are events ordered in time as a < b < c, then if the

watch receives events a and c, it is guaranteed to receive b as long b is in the available

history window.

Atomic - a list of events is guaranteed to encompass complete revisions. Updates in the

same revision over multiple keys will not be split over several lists of events.

Resumable - A broken watch can be resumed by establishing a new watch starting after

the last revision received in a watch event before the break, so long as the revision is in

the history window.

Bookmarkable - Progress notification events guarantee that all events up to a revision

have been already delivered.

etcd does not ensure linearizability for watch operations. Users are expected to verify the

revision of watch events to ensure correct ordering with other operations.

Lease APIs

etcd provides a lease mechanism . The primary use case of a lease is implementing

distributed coordination mechanisms like distributed locks. The lease mechanism itself is

simple: a lease can be created with the grant API, attached to a key with the put API, revoked

with the revoke API, and will be expired by the wall clock time to live (TTL). However, users

need to be aware about the important properties of the APIs and usage for implementing

correct distributed coordination mechanisms.

etcd specific definitions

Operation completed

An etcd operation is considered complete when it is committed through consensus, and

therefore “executed” -- permanently stored -- by the etcd storage engine. The client knows an

operation is completed when it receives a response from the etcd server. Note that the client

may be uncertain about the status of an operation if it times out, or there is a network

disruption between the client and the etcd member. etcd may also abort operations when



https://web.stanford.edu/class/cs240/readings/89-leases.pdf
https://web.stanford.edu/class/cs240/readings/89-leases.pdf
https://web.stanford.edu/class/cs240/readings/89-leases.pdf
https://etcd.io/docs/v3.5/learning/why/#notes-on-the-usage-of-lock-and-lease


there is a leader election. etcd does not send abort  responses to clients’ outstanding

requests in this event.

Revision

An etcd operation that modifies the key value store is assigned a single increasing revision. A

transaction operation might modify the key value store multiple times, but only one revision

is assigned. The revision attribute of a key value pair that was modified by the operation has

the same value as the revision of the operation. The revision can be used as a logical clock for

key value store. A key value pair that has a larger revision is modified after a key value pair

with a smaller revision. Two key value pairs that have the same revision are modified by an

operation “concurrently”.

Last modified March 27, 2024: Backpropagate improvements of api guarantees

documentation to v3.5 and v3.4 release (d8ae837)


https://github.com/etcd-io/website/commit/d8ae8372e30977c7eba314991390cfb94152a275
https://github.com/etcd-io/website/commit/d8ae8372e30977c7eba314991390cfb94152a275
https://github.com/etcd-io/website/commit/d8ae8372e30977c7eba314991390cfb94152a275
https://github.com/etcd-io/website/commit/d8ae8372e30977c7eba314991390cfb94152a275


etcd versus other key-value stores

History and use of etcd & comparison with other tools

The name “etcd” originated from two ideas, the unix “/etc” folder and “d"istributed systems.

The “/etc” folder is a place to store configuration data for a single system whereas etcd stores

configuration information for large scale distributed systems. Hence, a “d"istributed “/etc” is

“etcd”.

etcd is designed as a general substrate for large scale distributed systems. These are systems

that will never tolerate split-brain operation and are willing to sacrifice availability to achieve

this end. etcd stores metadata in a consistent and fault-tolerant way. An etcd cluster is meant

to provide key-value storage with best of class stability, reliability, scalability and

performance.

Distributed systems use etcd as a consistent key-value store for configuration management,

service discovery, and coordinating distributed work. Many organizations  use etcd to

implement production systems such as container schedulers, service discovery services, and

distributed data storage. Common distributed patterns using etcd include leader election ,

distributed locks , and monitoring machine liveness.

Use cases

Container Linux by CoreOS: Applications running on Container Linux  get automatic,

zero-downtime Linux kernel updates. Container Linux uses locksmith  to coordinate

updates. Locksmith implements a distributed semaphore over etcd to ensure only a

subset of a cluster is rebooting at any given time.

Kubernetes  stores configuration data into etcd for service discovery and cluster

management; etcd’s consistency is crucial for correctly scheduling and operating

services. The Kubernetes API server persists cluster state into etcd. It uses etcd’s watch

API to monitor the cluster and roll out critical configuration changes.

Comparison chart

Perhaps etcd already seems like a good fit, but as with all technological decisions, proceed

with caution. Please note this documentation is written by the etcd team. Although the ideal













etcd

Docs Blog Community Install Play

https://github.com/etcd-io/etcd/blob/master/ADOPTERS.md
https://github.com/etcd-io/etcd/blob/master/ADOPTERS.md
https://github.com/etcd-io/etcd/blob/master/ADOPTERS.md
https://github.com/etcd-io/etcd/blob/master/etcdctl/README.md#elect-options-election-name-proposal
https://github.com/etcd-io/etcd/blob/master/etcdctl/README.md#elect-options-election-name-proposal
https://github.com/etcd-io/etcd/blob/master/etcdctl/README.md#elect-options-election-name-proposal
https://github.com/etcd-io/etcd/blob/master/etcdctl/README.md#lock-options-lockname-command-arg1-arg2-
https://github.com/etcd-io/etcd/blob/master/etcdctl/README.md#lock-options-lockname-command-arg1-arg2-
https://github.com/etcd-io/etcd/blob/master/etcdctl/README.md#lock-options-lockname-command-arg1-arg2-
https://coreos.com/why
https://coreos.com/why
https://coreos.com/why
https://github.com/coreos/locksmith
https://github.com/coreos/locksmith
https://github.com/coreos/locksmith
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


is a disinterested comparison of technology and features, the authors’ expertise and biases

obviously favor etcd. Use only as directed.

The table below is a handy quick reference for spotting the differences among etcd and its

most popular alternatives at a glance. Further commentary and details for each column are in

the sections following the table.

etcd ZooKeeper Consul

NewSQL (Cloud

Spanner,

CockroachDB,

TiDB)

Concurrency

Primitives

Lock RPCs ,

Election RPCs ,

command line

locks , command

line elections ,

recipes  in go

External curator

recipes  in Java

Native lock

API

Rare , if any

Linearizable

Reads

Yes No Yes Sometimes

Multi-version

Concurrency

Control

Yes No No Sometimes

Transactions Field compares,

Read, Write

Version checks,

Write

Field

compare,

Lock, Read,

Write

SQL-style

Change

Notification

Historical and

current key

intervals

Current keys

and directories

Current

keys and

prefixes

Triggers

(sometimes)

User permissions Role based ACLs ACLs Varies (per-table

GRANT , per-

database roles )

HTTP/JSON API Yes No Yes Rarely

Membership

Reconfiguration

Yes >3.5.0 Yes Yes

Maximum

reliable database

Several gigabytes Hundreds of

megabytes

Hundreds

of MBs

Terabytes+











 













 







 

https://pkg.go.dev/go.etcd.io/etcd/server/v3/etcdserver/api/v3lock/v3lockpb
https://pkg.go.dev/go.etcd.io/etcd/server/v3/etcdserver/api/v3lock/v3lockpb
https://pkg.go.dev/go.etcd.io/etcd/server/v3/etcdserver/api/v3lock/v3lockpb
https://pkg.go.dev/go.etcd.io/etcd/server/v3/etcdserver/api/v3election/v3electionpb
https://pkg.go.dev/go.etcd.io/etcd/server/v3/etcdserver/api/v3election/v3electionpb
https://pkg.go.dev/go.etcd.io/etcd/server/v3/etcdserver/api/v3election/v3electionpb
https://github.com/etcd-io/etcd/blob/master/etcdctl/README.md#lock-options-lockname-command-arg1-arg2-
https://github.com/etcd-io/etcd/blob/master/etcdctl/README.md#lock-options-lockname-command-arg1-arg2-
https://github.com/etcd-io/etcd/blob/master/etcdctl/README.md#lock-options-lockname-command-arg1-arg2-
https://github.com/etcd-io/etcd/blob/master/etcdctl/README.md#lock-options-lockname-command-arg1-arg2-
https://github.com/etcd-io/etcd/blob/master/etcdctl/README.md#elect-options-election-name-proposal
https://github.com/etcd-io/etcd/blob/master/etcdctl/README.md#elect-options-election-name-proposal
https://github.com/etcd-io/etcd/blob/master/etcdctl/README.md#elect-options-election-name-proposal
https://github.com/etcd-io/etcd/blob/master/etcdctl/README.md#elect-options-election-name-proposal
https://godoc.org/github.com/etcd-io/etcd/client/v3/experimental/recipes
https://godoc.org/github.com/etcd-io/etcd/client/v3/experimental/recipes
https://godoc.org/github.com/etcd-io/etcd/client/v3/experimental/recipes
http://curator.apache.org/
http://curator.apache.org/
http://curator.apache.org/
http://curator.apache.org/
https://www.consul.io/commands/lock
https://www.consul.io/commands/lock
https://www.consul.io/commands/lock
https://www.consul.io/commands/lock
http://dl.acm.org/citation.cfm?id=2960999
http://dl.acm.org/citation.cfm?id=2960999
http://dl.acm.org/citation.cfm?id=2960999
https://etcd.io/docs/v3.5/learning/api_guarantees/#linearizability
https://www.consul.io/api-docs#consistency
https://www.consul.io/api-docs#consistency
https://www.consul.io/api-docs#consistency
https://etcd.io/docs/v3.5/learning/data_model/
https://etcd.io/docs/v3.5/learning/api/#transaction
https://etcd.io/docs/v3.5/learning/api/#transaction
https://zookeeper.apache.org/doc/r3.4.3/api/org/apache/zookeeper/ZooKeeper.html#multi%28java.lang.Iterable%29
https://zookeeper.apache.org/doc/r3.4.3/api/org/apache/zookeeper/ZooKeeper.html#multi%28java.lang.Iterable%29
https://zookeeper.apache.org/doc/r3.4.3/api/org/apache/zookeeper/ZooKeeper.html#multi%28java.lang.Iterable%29
https://zookeeper.apache.org/doc/r3.4.3/api/org/apache/zookeeper/ZooKeeper.html#multi%28java.lang.Iterable%29
https://www.consul.io/api/txn
https://www.consul.io/api/txn
https://www.consul.io/api/txn
https://www.consul.io/api/txn
https://www.consul.io/api/txn
https://www.consul.io/api/txn
https://etcd.io/docs/v3.5/learning/api/#watch-streams
https://etcd.io/docs/v3.5/learning/api/#watch-streams
https://etcd.io/docs/v3.5/learning/api/#watch-streams
https://zookeeper.apache.org/doc/current/zookeeperProgrammers.html#ch_zkWatches
https://zookeeper.apache.org/doc/current/zookeeperProgrammers.html#ch_zkWatches
https://zookeeper.apache.org/doc/current/zookeeperProgrammers.html#ch_zkWatches
https://zookeeper.apache.org/doc/current/zookeeperProgrammers.html#ch_zkWatches
https://www.consul.io/docs/dynamic-app-config/watches
https://www.consul.io/docs/dynamic-app-config/watches
https://www.consul.io/docs/dynamic-app-config/watches
https://www.consul.io/docs/dynamic-app-config/watches
https://www.consul.io/docs/dynamic-app-config/watches
https://etcd.io/docs/v3.5/op-guide/authentication/rbac
https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#sc_ZooKeeperAccessControl
https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#sc_ZooKeeperAccessControl
https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#sc_ZooKeeperAccessControl
https://www.consul.io/docs/security/acl
https://www.consul.io/docs/security/acl
https://www.consul.io/docs/security/acl
https://www.cockroachlabs.com/docs/stable/grant.html
https://www.cockroachlabs.com/docs/stable/grant.html
https://www.cockroachlabs.com/docs/stable/grant.html
https://cloud.google.com/spanner/docs/iam#roles
https://cloud.google.com/spanner/docs/iam#roles
https://cloud.google.com/spanner/docs/iam#roles
https://etcd.io/docs/v3.5/dev-guide/api_grpc_gateway/
https://www.consul.io/api-docs#formatted-json-output
https://www.consul.io/api-docs#formatted-json-output
https://www.consul.io/api-docs#formatted-json-output
https://etcd.io/docs/v3.5/op-guide/runtime-configuration
https://zookeeper.apache.org/doc/current/zookeeperReconfig.html
https://zookeeper.apache.org/doc/current/zookeeperReconfig.html
https://zookeeper.apache.org/doc/current/zookeeperReconfig.html
https://learn.hashicorp.com/tutorials/consul/add-remove-servers?in=consul/day-2-operations
https://learn.hashicorp.com/tutorials/consul/add-remove-servers?in=consul/day-2-operations
https://learn.hashicorp.com/tutorials/consul/add-remove-servers?in=consul/day-2-operations


etcd ZooKeeper Consul

NewSQL (Cloud

Spanner,

CockroachDB,

TiDB)

size (sometimes

several

gigabytes)

Minimum read

linearization

latency

Network RTT No read

linearization

RTT + fsync Clock barriers

(atomic, NTP)

ZooKeeper

ZooKeeper solves the same problem as etcd: distributed system coordination and metadata

storage. However, etcd has the luxury of hindsight taken from engineering and operational

experience with ZooKeeper’s design and implementation. The lessons learned from

Zookeeper certainly informed etcd’s design, helping it support large scale systems like

Kubernetes. The improvements etcd made over Zookeeper include:

Dynamic cluster membership reconfiguration

Stable read/write under high load

A multi-version concurrency control data model

Reliable key monitoring which never silently drop events

Lease primitives decoupling connections from sessions

APIs for safe distributed shared locks

Furthermore, etcd supports a wide range of languages and frameworks out of the box.

Whereas Zookeeper has its own custom Jute RPC protocol, which is totally unique to

Zookeeper and limits its supported language bindings , etcd’s client protocol is built from

gRPC , a popular RPC framework with language bindings for go, C++, Java, and more.

Likewise, gRPC can be serialized into JSON over HTTP, so even general command line utilities

like curl  can talk to it. Since systems can select from a variety of choices, they are built on

etcd with native tooling rather than around etcd with a single fixed set of technologies.

When considering features, support, and stability, new applications planning to use

Zookeeper for a consistent key value store would do well to choose etcd instead.

Consul

Consul is an end-to-end service discovery framework. It provides built-in health checking,

failure detection, and DNS services. In addition, Consul exposes a key value store with





https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#ch_bindings
https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#ch_bindings
https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#ch_bindings
https://www.grpc.io/
https://www.grpc.io/
https://www.grpc.io/


RESTful HTTP APIs. As it stands in Consul 1.0 , the storage system does not scale as well as

other systems like etcd or Zookeeper in key-value operations; systems requiring millions of

keys will suffer from high latencies and memory pressure. The key value API is missing, most

notably, multi-version keys, conditional transactions, and reliable streaming watches.

etcd and Consul solve different problems. If looking for a distributed consistent key value

store, etcd is a better choice over Consul. If looking for end-to-end cluster service discovery,

etcd will not have enough features; choose Kubernetes, Consul, or SmartStack.

NewSQL (Cloud Spanner, CockroachDB, TiDB)

Both etcd and NewSQL databases (e.g., Cockroach , TiDB , Google Spanner ) provide strong

data consistency guarantees with high availability. However, the significantly different system

design parameters lead to significantly different client APIs and performance characteristics.

NewSQL databases are meant to horizontally scale across data centers. These systems

typically partition data across multiple consistent replication groups (shards), potentially

distant, storing data sets on the order of terabytes and above. This sort of scaling makes

them poor candidates for distributed coordination as they have long latencies from waiting

on clocks and expect updates with mostly localized dependency graphs. The data is organized

into tables, including SQL-style query facilities with richer semantics than etcd, but at the cost

of additional complexity for processing, planning, and optimizing queries.

In short, choose etcd for storing metadata or coordinating distributed applications. If storing

more than a few GB of data or if full SQL queries are needed, choose a NewSQL database.

Using etcd for metadata

etcd replicates all data within a single consistent replication group. For storing up to a few GB

of data with consistent ordering, this is the most efficient approach. Each modification of

cluster state, which may change multiple keys, is assigned a global unique ID, called a revision

in etcd, from a monotonically increasing counter for reasoning over ordering. Since there’s

only a single replication group, the modification request only needs to go through the raft

protocol to commit. By limiting consensus to one replication group, etcd gets distributed

consistency with a simple protocol while achieving low latency and high throughput.

The replication behind etcd cannot horizontally scale because it lacks data sharding. In

contrast, NewSQL databases usually shard data across multiple consistent replication groups,

storing data sets on the order of terabytes and above. However, to assign each modification a

global unique and increasing ID, each request must go through an additional coordination

protocol among replication groups. This extra coordination step may potentially conflict on

the global ID, forcing ordered requests to retry. The result is a more complicated approach

with typically worse performance than etcd for strict ordering.



  

https://github.com/coreos/dbtester/tree/master/test-results/2018Q1-02-etcd-zookeeper-consul
https://github.com/coreos/dbtester/tree/master/test-results/2018Q1-02-etcd-zookeeper-consul
https://github.com/coreos/dbtester/tree/master/test-results/2018Q1-02-etcd-zookeeper-consul
https://github.com/cockroachdb/cockroach
https://github.com/cockroachdb/cockroach
https://github.com/cockroachdb/cockroach
https://github.com/pingcap/tidb
https://github.com/pingcap/tidb
https://github.com/pingcap/tidb
https://cloud.google.com/spanner/
https://cloud.google.com/spanner/
https://cloud.google.com/spanner/


If an application reasons primarily about metadata or metadata ordering, such as to

coordinate processes, choose etcd. If the application needs a large data store spanning

multiple data centers and does not heavily depend on strong global ordering properties,

choose a NewSQL database.

Using etcd for distributed coordination

etcd has distributed coordination primitives such as event watches, leases, elections, and

distributed shared locks out of the box (Note that in the case of the distributed shared lock,

users need to be aware about its non obvious properties. The details are described below).

These primitives are both maintained and supported by the etcd developers; leaving these

primitives to external libraries shirks the responsibility of developing foundational distributed

software, essentially leaving the system incomplete. NewSQL databases usually expect these

distributed coordination primitives to be authored by third parties. Likewise, ZooKeeper

famously has a separate and independent library  of coordination recipes. Consul, which

provides a native locking API, goes so far as to apologize that it’s “not a bulletproof method ”.

In theory, it’s possible to build these primitives atop any storage systems providing strong

consistency. However, the algorithms tend to be subtle; it is easy to develop a locking

algorithm that appears to work, only to suddenly break due to thundering herd and timing

skew. Furthermore, other primitives supported by etcd, such as transactional memory

depend on etcd’s MVCC data model; simple strong consistency is not enough.

For distributed coordination, choosing etcd can help prevent operational headaches and save

engineering effort.

Notes on the usage of lock and lease

etcd provides lock APIs  which are based on the lease mechanism  and its implementation in

etcd . The basic idea of the lease mechanism is: a server grants a token, which is called a

lease, to a requesting client. When the server grants a lease, it associates a TTL with the lease.

When the server detects the passage of time longer than the TTL, it revokes the lease. While

the client holds a non revoked lease it can claim that it owns access to a resource associated

with the lease. In the case of etcd, the resource is a key in the etcd keyspace. etcd provides

lock APIs with this scheme. However, the lock APIs cannot be used as mutual exclusion

mechanism by themselves. The APIs are called lock because for historical reasons . The lock

APIs can, however, be used as an optimization mechanism of mutual exclusion as described

below.

The most important aspect of the lease mechanism is that TTL is defined as a physical time

interval. Both of the server and client measures passing of time with their own clocks. It

allows a situation that the server revokes the lease but the client still claims it owns the lease.





 





http://curator.apache.org/
http://curator.apache.org/
http://curator.apache.org/
https://www.consul.io/docs/dynamic-app-config/sessions
https://www.consul.io/docs/dynamic-app-config/sessions
https://www.consul.io/docs/dynamic-app-config/sessions
https://pkg.go.dev/go.etcd.io/etcd/server/v3/etcdserver/api/v3lock/v3lockpb
https://pkg.go.dev/go.etcd.io/etcd/server/v3/etcdserver/api/v3lock/v3lockpb
https://pkg.go.dev/go.etcd.io/etcd/server/v3/etcdserver/api/v3lock/v3lockpb
https://web.stanford.edu/class/cs240/readings/89-leases.pdf
https://web.stanford.edu/class/cs240/readings/89-leases.pdf
https://web.stanford.edu/class/cs240/readings/89-leases.pdf
https://godoc.org/github.com/etcd-io/etcd/client/v3/leasing
https://godoc.org/github.com/etcd-io/etcd/client/v3/leasing
https://godoc.org/github.com/etcd-io/etcd/client/v3/leasing
https://godoc.org/github.com/etcd-io/etcd/client/v3/leasing
https://research.google/pubs/pub27897/
https://research.google/pubs/pub27897/
https://research.google/pubs/pub27897/


Then how does the lease mechanism guarantees mutual exclusion of the locking mechanism?

Actually, the lease mechanism itself doesn’t guarantee mutual exclusion. Owning a lease

cannot guarantee the owner holds a lock of the resource.

In the case of controlling mutual accesses to keys of etcd itself with etcd lock, mutual

exclusion is implemented based on the mechanism of version number validation (it is

sometimes called compare and swap in other systems like Consul). In etcd’s RPCs like Put  or

Txn , we can specify required conditions about revision number and lease ID for the

operations. If the conditions are not satisfied, the operation can fail. With this mechanism,

etcd provides distributed locking for clients. It means that a client knows that it is acquiring a

lock of a key when its requests are completed by etcd cluster successfully.

In distributed locking literature similar designs are described:

In the paper of Chubby , the concept of sequencer is introduced. We interpret that

sequencer is an almost same to the combination of revision number and lease ID of etcd.

In How to do distributed locking , Martin Kleppmann introduced the idea of fencing

token. The authors interpret that fencing token is revision number in the case of etcd. In

Note on fencing and distributed locks  Flavio Junqueira discussed how the idea of

fencing token should be implemented in the case of zookeeper.

In Practical Uses of Synchronized Clocks in Distributed Systems , we can find a

description that Thor implements a distributed locking mechanism based on version

number validation and lease.

Why do etcd and other systems provide lease if they provide mutual exclusion based on

version number validation? Well, leases provide an optimization mechanism for reducing a

number of aborted requests.

Note that in the case of etcd keys, it can be locked efficiently because of the mechanisms of

lease and version number validation. If users need to protect resources which aren’t related

to etcd, the resources must provide the version number validation mechanism and

consistency of replicas like keys of etcd. The lock feature of etcd itself cannot be used for

protecting external resources.

Last modified March 27, 2024: Backpropagate improvements of api guarantees

documentation to v3.5 and v3.4 release (d8ae837)











https://research.google/pubs/pub27897/
https://research.google/pubs/pub27897/
https://research.google/pubs/pub27897/
https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
https://fpj.me/2016/02/10/note-on-fencing-and-distributed-locks/
https://fpj.me/2016/02/10/note-on-fencing-and-distributed-locks/
https://fpj.me/2016/02/10/note-on-fencing-and-distributed-locks/
https://web.archive.org/web/20190725151657/http://www.dainf.cefetpr.br/~tacla/SDII/PracticalUseOfClocks.pdf
https://web.archive.org/web/20190725151657/http://www.dainf.cefetpr.br/~tacla/SDII/PracticalUseOfClocks.pdf
https://web.archive.org/web/20190725151657/http://www.dainf.cefetpr.br/~tacla/SDII/PracticalUseOfClocks.pdf
https://github.com/etcd-io/website/commit/d8ae8372e30977c7eba314991390cfb94152a275
https://github.com/etcd-io/website/commit/d8ae8372e30977c7eba314991390cfb94152a275
https://github.com/etcd-io/website/commit/d8ae8372e30977c7eba314991390cfb94152a275
https://github.com/etcd-io/website/commit/d8ae8372e30977c7eba314991390cfb94152a275


Glossary

Terms used in etcd documentation, command line, and source code

This document defines the various terms used in etcd documentation, command line and

source code.

Alarm

The etcd server raises an alarm whenever the cluster needs operator intervention to remain

reliable.

Authentication

Authentication manages user access permissions for etcd resources.

Client

A client connects to the etcd cluster to issue service requests such as fetching key-value pairs,

writing data, or watching for updates.

Cluster

Cluster consists of several members.

The node in each member follows raft consensus protocol to replicate logs. Cluster receives

proposals from members, commits them and apply to local store.

Compaction

Compaction discards all etcd event history and superseded keys prior to a given revision. It is

used to reclaim storage space in the etcd backend database.

etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Election

The etcd cluster holds elections among its members to choose a leader as part of the raft

consensus protocol.

Endpoint

A URL pointing to an etcd service or resource.

Key

A user-defined identifier for storing and retrieving user-defined values in etcd.

Key range

A set of keys containing either an individual key, a lexical interval for all x such that a < x <= b,

or all keys greater than a given key.

Keyspace

The set of all keys in an etcd cluster.

Lease

A short-lived renewable contract that deletes keys associated with it on its expiry.

Member

A logical etcd server that participates in serving an etcd cluster.

Modification Revision

The first revision to hold the last write to a given key.



Peer

Peer is another member of the same cluster.

Proposal

A proposal is a request (for example a write request, a configuration change request) that

needs to go through raft protocol.

Quorum

The number of active members needed for consensus to modify the cluster state. etcd

requires a member majority to reach quorum.

Revision

A 64-bit cluster-wide counter that starts at 1 and is incremented each time the keyspace is

modified.

Role

A unit of permissions over a set of key ranges which may be granted to a set of users for

access control.

Snapshot

A point-in-time backup of the etcd cluster state.

Store

The physical storage backing the cluster keyspace.

Transaction

An atomically executed set of operations. All modified keys in a transaction share the same

modification revision.



Key Version

The number of writes to a key since it was created, starting at 1. The version of a nonexistent

or deleted key is 0.

Watcher

A client opens a watcher to observe updates on a given key range.

Last modified June 14, 2021: Renaming content/en/next folder to content/en/v3.5. Updating

redirects, links, and config as needed. (#363) (138926b)


https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c


Developer guide

etcd guide for developers

Discovery service protocol
Discover other etcd members in a cluster bootstrap phase

Set up a local cluster
Configuring local clusters for testing and development

Interacting with etcd
etcdctl: a command line tool for interacting with the etcd server

Why gRPC gateway
Why you should consider using the gRPC gateway

gRPC naming and discovery
go-grpc: for resolving gRPC endpoints with an etcd backend

System limits
etcd limits: requests and storage

etcd features
using etcd features

API reference

API reference: concurrency

etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/dev-guide/discovery_protocol/
https://etcd.io/docs/v3.5/dev-guide/local_cluster/
https://etcd.io/docs/v3.5/dev-guide/interacting_v3/
https://etcd.io/docs/v3.5/dev-guide/api_grpc_gateway/
https://etcd.io/docs/v3.5/dev-guide/grpc_naming/
https://etcd.io/docs/v3.5/dev-guide/limit/
https://etcd.io/docs/v3.5/dev-guide/features/
https://etcd.io/docs/v3.5/dev-guide/api_reference_v3/
https://etcd.io/docs/v3.5/dev-guide/api_concurrency_reference_v3/
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Last modified June 14, 2021: Renaming content/en/next folder to content/en/v3.5. Updating

redirects, links, and config as needed. (#363) (138926b)


https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c


Discovery service protocol

Discover other etcd members in a cluster bootstrap phase

Discovery service protocol helps new etcd member to discover all other members in cluster

bootstrap phase using a shared discovery URL.

Discovery service protocol is only used in cluster bootstrap phase, and cannot be used for

runtime reconfiguration or cluster monitoring.

The protocol uses a new discovery token to bootstrap one unique etcd cluster. Remember

that one discovery token can represent only one etcd cluster. As long as discovery protocol

on this token starts, even if it fails halfway, it must not be used to bootstrap another etcd

cluster.

The rest of this article will walk through the discovery process with examples that correspond

to a self-hosted discovery cluster. The public discovery service, discovery.etcd.io, functions

the same way, but with a layer of polish to abstract away ugly URLs, generate UUIDs

automatically, and provide some protections against excessive requests. At its core, the

public discovery service still uses an etcd cluster as the data store as described in this

document.

Protocol workflow

The idea of discovery protocol is to use an internal etcd cluster to coordinate bootstrap of a

new cluster. First, all new members interact with discovery service and help to generate the

expected member list. Then each new member bootstraps its server using this list, which

performs the same functionality as -initial-cluster flag.

In the following example workflow, we will list each step of protocol in curl format for ease of

understanding.

By convention the etcd discovery protocol uses the key prefix _etcd/registry . If

http://example.com  hosts an etcd cluster for discovery service, a full URL to discovery

keyspace will be http://example.com/v2/keys/_etcd/registry . We will use this as the URL prefix

in the example.

Creating a new discovery token

etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Generate a unique token that will identify the new cluster. This will be used as a unique prefix

in discovery keyspace in the following steps. An easy way to do this is to use uuidgen :

UUID=$(uuidgen)

Specifying the expected cluster size

The discovery token expects a cluster size that must be specified. The size is used by the

discovery service to know when it has found all members that will initially form the cluster.

curl -X PUT http://example.com/v2/keys/_etcd/registry/${UUID}/_config/size -d value=${clu

Usually the cluster size is 3, 5 or 7. Check optimal cluster size for more details.

Bringing up etcd processes

Given the discovery URL, use it as -discovery  flag and bring up etcd processes. Every etcd

process will follow this next few steps internally if given a -discovery  flag.

Registering itself

The first thing for etcd process is to register itself into the discovery URL as a member. This is

done by creating member ID as a key in the discovery URL.

curl -X PUT http://example.com/v2/keys/_etcd/registry/${UUID}/${member_id}?prevExist=fals

Checking the status

It checks the expected cluster size and registration status in discovery URL, and decides what

the next action is.

curl -X GET http://example.com/v2/keys/_etcd/registry/${UUID}/_config/size
curl -X GET http://example.com/v2/keys/_etcd/registry/${UUID}

If registered members are still not enough, it will wait for left members to appear.

If the number of registered members is bigger than the expected size N, it treats the first N

registered members as the member list for the cluster. If the member itself is in the member

list, the discovery procedure succeeds and it fetches all peers through the member list. If it is

https://etcd.io/docs/v2.3/admin_guide#optimal-cluster-size


not in the member list, the discovery procedure finishes with the failure that the cluster has

been full.

In etcd implementation, the member may check the cluster status even before registering

itself. So it could fail quickly if the cluster has been full.

Waiting for all members

The wait process is described in detail in the etcd API documentation.

curl -X GET http://example.com/v2/keys/_etcd/registry/${UUID}?wait=true&waitIndex=${curre

It keeps waiting until finding all members.

Public discovery service

CoreOS Inc. hosts a public discovery service at https://discovery.etcd.io/  , which provides

some nice features for ease of use.

Mask key prefix

Public discovery service will redirect https://discovery.etcd.io/${UUID}  to etcd cluster behind

for the key at /v2/keys/_etcd/registry . It masks register key prefix for short and readable

discovery url.

Get new token

GET /new

Sent query:
size=${cluster_size}

Possible status codes:
200 OK
400 Bad Request

200 Body:
generated discovery url

The generation process in the service follows the steps from Creating a New Discovery Token

to Specifying the Expected Cluster Size.

Check discovery status



https://etcd.io/docs/v2.3/api#waiting-for-a-change
https://discovery.etcd.io/
https://discovery.etcd.io/
https://discovery.etcd.io/


GET /${UUID}

The status for this discovery token, including the machines that have been registered, can be

checked by requesting the value of the UUID.

Open-source repository

The repository is located at https://github.com/coreos/discovery.etcd.io . It could be used to

build a custom discovery service.

Last modified March 16, 2022: Remove contributor documentation (04f6278)





https://github.com/coreos/discovery.etcd.io
https://github.com/coreos/discovery.etcd.io
https://github.com/coreos/discovery.etcd.io
https://github.com/etcd-io/website/commit/04f627864044cc5b96c8c54cf882b1b341f7441c
https://github.com/etcd-io/website/commit/04f627864044cc5b96c8c54cf882b1b341f7441c
https://github.com/etcd-io/website/commit/04f627864044cc5b96c8c54cf882b1b341f7441c


Set up a local cluster

Configuring local clusters for testing and development

For testing and development deployments, the quickest and easiest way is to configure a

local cluster. For a production deployment, refer to the clustering section.

Local standalone cluster

Starting a cluster

Run the following to deploy an etcd cluster as a standalone cluster:

$ ./etcd
...

If the etcd  binary is not present in the current working directory, it might be located either at

$GOPATH/bin/etcd  or at /usr/local/bin/etcd . Run the command appropriately.

The running etcd member listens on localhost:2379  for client requests.

Interacting with the cluster

Use etcdctl  to interact with the running cluster:

1. Store an example key-value pair in the cluster:

  $ ./etcdctl put foo bar
  OK

If OK is printed, storing key-value pair is successful.

2. Retrieve the value of foo :

$ ./etcdctl get foo
bar

etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/op-guide/clustering/
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


If bar  is returned, interaction with the etcd cluster is working as expected.

Local multi-member cluster

Starting a cluster

A Procfile  at the base of the etcd git repository is provided to easily configure a local multi-

member cluster. To start a multi-member cluster, navigate to the root of the etcd source tree

and perform the following:

1. Install goreman  to control Procfile-based applications:

$ go install github.com/mattn/goreman@latest

2. Start a cluster with goreman  using etcd’s stock Procfile:

$ goreman -f Procfile start

The members start running. They listen on localhost:2379 , localhost:22379 , and

localhost:32379  respectively for client requests.

Interacting with the cluster

Use etcdctl  to interact with the running cluster:

1. Print the list of members:

$ etcdctl --write-out=table --endpoints=localhost:2379 member list

The list of etcd members are displayed as follows:

+------------------+---------+--------+------------------------+--------------------
|        ID        | STATUS  |  NAME  |       PEER ADDRS       |      CLIENT ADDRS   
+------------------+---------+--------+------------------------+--------------------
| 8211f1d0f64f3269 | started | infra1 | http://127.0.0.1:2380  | http://127.0.0.1:23
| 91bc3c398fb3c146 | started | infra2 | http://127.0.0.1:22380 | http://127.0.0.1:22
| fd422379fda50e48 | started | infra3 | http://127.0.0.1:32380 | http://127.0.0.1:32
+------------------+---------+--------+------------------------+--------------------

2. Store an example key-value pair in the cluster:



$ etcdctl put foo bar
OK

If OK is printed, storing key-value pair is successful.

Testing fault tolerance

To exercise etcd’s fault tolerance, kill a member and attempt to retrieve the key.

1. Identify the process name of the member to be stopped.

The Procfile  lists the properties of the multi-member cluster. For example, consider the

member with the process name, etcd2 .

2. Stop the member:

# kill etcd2
$ goreman run stop etcd2

3. Store a key:

$ etcdctl put key hello
OK

4. Retrieve the key that is stored in the previous step:

$ etcdctl get key
hello

5. Retrieve a key from the stopped member:

$ etcdctl --endpoints=localhost:22379 get key

The command should display an error caused by connection failure:

2017/06/18 23:07:35 grpc: Conn.resetTransport failed to create client transport: con
Error:  grpc: timed out trying to connect

6. Restart the stopped member:



$ goreman run restart etcd2

7. Get the key from the restarted member:

$ etcdctl --endpoints=localhost:22379 get key
hello

Restarting the member re-establish the connection. etcdctl  will now be able to retrieve

the key successfully. To learn more about interacting with etcd, read interacting with etcd

section.

Last modified April 18, 2023: Fix instructions for installing goreman. (964f7ab)


https://etcd.io/docs/v3.5/dev-guide/interacting_v3/
https://etcd.io/docs/v3.5/dev-guide/interacting_v3/
https://github.com/etcd-io/website/commit/964f7abe746ede8f5e44833b72aba55bbbabac66
https://github.com/etcd-io/website/commit/964f7abe746ede8f5e44833b72aba55bbbabac66
https://github.com/etcd-io/website/commit/964f7abe746ede8f5e44833b72aba55bbbabac66


Interacting with etcd

etcdctl: a command line tool for interacting with the etcd server

Users mostly interact with etcd by putting or getting the value of a key. This section describes

how to do that by using etcdctl, a command line tool for interacting with etcd server. The

concepts described here should apply to the gRPC APIs or client library APIs.

The API version used by etcdctl to speak to etcd may be set to version 2  or 3  via the

ETCDCTL_API  environment variable. By default, etcdctl on master (3.4) uses the v3 API and

earlier versions (3.3 and earlier) default to the v2 API.

Note that any key that was created using the v2 API will not be able to be queried via the v3

API. A v3 API etcdctl get  of a v2 key will exit with 0 and no key data, this is the expected

behaviour.

Find versions

etcdctl version and Server API version can be useful in finding the appropriate commands to

be used for performing various operations on etcd.

Here is the command to find the versions:

Write a key

Applications store keys into the etcd cluster by writing to keys. Every stored key is replicated

to all etcd cluster members through the Raft protocol to achieve consistency and reliability.

export ETCDCTL_API=3


$ etcdctl version
etcdctl version: 3.1.0-alpha.0+git
API version: 3.1



etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Here is the command to set the value of key foo  to bar :

Also a key can be set for a specified interval of time by attaching lease to it.

Here is the command to set the value of key foo1  to bar1  for 10s.

Note: The lease id 1234abcd  in the above command refers to id returned on creating the

lease of 10s. This id can then be attached to the key.

Read keys

Applications can read values of keys from an etcd cluster. Queries may read a single key, or a

range of keys.

Suppose the etcd cluster has stored the following keys:

Here is the command to read the value of key foo :

Here is the command to read the value of key foo  in hex format:

$ etcdctl put foo bar
OK



$ etcdctl put foo1 bar1 --lease=1234abcd
OK



foo = bar
foo1 = bar1
foo2 = bar2
foo3 = bar3



$ etcdctl get foo
foo
bar







Here is the command to read only the value of key foo :

Here is the command to range over the keys from foo  to foo3 :

Note that foo3  is excluded since the range is over the half-open interval [foo, foo3) ,

excluding foo3 .

Here is the command to range over all keys prefixed with foo :

Here is the command to range over all keys prefixed with foo , limiting the number of results

to 2:

$ etcdctl get foo --hex
\x66\x6f\x6f          # Key
\x62\x61\x72          # Value

$ etcdctl get foo --print-value-only
bar



$ etcdctl get foo foo3
foo
bar
foo1
bar1
foo2
bar2



$ etcdctl get --prefix foo
foo
bar
foo1
bar1
foo2
bar2
foo3
bar3



$ etcdctl get --prefix --limit=2 foo




Read past version of keys

Applications may want to read superseded versions of a key. For example, an application may

wish to roll back to an old configuration by accessing an earlier version of a key. Alternatively,

an application may want a consistent view over multiple keys through multiple requests by

accessing key history. Since every modification to the etcd cluster key-value store increments

the global revision of an etcd cluster, an application can read superseded keys by providing

an older etcd revision.

Suppose an etcd cluster already has the following keys:

Here are an example to access the past versions of keys:

foo
bar
foo1
bar1

foo = bar         # revision = 2
foo1 = bar1       # revision = 3
foo = bar_new     # revision = 4
foo1 = bar1_new   # revision = 5



$ etcdctl get --prefix foo # access the most recent versions of keys
foo
bar_new
foo1
bar1_new

$ etcdctl get --prefix --rev=4 foo # access the versions of keys at revision 4
foo
bar_new
foo1
bar1

$ etcdctl get --prefix --rev=3 foo # access the versions of keys at revision 3
foo
bar
foo1
bar1

$ etcdctl get --prefix --rev=2 foo # access the versions of keys at revision 2





Read keys which are greater than or equal to the byte
value of the specified key

Applications may want to read keys which are greater than or equal to the byte value of the

specified key.

Suppose an etcd cluster already has the following keys:

Here is the command to read keys which are greater than or equal to the byte value of key b

:

Delete keys

Applications can delete a key or a range of keys from an etcd cluster.

Suppose an etcd cluster already has the following keys:

foo
bar

$ etcdctl get --prefix --rev=1 foo # access the versions of keys at revision 1

a = 123
b = 456
z = 789



$ etcdctl get --from-key b
b
456
z
789



foo = bar
foo1 = bar1
foo3 = bar3
zoo = val
zoo1 = val1
zoo2 = val2





Here is the command to delete key foo :

Here is the command to delete keys ranging from foo  to foo9 :

Here is the command to delete key zoo  with the deleted key value pair returned:

Here is the command to delete keys having prefix as zoo :

Here is the command to delete keys which are greater than or equal to the byte value of key

b  :

Watch key changes

a = 123
b = 456
z = 789

$ etcdctl del foo
1 # one key is deleted



$ etcdctl del foo foo9
2 # two keys are deleted



$ etcdctl del --prev-kv zoo
1   # one key is deleted
zoo # deleted key
val # the value of the deleted key



$ etcdctl del --prefix zoo
2 # two keys are deleted



$ etcdctl del --from-key b
2 # two keys are deleted





Applications can watch on a key or a range of keys to monitor for any updates.

Here is the command to watch on key foo :

Here is the command to watch on key foo  in hex format:

Here is the command to watch on a range key from foo  to foo9 :

Here is the command to watch on keys having prefix foo :

$ etcdctl watch foo
# in another terminal: etcdctl put foo bar
PUT
foo
bar



$ etcdctl watch foo --hex
# in another terminal: etcdctl put foo bar
PUT
\x66\x6f\x6f          # Key
\x62\x61\x72          # Value



$ etcdctl watch foo foo9
# in another terminal: etcdctl put foo bar
PUT
foo
bar
# in another terminal: etcdctl put foo1 bar1
PUT
foo1
bar1



$ etcdctl watch --prefix foo
# in another terminal: etcdctl put foo bar
PUT
foo
bar
# in another terminal: etcdctl put fooz1 barz1
PUT
fooz1





Here is the command to watch on multiple keys foo  and zoo :

Watch historical changes of keys

Applications may want to watch for historical changes of keys in etcd. For example, an

application may wish to receive all the modifications of a key; if the application stays

connected to etcd, then watch  is good enough. However, if the application or etcd fails, a

change may happen during the failure, and the application will not receive the update in real

time. To guarantee the update is delivered, the application must be able to watch for

historical changes to keys. To do this, an application can specify a historical revision on a

watch, just like reading past version of keys.

Suppose we finished the following sequence of operations:

Here is an example to watch the historical changes:

barz1

$ etcdctl watch -i
$ watch foo
$ watch zoo
# in another terminal: etcdctl put foo bar
PUT
foo
bar
# in another terminal: etcdctl put zoo val
PUT
zoo
val



$ etcdctl put foo bar         # revision = 2
OK
$ etcdctl put foo1 bar1       # revision = 3
OK
$ etcdctl put foo bar_new     # revision = 4
OK
$ etcdctl put foo1 bar1_new   # revision = 5
OK







Here is an example to watch only from the last historical change:

Watch progress

Applications may want to check the progress of a watch to determine how up-to-date the

watch stream is. For example, if a watch is used to update a cache, it can be useful to know if

the cache is stale compared to the revision from a quorum read.

Progress requests can be issued using the “progress” command in interactive watch session

to ask the etcd server to send a progress notify update in the watch stream:

# watch for changes on key `foo` since revision 2
$ etcdctl watch --rev=2 foo
PUT
foo
bar
PUT
foo
bar_new

# watch for changes on key `foo` since revision 3
$ etcdctl watch --rev=3 foo
PUT
foo
bar_new



# watch for changes on key `foo` and return last revision value along with modified value
$ etcdctl watch --prev-kv foo
# in another terminal: etcdctl put foo bar_latest
PUT
foo         # key
bar_new     # last value of foo key before modification
foo         # key
bar_latest  # value of foo key after modification



$ etcdctl watch -i
$ watch a
$ progress
progress notify: 1
# in another terminal: etcdctl put x 0





Note: The revision number in the progress notify response is the revision from the local etcd

server node that the watch stream is connected to. If this node is partitioned and not part of

quorum, this progress notify revision might be lower than than the revision returned by a

quorum read against a non-partitioned etcd server node.

Compacted revisions

As we mentioned, etcd keeps revisions so that applications can read past versions of keys.

However, to avoid accumulating an unbounded amount of history, it is important to compact

past revisions. After compacting, etcd removes historical revisions, releasing resources for

future use. All superseded data with revisions before the compacted revision will be

unavailable.

Here is the command to compact the revisions:

Note: The current revision of etcd server can be found using get command on any key

(existent or non-existent) in json format. Example is shown below for mykey which does not

exist in etcd server:

Grant leases

Applications can grant leases for keys from an etcd cluster. When a key is attached to a lease,

its lifetime is bound to the lease’s lifetime which in turn is governed by a time-to-live (TTL).

Each lease has a minimum time-to-live (TTL) value specified by the application at grant time.

# in another terminal: etcdctl put y 1
$ progress
progress notify: 3

$ etcdctl compact 5
compacted revision 5

# any revisions before the compacted one are not accessible
$ etcdctl get --rev=4 foo
Error:  rpc error: code = 11 desc = etcdserver: mvcc: required revision has been compacte



$ etcdctl get mykey -w=json
{"header":{"cluster_id":14841639068965178418,"member_id":10276657743932975437,"revision"





The lease’s actual TTL value is at least the minimum TTL and is chosen by the etcd cluster.

Once a lease’s TTL elapses, the lease expires and all attached keys are deleted.

Here is the command to grant a lease:

Revoke leases

Applications revoke leases by lease ID. Revoking a lease deletes all of its attached keys.

Suppose we finished the following sequence of operations:

Here is the command to revoke the same lease:

Keep leases alive

Applications can keep a lease alive by refreshing its TTL so it does not expire.

Suppose we finished the following sequence of operations:

# grant a lease with 60 second TTL
$ etcdctl lease grant 60
lease 32695410dcc0ca06 granted with TTL(60s)

# attach key foo to lease 32695410dcc0ca06
$ etcdctl put --lease=32695410dcc0ca06 foo bar
OK



$ etcdctl lease grant 60
lease 32695410dcc0ca06 granted with TTL(60s)
$ etcdctl put --lease=32695410dcc0ca06 foo bar
OK



$ etcdctl lease revoke 32695410dcc0ca06
lease 32695410dcc0ca06 revoked

$ etcdctl get foo
# empty response since foo is deleted due to lease revocation





Here is the command to keep the same lease alive:

Get lease information

Applications may want to know about lease information, so that they can be renewed or to

check if the lease still exists or it has expired. Applications may also want to know the keys to

which a particular lease is attached.

Suppose we finished the following sequence of operations:

Here is the command to get information about the lease:

$ etcdctl lease grant 60
lease 32695410dcc0ca06 granted with TTL(60s)



$ etcdctl lease keep-alive 32695410dcc0ca06
lease 32695410dcc0ca06 keepalived with TTL(60)
lease 32695410dcc0ca06 keepalived with TTL(60)
lease 32695410dcc0ca06 keepalived with TTL(60)
...



# grant a lease with 500 second TTL
$ etcdctl lease grant 500
lease 694d5765fc71500b granted with TTL(500s)

# attach key zoo1 to lease 694d5765fc71500b
$ etcdctl put zoo1 val1 --lease=694d5765fc71500b
OK

# attach key zoo2 to lease 694d5765fc71500b
$ etcdctl put zoo2 val2 --lease=694d5765fc71500b
OK



$ etcdctl lease timetolive 694d5765fc71500b
lease 694d5765fc71500b granted with TTL(500s), remaining(258s)





Here is the command to get information about the lease along with the keys attached with

the lease:

Last modified June 14, 2021: Renaming content/en/next folder to content/en/v3.5. Updating

redirects, links, and config as needed. (#363) (138926b)

$ etcdctl lease timetolive --keys 694d5765fc71500b
lease 694d5765fc71500b granted with TTL(500s), remaining(132s), attached keys([zoo2 zoo1

# if the lease has expired or does not exist it will give the below response:
Error:  etcdserver: requested lease not found





https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c


Why gRPC gateway

Why you should consider using the gRPC gateway

etcd v3 uses gRPC  for its messaging protocol. The etcd project includes a gRPC-based Go

client  and a command line utility, etcdctl , for communicating with an etcd cluster through

gRPC. For languages with no gRPC support, etcd provides a JSON gRPC gateway . This

gateway serves a RESTful proxy that translates HTTP/JSON requests into gRPC messages.

Using gRPC gateway

The gateway accepts a JSON mapping  for etcd’s protocol buffer message definitions. Note

that key  and value  fields are defined as byte arrays and therefore must be base64 encoded

in JSON. The following examples use curl , but any HTTP/JSON client should work all the

same.

Notes

gRPC gateway endpoint has changed since etcd v3.3:

etcd v3.2 or before uses only [CLIENT-URL]/v3alpha/* .

etcd v3.3 uses [CLIENT-URL]/v3beta/*  while keeping [CLIENT-URL]/v3alpha/* .

etcd v3.4 uses [CLIENT-URL]/v3/*  while keeping [CLIENT-URL]/v3beta/* .

[CLIENT-URL]/v3alpha/* is deprecated.

etcd v3.5 or later uses only [CLIENT-URL]/v3/* .

[CLIENT-URL]/v3beta/* is deprecated.

gRPC-gateway does not support authentication using TLS Common Name.

Put and get keys

Use the /v3/kv/range  and /v3/kv/put  services to read and write keys:



 





<<COMMENT
https://www.base64encode.org/
foo is 'Zm9v' in Base64



etcd

Docs Blog Community Install Play

https://www.grpc.io/
https://www.grpc.io/
https://www.grpc.io/
https://github.com/etcd-io/etcd/tree/master/client/v3
https://github.com/etcd-io/etcd/tree/master/client/v3
https://github.com/etcd-io/etcd/tree/master/client/v3
https://github.com/etcd-io/etcd/tree/master/client/v3
https://github.com/etcd-io/etcd/tree/master/etcdctl
https://github.com/etcd-io/etcd/tree/master/etcdctl
https://github.com/etcd-io/etcd/tree/master/etcdctl
https://github.com/grpc-ecosystem/grpc-gateway
https://github.com/grpc-ecosystem/grpc-gateway
https://github.com/grpc-ecosystem/grpc-gateway
https://developers.google.com/protocol-buffers/docs/proto3#json
https://developers.google.com/protocol-buffers/docs/proto3#json
https://developers.google.com/protocol-buffers/docs/proto3#json
https://etcd.io/docs/v3.5/dev-guide/api_reference_v3/
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Watch keys

Use the /v3/watch  service to watch keys:

Transactions

Issue a transaction with /v3/kv/txn :

bar is 'YmFy'
COMMENT

curl -L http://localhost:2379/v3/kv/put \
  -X POST -d '{"key": "Zm9v", "value": "YmFy"}'
# {"header":{"cluster_id":"12585971608760269493","member_id":"13847567121247652255","revi

curl -L http://localhost:2379/v3/kv/range \
  -X POST -d '{"key": "Zm9v"}'
# {"header":{"cluster_id":"12585971608760269493","member_id":"13847567121247652255","revi

# get all keys prefixed with "foo"
curl -L http://localhost:2379/v3/kv/range \
  -X POST -d '{"key": "Zm9v", "range_end": "Zm9w"}'
# {"header":{"cluster_id":"12585971608760269493","member_id":"13847567121247652255","revi

curl -N http://localhost:2379/v3/watch \
  -X POST -d '{"create_request": {"key":"Zm9v"} }' &
# {"result":{"header":{"cluster_id":"12585971608760269493","member_id":"13847567121247652

curl -L http://localhost:2379/v3/kv/put \
  -X POST -d '{"key": "Zm9v", "value": "YmFy"}' >/dev/null 2>&1
# {"result":{"header":{"cluster_id":"12585971608760269493","member_id":"13847567121247652



# target CREATE
curl -L http://localhost:2379/v3/kv/txn \
  -X POST \
  -d '{"compare":[{"target":"CREATE","key":"Zm9v","createRevision":"2"}],"success":[{"req
# {"header":{"cluster_id":"12585971608760269493","member_id":"13847567121247652255","revi



# target VERSION
curl -L http://localhost:2379/v3/kv/txn \
  -X POST \
  -d '{"compare":[{"version":"4","result":"EQUAL","target":"VERSION","key":"Zm9v"}],"succ





Authentication

Set up authentication with the /v3/auth  service:

Authenticate with etcd for an authentication token using /v3/auth/authenticate :

Set the Authorization  header to the authentication token to fetch a key using authentication

credentials:

# {"header":{"cluster_id":"14841639068965178418","member_id":"10276657743932975437","revi

# create root user
curl -L http://localhost:2379/v3/auth/user/add \
  -X POST -d '{"name": "root", "password": "pass"}'
# {"header":{"cluster_id":"14841639068965178418","member_id":"10276657743932975437","revi

# create root role
curl -L http://localhost:2379/v3/auth/role/add \
  -X POST -d '{"name": "root"}'
# {"header":{"cluster_id":"14841639068965178418","member_id":"10276657743932975437","revi

# grant root role
curl -L http://localhost:2379/v3/auth/user/grant \
  -X POST -d '{"user": "root", "role": "root"}'
# {"header":{"cluster_id":"14841639068965178418","member_id":"10276657743932975437","revi

# enable auth
curl -L http://localhost:2379/v3/auth/enable -X POST -d '{}'
# {"header":{"cluster_id":"14841639068965178418","member_id":"10276657743932975437","revi



# get the auth token for the root user
curl -L http://localhost:2379/v3/auth/authenticate \
  -X POST -d '{"name": "root", "password": "pass"}'
# {"header":{"cluster_id":"14841639068965178418","member_id":"10276657743932975437","revi



curl -L http://localhost:2379/v3/kv/put \
  -H 'Authorization: sssvIpwfnLAcWAQH.9' \
  -X POST -d '{"key": "Zm9v", "value": "YmFy"}'
# {"header":{"cluster_id":"14841639068965178418","member_id":"10276657743932975437","revi





Swagger

Generated Swagger  API definitions can be found at rpc.swagger.json.

Last modified August 19, 2021: fix v3.5 links (#457) (cb192bf)





http://swagger.io/
http://swagger.io/
http://swagger.io/
https://etcd.io/docs/v3.5/dev-guide/apispec/swagger/rpc.swagger.json
https://github.com/etcd-io/website/commit/cb192bf87e7641b17d5b1838098a8c10e47927ad
https://github.com/etcd-io/website/commit/cb192bf87e7641b17d5b1838098a8c10e47927ad
https://github.com/etcd-io/website/commit/cb192bf87e7641b17d5b1838098a8c10e47927ad


gRPC naming and discovery

go-grpc: for resolving gRPC endpoints with an etcd backend

etcd provides a gRPC resolver to support an alternative name system that fetches endpoints

from etcd for discovering gRPC services. The underlying mechanism is based on watching

updates to keys prefixed with the service name.

Using etcd discovery with go-grpc

The etcd client provides a gRPC resolver for resolving gRPC endpoints with an etcd backend.

The resolver is initialized with an etcd client:

Managing service endpoints

The etcd resolver treats all keys under the prefix of the resolution target following a “/” (e.g.,

“foo/bar/my-service/”) with JSON-encoded (historically go-grpc naming.Update ) values as

import (
clientv3 "go.etcd.io/etcd/client/v3"
etcdnaming "go.etcd.io/etcd/client/v3/naming/resolver"

"google.golang.org/grpc"
)

...

cli, err := clientv3.NewFromURL("http://localhost:2379")
if err != nil {
    // ...
}
r, err := etcdnaming.NewBuilder(cli)
if err != nil {
    // ...
}
conn, gerr := grpc.Dial("my-service", grpc.WithResolvers(r), grpc.WithBlock(), ...)



etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


potential service endpoints. Endpoints are added to the service by creating new keys and

removed from the service by deleting keys.

Adding an endpoint

New endpoints can be added to the service through etcdctl :

The etcd client’s endpoints.Manager  method can also register new endpoints with a key

matching the Addr :

To enable round-robin load balancing when dialing service with multiple endpoints, you can

set up you connection with grpc internal round-robin load balancer:

Deleting an endpoint

Hosts can be deleted from the service through etcdctl :

The etcd client’s endpoints.Manager  method also supports deleting endpoints:

ETCDCTL_API=3 etcdctl put foo/bar/my-service/1.2.3.4 '{"Addr":"1.2.3.4","Metadata":"..."}


em := endpoints.NewManager(client, "foo/bar/my-service")
err := em.AddEndpoint(context.TODO(),"foo/bar/my-service/e1", endpoints.Endpoint{Addr:"1



conn, gerr := grpc.Dial("etcd:///foo", grpc.WithResolvers(etcdResolver),
grpc.WithDefaultServiceConfig(`{"loadBalancingPolicy":"round_robin"}`))



ETCDCTL_API=3 etcdctl del foo/bar/my-service/1.2.3.4


em := endpoints.NewManager(client, "foo/bar/my-service")
err := em.DeleteEndpoint(context.TODO(), "foo/bar/my-service/e1");





Registering an endpoint with a lease

Registering an endpoint with a lease ensures that if the host can’t maintain a keepalive

heartbeat (e.g., its machine fails), it will be removed from the service:

In the golang:

Atomically updating endpoints

If it’s desired to modify multiple endpoints in a single transaction, endpoints.Manager  can be

used directly:

em := endpoints.NewManager(c, "foo")

err := em.Update(context.TODO(), []*endpoints.UpdateWithOpts{
    endpoints.NewDeleteUpdateOpts("foo/bar/my-service/e1", endpoints.Endpoint{Addr: "1.2

endpoints.NewAddUpdateOpts("foo/bar/my-service/e1", endpoints.Endpoint{Addr: "1.2

Last modified July 30, 2024: fix: update grpc_naming.md for using etcd discovery with go-grpc

code example (468f4a1)

lease=`ETCDCTL_API=3 etcdctl lease grant 5 | cut -f2 -d' '`
ETCDCTL_API=3 etcdctl put --lease=$lease my-service/1.2.3.4 '{"Addr":"1.2.3.4","Metadata
ETCDCTL_API=3 etcdctl lease keep-alive $lease



lease, _ := client.Grant(context.TODO(), ttl)
em := endpoints.NewManager(client, "foo/bar/my-service")
err := em.AddEndpoint(context.TODO(), "foo/bar/my-service/e1", endpoints.Endpoint{Addr:"1





https://github.com/etcd-io/website/commit/468f4a10818d5c49d94553c3c8f43b2380c73afe
https://github.com/etcd-io/website/commit/468f4a10818d5c49d94553c3c8f43b2380c73afe
https://github.com/etcd-io/website/commit/468f4a10818d5c49d94553c3c8f43b2380c73afe
https://github.com/etcd-io/website/commit/468f4a10818d5c49d94553c3c8f43b2380c73afe


System limits

etcd limits: requests and storage

Request size limit

etcd is designed to handle small key value pairs typical for metadata. Larger requests will

work, but may increase the latency of other requests. By default, the maximum size of any

request is 1.5 MiB. This limit is configurable through --max-request-bytes  flag for etcd server.

Storage size limit

The default storage size limit is 2 GiB, configurable with --quota-backend-bytes  flag. 8 GiB is a

suggested maximum size for normal environments and etcd warns at startup if the

configured value exceeds it.

Last modified April 20, 2023: Corrected the data size units. (9e92641)


etcd

Docs Blog Community Install Play

https://github.com/etcd-io/website/commit/9e926419bd622c59c99917006de3f9f805bad29f
https://github.com/etcd-io/website/commit/9e926419bd622c59c99917006de3f9f805bad29f
https://github.com/etcd-io/website/commit/9e926419bd622c59c99917006de3f9f805bad29f
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play




etcd features

using etcd features

This document provides an overview of etcd features to help users better understand the

features and related deprecation process. If you are interested in knowing about how

features are developed in the etcd, please see these development guidelines .

The etcd features fall into three stages, experimental, stable, and unsafe. You can get the list

of features by running etcd --help .

Experimental

In order to get early feedback, any new feature is usually added as an experimental feature.

The experimental feature can be identified by looking at the flag name, which should have --

experimental  as a prefix. Please consider the following points while using an experimental

feature:

It might be buggy due to a lack of user testing. Enabling the feature may not work as

expected.

It is disabled by default.

Support for such a feature may be dropped at any time without notice

It can be removed in the next minor or major release without following the feature

deprecation policy unless it graduates to a stable future.

The project team would appreciate users reporting any issues related to

experimental features. However, such issues may be given lower priorities compared

to the issues related to stable featuers.

An experimental feature flag deprecates when it graduates to the stable stage. Users

should start using a stable feature flag as soon as possible.

Stable

This is the most common stage of features in the etcd. A stable feature is characterized as

below:

Supported as part of the supported releases of etcd.



etcd

Docs Blog Community Install Play

https://github.com/etcd-io/etcd/blob/main/Documentation/contributor-guide/features.md
https://github.com/etcd-io/etcd/blob/main/Documentation/contributor-guide/features.md
https://github.com/etcd-io/etcd/blob/main/Documentation/contributor-guide/features.md
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


May be enabled by default.

Discontinuation of support must follow the feature deprecation policy.

Unsafe

Unsafe features are rare and listed under the Unsafe feature:  section in the etcd usage

documentation. By default, they are disabled. They should be used with caution following

documentation. An unsafe feature can be removed in the next minor or major release

without following the feature deprecation policy.

Feature Deprecation

Experimental

An experimental feature deprecates when it graduates to the stable stage.

The experimental feature documentation will show a deprecation message with a

recommendation to use a related stable feature flag. e.g. DEPRECATED. Use <feature-name>

instead.

A deprecated feature will be removed in the following release.

Stable

As the project evolves, a stable feature may sometimes need to be deprecated and removed.

When that happens,

The feature documentation will show a warning message before a planned release for

deprecation. e.g. To be deprecated in <release>. . If a new feature is already planned to

replace the To be deprecated  feature, then the documentation will also provide a

message saying so. e.g. Use <feature-name> instead. .

The feature will be deprecated in the planned release. At that time, the feature

documentation will show a deprecation message with a recommendation to use a

related stable feature. e.g. DEPRECATED. Use <feature-name> instead.

A deprecated feature will be removed in the following release.

Last modified September 30, 2022: Add user doc for etcd features (5413d18)


https://github.com/etcd-io/website/commit/5413d181dac8759be587dc00e83d44b85219ddb8
https://github.com/etcd-io/website/commit/5413d181dac8759be587dc00e83d44b85219ddb8
https://github.com/etcd-io/website/commit/5413d181dac8759be587dc00e83d44b85219ddb8


API reference

This API reference is autogenerated from the named .proto  files.

service Auth (api/etcdserverpb/rpc.proto)

Method Request Type Response Type

AuthEnable AuthEnableRequest AuthEnableResponse

AuthDisable AuthDisableRequest AuthDisableResponse

AuthStatus AuthStatusRequest AuthStatusResponse

Authenticate AuthenticateRequest AuthenticateResponse

UserAdd AuthUserAddRequest AuthUserAddResponse

UserGet AuthUserGetRequest AuthUserGetResponse

UserList AuthUserListRequest AuthUserListResponse

UserDelete AuthUserDeleteRequest AuthUserDeleteResponse

UserChangePassword AuthUserChangePasswordRequest AuthUserChangePasswordRes

UserGrantRole AuthUserGrantRoleRequest AuthUserGrantRoleResponse

etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Method Request Type Response Type

UserRevokeRole AuthUserRevokeRoleRequest AuthUserRevokeRoleResponse

RoleAdd AuthRoleAddRequest AuthRoleAddResponse

RoleGet AuthRoleGetRequest AuthRoleGetResponse

RoleList AuthRoleListRequest AuthRoleListResponse

RoleDelete AuthRoleDeleteRequest AuthRoleDeleteResponse

RoleGrantPermission AuthRoleGrantPermissionRequest AuthRoleGrantPermissionResp

RoleRevokePermission AuthRoleRevokePermissionRequest AuthRoleRevokePermissionRe

service Cluster (api/etcdserverpb/rpc.proto)

Method Request Type Response Type Description

MemberAdd MemberAddRequest MemberAddResponse MemberAdd

adds a member

into the cluster.

MemberRemove MemberRemoveRequest MemberRemoveResponse MemberRemove

removes an

existing member

from the cluster.



Method Request Type Response Type Description

MemberUpdate MemberUpdateRequest MemberUpdateResponse MemberUpdate

updates the

member

configuration.

MemberList MemberListRequest MemberListResponse MemberList lists

all the members

in the cluster.

MemberPromote MemberPromoteRequest MemberPromoteResponse MemberPromote

promotes a

member from

raft learner (non

voting) to raft

voting member.

service KV (api/etcdserverpb/rpc.proto)

Method Request Type Response Type Description

Range RangeRequest RangeResponse Range gets the keys in the

range from the key-value

store.

Put PutRequest PutResponse Put puts the given key into

the key-value store. A put

request increments the

revision of the key-value

store and generates one

event in the event history.

DeleteRange DeleteRangeRequest DeleteRangeResponse DeleteRange deletes the

given range from the key-

value store. A delete request

increments the revision of

the key-value store and

generates a delete event in

the event history for every

deleted key.

Txn TxnRequest TxnResponse Txn processes multiple

requests in a single



Method Request Type Response Type Description

transaction. A txn request

increments the revision of

the key-value store and

generates events with the

same revision for every

completed request. It is not

allowed to modify the same

key several times within one

txn.

Compact CompactionRequest CompactionResponse Compact compacts the

event history in the etcd key-

value store. The key-value

store should be periodically

compacted or the event

history will continue to grow

indefinitely.

service Lease (api/etcdserverpb/rpc.proto)

Method Request Type Response Type Description

LeaseGrant LeaseGrantRequest LeaseGrantResponse LeaseGrant

creates a lease

which expires if

the server does

not receive a

keepAlive within

a given time to

live period. All

keys attached to

the lease will be

expired and

deleted if the

lease expires.

Each expired key

generates a

delete event in

the event

history.



Method Request Type Response Type Description

LeaseRevoke LeaseRevokeRequest LeaseRevokeResponse LeaseRevoke

revokes a lease.

All keys attached

to the lease will

expire and be

deleted.

LeaseKeepAlive LeaseKeepAliveRequest LeaseKeepAliveResponse LeaseKeepAlive

keeps the lease

alive by

streaming keep

alive requests

from the client

to the server

and streaming

keep alive

responses from

the server to the

client.

LeaseTimeToLive LeaseTimeToLiveRequest LeaseTimeToLiveResponse LeaseTimeToLive

retrieves lease

information.

LeaseLeases LeaseLeasesRequest LeaseLeasesResponse LeaseLeases lists

all existing

leases.

service Maintenance (api/etcdserverpb/rpc.proto)

Method Request Type Response Type Description

Alarm AlarmRequest AlarmResponse Alarm activates, deactivates,

and queries alarms regarding

cluster health.

Status StatusRequest StatusResponse Status gets the status of the

member.

Defragment DefragmentRequest DefragmentResponse Defragment defragments a

member’s backend database

to recover storage space.



Method Request Type Response Type Description

Hash HashRequest HashResponse Hash computes the hash of

whole backend keyspace,

including key, lease, and

other buckets in storage. This

is designed for testing ONLY!

Do not rely on this in

production with ongoing

transactions, since Hash

operation does not hold

MVCC locks. Use “HashKV”

API instead for “key” bucket

consistency checks.

HashKV HashKVRequest HashKVResponse HashKV computes the hash

of all MVCC keys up to a given

revision. It only iterates “key”

bucket in backend storage.

Snapshot SnapshotRequest SnapshotResponse Snapshot sends a snapshot

of the entire backend from a

member over a stream to a

client.

MoveLeader MoveLeaderRequest MoveLeaderResponse MoveLeader requests current

leader node to transfer its

leadership to transferee.

Downgrade DowngradeRequest DowngradeResponse Downgrade requests

downgrades, verifies

feasibility or cancels

downgrade on the cluster

version. Supported since etcd

3.5.

service Watch (api/etcdserverpb/rpc.proto)

Method Request Type Response Type Description

Watch WatchRequest WatchResponse Watch watches for events happening or that

have happened. Both input and output are

streams; the input stream is for creating and

canceling watchers and the output stream



Method Request Type Response Type Description

sends events. One watch RPC can watch on

multiple key ranges, streaming events for

several watches at once. The entire event

history can be watched starting from the last

compaction revision.

message AlarmMember (api/etcdserverpb/rpc.proto)

Field Description Type

memberID memberID is the ID of the member associated with the raised

alarm.

uint64

alarm alarm is the type of alarm which has been raised. AlarmType

message AlarmRequest (api/etcdserverpb/rpc.proto)

Field Description Type

action action is the kind of alarm request to issue. The action may GET

alarm statuses, ACTIVATE an alarm, or DEACTIVATE a raised

alarm.

AlarmAction

memberID memberID is the ID of the member associated with the alarm. If

memberID is 0, the alarm request covers all members.

uint64

alarm alarm is the type of alarm to consider for this request. AlarmType

message AlarmResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

alarms alarms is a list of alarms associated with the alarm

request.

(slice of)

AlarmMember

message AuthDisableRequest (api/etcdserverpb/rpc.proto)

Empty field.



message AuthDisableResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

message AuthEnableRequest (api/etcdserverpb/rpc.proto)

Empty field.

message AuthEnableResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

message AuthRoleAddRequest (api/etcdserverpb/rpc.proto)

Field Description Type

name name is the name of the role to add to the authentication system. string

message AuthRoleAddResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

message AuthRoleDeleteRequest (api/etcdserverpb/rpc.proto)

Field Description Type

role string

message AuthRoleDeleteResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

message AuthRoleGetRequest (api/etcdserverpb/rpc.proto)



Field Description Type

role string

message AuthRoleGetResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

perm (slice of) authpb.Permission

message AuthRoleGrantPermissionRequest (api/etcdserverpb/rpc.proto)

Field Description Type

name name is the name of the role which will be granted the

permission.

string

perm perm is the permission to grant to the role. authpb.Permission

message AuthRoleGrantPermissionResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

message AuthRoleListRequest (api/etcdserverpb/rpc.proto)

Empty field.

message AuthRoleListResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

roles (slice of) string

message AuthRoleRevokePermissionRequest (api/etcdserverpb/rpc.proto)



Field Description Type

role string

key bytes

range_end bytes

message AuthRoleRevokePermissionResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

message AuthStatusRequest (api/etcdserverpb/rpc.proto)

Empty field.

message AuthStatusResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

enabled bool

authRevision authRevision is the current revision of auth store uint64

message AuthUserAddRequest (api/etcdserverpb/rpc.proto)

Field Description Type

name string

password string

options authpb.UserAddOptions

hashedPassword string

message AuthUserAddResponse (api/etcdserverpb/rpc.proto)



Field Description Type

header ResponseHeader

message AuthUserChangePasswordRequest (api/etcdserverpb/rpc.proto)

Field Description Type

name name is the name of the user whose password is being

changed.

string

password password is the new password for the user. Note that this field

will be removed in the API layer.

string

hashedPassword hashedPassword is the new password for the user. Note that

this field will be initialized in the API layer.

string

message AuthUserChangePasswordResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

message AuthUserDeleteRequest (api/etcdserverpb/rpc.proto)

Field Description Type

name name is the name of the user to delete. string

message AuthUserDeleteResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

message AuthUserGetRequest (api/etcdserverpb/rpc.proto)

Field Description Type

name string



message AuthUserGetResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

roles (slice of) string

message AuthUserGrantRoleRequest (api/etcdserverpb/rpc.proto)

Field Description Type

user user is the name of the user which should be granted a given role. string

role role is the name of the role to grant to the user. string

message AuthUserGrantRoleResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

message AuthUserListRequest (api/etcdserverpb/rpc.proto)

Empty field.

message AuthUserListResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

users (slice of) string

message AuthUserRevokeRoleRequest (api/etcdserverpb/rpc.proto)

Field Description Type

name string

role string

message AuthUserRevokeRoleResponse (api/etcdserverpb/rpc.proto)



Field Description Type

header ResponseHeader

message AuthenticateRequest (api/etcdserverpb/rpc.proto)

Field Description Type

name string

password string

message AuthenticateResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

token token is an authorized token that can be used in succeeding

RPCs

string

message CompactionRequest (api/etcdserverpb/rpc.proto)

CompactionRequest compacts the key-value store up to a given revision. All superseded keys

with a revision less than the compaction revision will be removed.

Field Description Type

revision revision is the key-value store revision for the compaction operation. int64

physical physical is set so the RPC will wait until the compaction is physically

applied to the local database such that compacted entries are totally

removed from the backend database.

bool

message CompactionResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

message Compare (api/etcdserverpb/rpc.proto)



Field Description Type

result result is logical comparison operation for this

comparison.

CompareResult

target target is the key-value field to inspect for the

comparison.

CompareTarget

key key is the subject key for the comparison operation. bytes

target_union oneof

version version is the version of the given key int64

create_revision create_revision is the creation revision of the given key int64

mod_revision mod_revision is the last modified revision of the given

key.

int64

value value is the value of the given key, in bytes. bytes

lease lease is the lease id of the given key. int64

range_end range_end compares the given target to all keys in the

range [key, range_end). See RangeRequest for more

details on key ranges.

bytes

message DefragmentRequest (api/etcdserverpb/rpc.proto)

Empty field.

message DefragmentResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

message DeleteRangeRequest (api/etcdserverpb/rpc.proto)

Field Description Type

key key is the first key to delete in the range. bytes

range_end range_end is the key following the last key to delete for the range [key,

range_end). If range_end is not given, the range is defined to contain

bytes



Field Description Type

only the key argument. If range_end is one bit larger than the given

key, then the range is all the keys with the prefix (the given key). If

range_end is ‘\0’, the range is all keys greater than or equal to the key

argument.

prev_kv If prev_kv is set, etcd gets the previous key-value pairs before deleting

it. The previous key-value pairs will be returned in the delete response.

bool

message DeleteRangeResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

deleted deleted is the number of keys deleted by the delete

range request.

int64

prev_kvs if prev_kv is set in the request, the previous key-value

pairs will be returned.

(slice of)

mvccpb.KeyValue

message DowngradeRequest (api/etcdserverpb/rpc.proto)

Field Description Type

action action is the kind of downgrade request to issue. The action

may VALIDATE the target version, DOWNGRADE the cluster

version, or CANCEL the current downgrading job.

DowngradeAction

version version is the target version to downgrade. string

message DowngradeResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

version version is the current cluster version. string

message HashKVRequest (api/etcdserverpb/rpc.proto)



Field Description Type

revision revision is the key-value store revision for the hash operation. int64

message HashKVResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

hash hash is the hash value computed from the

responding member’s MVCC keys up to a given

revision.

uint32

compact_revision compact_revision is the compacted revision of key-

value store when hash begins.

int64

message HashRequest (api/etcdserverpb/rpc.proto)

Empty field.

message HashResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

hash hash is the hash value computed from the responding

member’s KV’s backend.

uint32

message LeaseCheckpoint (api/etcdserverpb/rpc.proto)

Field Description Type

ID ID is the lease ID to checkpoint. int64

remaining_TTL Remaining_TTL is the remaining time until expiry of the lease. int64

message LeaseCheckpointRequest (api/etcdserverpb/rpc.proto)

Field Description Type

checkpoints (slice of) LeaseCheckpoint



message LeaseCheckpointResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

message LeaseGrantRequest (api/etcdserverpb/rpc.proto)

Field Description Type

TTL TTL is the advisory time-to-live in seconds. Expired lease will return -1. int64

ID ID is the requested ID for the lease. If ID is set to 0, the lessor chooses an ID. int64

message LeaseGrantResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

ID ID is the lease ID for the granted lease. int64

TTL TTL is the server chosen lease time-to-live in seconds. int64

error string

message LeaseKeepAliveRequest (api/etcdserverpb/rpc.proto)

Field Description Type

ID ID is the lease ID for the lease to keep alive. int64

message LeaseKeepAliveResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

ID ID is the lease ID from the keep alive request. int64

TTL TTL is the new time-to-live for the lease. int64

message LeaseLeasesRequest (api/etcdserverpb/rpc.proto)



Empty field.

message LeaseLeasesResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

leases (slice of) LeaseStatus

message LeaseRevokeRequest (api/etcdserverpb/rpc.proto)

Field Description Type

ID ID is the lease ID to revoke. When the ID is revoked, all associated keys will

be deleted.

int64

message LeaseRevokeResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

message LeaseStatus (api/etcdserverpb/rpc.proto)

Field Description Type

ID int64

message LeaseTimeToLiveRequest (api/etcdserverpb/rpc.proto)

Field Description Type

ID ID is the lease ID for the lease. int64

keys keys is true to query all the keys attached to this lease. bool

message LeaseTimeToLiveResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader



Field Description Type

ID ID is the lease ID from the keep alive request. int64

TTL TTL is the remaining TTL in seconds for the lease; the lease

will expire in under TTL+1 seconds.

int64

grantedTTL GrantedTTL is the initial granted time in seconds upon

lease creation/renewal.

int64

keys Keys is the list of keys attached to this lease. (slice of) bytes

message Member (api/etcdserverpb/rpc.proto)

Field Description Type

ID ID is the member ID for this member. uint64

name name is the human-readable name of the member. If the member

is not started, the name will be an empty string.

string

peerURLs peerURLs is the list of URLs the member exposes to the cluster for

communication.

(slice of)

string

clientURLs clientURLs is the list of URLs the member exposes to clients for

communication. If the member is not started, clientURLs will be

empty.

(slice of)

string

isLearner isLearner indicates if the member is raft learner. bool

message MemberAddRequest (api/etcdserverpb/rpc.proto)

Field Description Type

peerURLs peerURLs is the list of URLs the added member will use to

communicate with the cluster.

(slice of)

string

isLearner isLearner indicates if the added member is raft learner. bool

message MemberAddResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader



Field Description Type

member member is the member information for the added member. Member

members members is a list of all members after adding the new

member.

(slice of)

Member

message MemberListRequest (api/etcdserverpb/rpc.proto)

Field Description Type

linearizable bool

message MemberListResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

members members is a list of all members associated with the cluster. (slice of) Member

message MemberPromoteRequest (api/etcdserverpb/rpc.proto)

Field Description Type

ID ID is the member ID of the member to promote. uint64

message MemberPromoteResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

members members is a list of all members after promoting the

member.

(slice of)

Member

message MemberRemoveRequest (api/etcdserverpb/rpc.proto)

Field Description Type

ID ID is the member ID of the member to remove. uint64



message MemberRemoveResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

members members is a list of all members after removing the

member.

(slice of) Member

message MemberUpdateRequest (api/etcdserverpb/rpc.proto)

Field Description Type

ID ID is the member ID of the member to update. uint64

peerURLs peerURLs is the new list of URLs the member will use to

communicate with the cluster.

(slice of)

string

message MemberUpdateResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

members members is a list of all members after updating the

member.

(slice of) Member

message MoveLeaderRequest (api/etcdserverpb/rpc.proto)

Field Description Type

targetID targetID is the node ID for the new leader. uint64

message MoveLeaderResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

message PutRequest (api/etcdserverpb/rpc.proto)



Field Description Type

key key is the key, in bytes, to put into the key-value store. bytes

value value is the value, in bytes, to associate with the key in the key-value

store.

bytes

lease lease is the lease ID to associate with the key in the key-value store.

A lease value of 0 indicates no lease.

int64

prev_kv If prev_kv is set, etcd gets the previous key-value pair before

changing it. The previous key-value pair will be returned in the put

response.

bool

ignore_value If ignore_value is set, etcd updates the key using its current value.

Returns an error if the key does not exist.

bool

ignore_lease If ignore_lease is set, etcd updates the key using its current lease.

Returns an error if the key does not exist.

bool

message PutResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

prev_kv if prev_kv is set in the request, the previous key-value pair will

be returned.

mvccpb.KeyValue

message RangeRequest (api/etcdserverpb/rpc.proto)

Field Description Type

key key is the first key for the range. If range_end is not

given, the request only looks up key.

bytes

range_end range_end is the upper bound on the requested range

[key, range_end). If range_end is ‘\0’, the range is all keys

>= key. If range_end is key plus one (e.g., “aa”+1 == “ab”,

“a\xff”+1 == “b”), then the range request gets all keys

prefixed with key. If both key and range_end are ‘\0’,

then the range request returns all keys.

bytes



Field Description Type

limit limit is a limit on the number of keys returned for the

request. When limit is set to 0, it is treated as no limit.

int64

revision revision is the point-in-time of the key-value store to use

for the range. If revision is less or equal to zero, the

range is over the newest key-value store. If the revision

has been compacted, ErrCompacted is returned as a

response.

int64

sort_order sort_order is the order for returned sorted results. SortOrder

sort_target sort_target is the key-value field to use for sorting. SortTarget

serializable serializable sets the range request to use serializable

member-local reads. Range requests are linearizable by

default; linearizable requests have higher latency and

lower throughput than serializable requests but reflect

the current consensus of the cluster. For better

performance, in exchange for possible stale reads, a

serializable range request is served locally without

needing to reach consensus with other nodes in the

cluster.

bool

keys_only keys_only when set returns only the keys and not the

values.

bool

count_only count_only when set returns only the count of the keys

in the range.

bool

min_mod_revision min_mod_revision is the lower bound for returned key

mod revisions; all keys with lesser mod revisions will be

filtered away.

int64

max_mod_revision max_mod_revision is the upper bound for returned key

mod revisions; all keys with greater mod revisions will

be filtered away.

int64

min_create_revision min_create_revision is the lower bound for returned key

create revisions; all keys with lesser create revisions will

be filtered away.

int64

max_create_revision max_create_revision is the upper bound for returned

key create revisions; all keys with greater create

revisions will be filtered away.

int64



message RangeResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

kvs kvs is the list of key-value pairs matched by the range

request. kvs is empty when count is requested.

(slice of)

mvccpb.KeyValue

more more indicates if there are more keys to return in the

requested range.

bool

count count is set to the number of keys within the range when

requested.

int64

message RequestOp (api/etcdserverpb/rpc.proto)

Field Description Type

request request is a union of request types accepted

by a transaction.

oneof

request_range RangeRequest

request_put PutRequest

request_delete_range DeleteRangeRequest

request_txn TxnRequest

message ResponseHeader (api/etcdserverpb/rpc.proto)

Field Description Type

cluster_id cluster_id is the ID of the cluster which sent the response. uint64

member_id member_id is the ID of the member which sent the response. uint64

revision revision is the key-value store revision when the request was applied.

For watch progress responses, the header.revision indicates

progress. All future events received in this stream are guaranteed to

have a higher revision number than the header.revision number.

int64

raft_term raft_term is the raft term when the request was applied. uint64



message ResponseOp (api/etcdserverpb/rpc.proto)

Field Description Type

response response is a union of response types

returned by a transaction.

oneof

response_range RangeResponse

response_put PutResponse

response_delete_range DeleteRangeResponse

response_txn TxnResponse

message SnapshotRequest (api/etcdserverpb/rpc.proto)

Empty field.

message SnapshotResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header header has the current key-value store information.

The first header in the snapshot stream indicates the

point in time of the snapshot.

ResponseHeader

remaining_bytes remaining_bytes is the number of blob bytes to be

sent after this message

uint64

blob blob contains the next chunk of the snapshot in the

snapshot stream.

bytes

message StatusRequest (api/etcdserverpb/rpc.proto)

Empty field.

message StatusResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

version version is the cluster protocol version used by the

responding member.

string



Field Description Type

dbSize dbSize is the size of the backend database physically

allocated, in bytes, of the responding member.

int64

leader leader is the member ID which the responding

member believes is the current leader.

uint64

raftIndex raftIndex is the current raft committed index of the

responding member.

uint64

raftTerm raftTerm is the current raft term of the responding

member.

uint64

raftAppliedIndex raftAppliedIndex is the current raft applied index of

the responding member.

uint64

errors errors contains alarm/health information and status. (slice of) string

dbSizeInUse dbSizeInUse is the size of the backend database

logically in use, in bytes, of the responding member.

int64

isLearner isLearner indicates if the member is raft learner. bool

message TxnRequest (api/etcdserverpb/rpc.proto)

From google paxosdb paper: Our implementation hinges around a powerful primitive which

we call MultiOp. All other database operations except for iteration are implemented as a

single call to MultiOp. A MultiOp is applied atomically and consists of three components: 1. A

list of tests called guard. Each test in guard checks a single entry in the database. It may check

for the absence or presence of a value, or compare with a given value. Two different tests in

the guard may apply to the same or different entries in the database. All tests in the guard

are applied and MultiOp returns the results. If all tests are true, MultiOp executes t op (see

item 2 below), otherwise it executes f op (see item 3 below). 2. A list of database operations

called t op. Each operation in the list is either an insert, delete, or lookup operation, and

applies to a single database entry. Two different operations in the list may apply to the same

or different entries in the database. These operations are executed if guard evaluates to true.

3. A list of database operations called f op. Like t op, but executed if guard evaluates to false.

Field Description Type

compare compare is a list of predicates representing a conjunction of

terms. If the comparisons succeed, then the success requests will

be processed in order, and the response will contain their

respective responses in order. If the comparisons fail, then the

(slice of)

Compare



Field Description Type

failure requests will be processed in order, and the response will

contain their respective responses in order.

success success is a list of requests which will be applied when compare

evaluates to true.

(slice of)

RequestOp

failure failure is a list of requests which will be applied when compare

evaluates to false.

(slice of)

RequestOp

message TxnResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

succeeded succeeded is set to true if the compare evaluated to true

or false otherwise.

bool

responses responses is a list of responses corresponding to the

results from applying success if succeeded is true or

failure if succeeded is false.

(slice of)

ResponseOp

message WatchCancelRequest (api/etcdserverpb/rpc.proto)

Field Description Type

watch_id watch_id is the watcher id to cancel so that no more events are

transmitted.

int64

message WatchCreateRequest (api/etcdserverpb/rpc.proto)

Field Description Type

key key is the key to register for watching. bytes

range_end range_end is the end of the range [key, range_end) to watch.

If range_end is not given, only the key argument is watched.

If range_end is equal to ‘\0’, all keys greater than or equal to

the key argument are watched. If the range_end is one bit

larger than the given key, then all keys with the prefix (the

given key) will be watched.

bytes



Field Description Type

start_revision start_revision is an optional revision to watch from

(inclusive). No start_revision is “now”.

int64

progress_notify progress_notify is set so that the etcd server will periodically

send a WatchResponse with no events to the new watcher if

there are no recent events. It is useful when clients wish to

recover a disconnected watcher starting from a recent

known revision. The etcd server may decide how often it will

send notifications based on current load.

bool

filters filters filter the events at server side before it sends back to

the watcher.

(slice of)

FilterType

prev_kv If prev_kv is set, created watcher gets the previous KV before

the event happens. If the previous KV is already compacted,

nothing will be returned.

bool

watch_id If watch_id is provided and non-zero, it will be assigned to

this watcher. Since creating a watcher in etcd is not a

synchronous operation, this can be used ensure that

ordering is correct when creating multiple watchers on the

same stream. Creating a watcher with an ID already in use

on the stream will cause an error to be returned.

int64

fragment fragment enables splitting large revisions into multiple

watch responses.

bool

message WatchProgressRequest (api/etcdserverpb/rpc.proto)

Requests the a watch stream progress status be sent in the watch response stream as soon

as possible.

Empty field.

message WatchRequest (api/etcdserverpb/rpc.proto)

Field Description Type

request_union request_union is a request to either create a

new watcher or cancel an existing watcher.

oneof

create_request WatchCreateRequest



Field Description Type

cancel_request WatchCancelRequest

progress_request WatchProgressRequest

message WatchResponse (api/etcdserverpb/rpc.proto)

Field Description Type

header ResponseHeader

watch_id watch_id is the ID of the watcher that corresponds

to the response.

int64

created created is set to true if the response is for a create

watch request. The client should record the

watch_id and expect to receive events for the

created watcher from the same stream. All events

sent to the created watcher will attach with the

same watch_id.

bool

canceled canceled is set to true if the response is for a cancel

watch request. No further events will be sent to the

canceled watcher.

bool

compact_revision compact_revision is set to the minimum index if a

watcher tries to watch at a compacted index. This

happens when creating a watcher at a compacted

revision or the watcher cannot catch up with the

progress of the key-value store. The client should

treat the watcher as canceled and should not try to

create any watcher with the same start_revision

again.

int64

cancel_reason cancel_reason indicates the reason for canceling

the watcher.

string

fragment framgment is true if large watch response was split

over multiple responses.

bool

events (slice of)

mvccpb.Event

message Event (api/mvccpb/kv.proto)



Field Description Type

type type is the kind of event. If type is a PUT, it indicates new data has

been stored to the key. If type is a DELETE, it indicates the key was

deleted.

EventType

kv kv holds the KeyValue for the event. A PUT event contains current kv

pair. A PUT event with kv.Version=1 indicates the creation of a key. A

DELETE/EXPIRE event contains the deleted key with its modification

revision set to the revision of deletion.

KeyValue

prev_kv prev_kv holds the key-value pair before the event happens. KeyValue

message KeyValue (api/mvccpb/kv.proto)

Field Description Type

key key is the key in bytes. An empty key is not allowed. bytes

create_revision create_revision is the revision of last creation on this key. int64

mod_revision mod_revision is the revision of last modification on this key. int64

version version is the version of the key. A deletion resets the version to

zero and any modification of the key increases its version.

int64

value value is the value held by the key, in bytes. bytes

lease lease is the ID of the lease that attached to key. When the

attached lease expires, the key will be deleted. If lease is 0, then

no lease is attached to the key.

int64

message Lease (server/lease/leasepb/lease.proto)

Field Description Type

ID int64

TTL int64

RemainingTTL int64

message LeaseInternalRequest (server/lease/leasepb/lease.proto)



Field Description Type

LeaseTimeToLiveRequest etcdserverpb.LeaseTimeToLiveRequest

message LeaseInternalResponse (server/lease/leasepb/lease.proto)

Field Description Type

LeaseTimeToLiveResponse etcdserverpb.LeaseTimeToLiveResponse

message Permission (api/authpb/auth.proto)

Permission is a single entity

Field Description Type

permType Type

key bytes

range_end bytes

message Role (api/authpb/auth.proto)

Role is a single entry in the bucket authRoles

Field Description Type

name bytes

keyPermission (slice of) Permission

message User (api/authpb/auth.proto)

User is a single entry in the bucket authUsers

Field Description Type

name bytes

password bytes

roles (slice of) string



Field Description Type

options UserAddOptions

message UserAddOptions (api/authpb/auth.proto)

Field Description Type

no_password bool

Last modified April 9, 2022: Fix typos (a2da31e)


https://github.com/etcd-io/website/commit/a2da31e79a3db4d5c40bc46c32f9c952b67ffdd4
https://github.com/etcd-io/website/commit/a2da31e79a3db4d5c40bc46c32f9c952b67ffdd4
https://github.com/etcd-io/website/commit/a2da31e79a3db4d5c40bc46c32f9c952b67ffdd4


API reference: concurrency

This API reference is autogenerated from the named .proto  files.

service Lock (server/etcdserver/api/v3lock/v3lockpb/v3lock.proto)

The lock service exposes client-side locking facilities as a gRPC interface.

Method Request Type Response Type Description

Lock LockRequest LockResponse Lock acquires a distributed shared lock on a

given named lock. On success, it will return a

unique key that exists so long as the lock is

held by the caller. This key can be used in

conjunction with transactions to safely

ensure updates to etcd only occur while

holding lock ownership. The lock is held until

Unlock is called on the key or the lease

associate with the owner expires.

Unlock UnlockRequest UnlockResponse Unlock takes a key returned by Lock and

releases the hold on lock. The next Lock

caller waiting for the lock will then be woken

up and given ownership of the lock.

message LockRequest (server/etcdserver/api/v3lock/v3lockpb/v3lock.proto)

Field Description Type

name name is the identifier for the distributed shared lock to be acquired. bytes

lease lease is the ID of the lease that will be attached to ownership of the lock. If

the lease expires or is revoked and currently holds the lock, the lock is

automatically released. Calls to Lock with the same lease will be treated as a

single acquisition; locking twice with the same lease is a no-op.

int64

message LockResponse (server/etcdserver/api/v3lock/v3lockpb/v3lock.proto)

etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Field Description Type

header etcdserverpb.ResponseHeader

key key is a key that will exist on etcd for the

duration that the Lock caller owns the lock.

Users should not modify this key or the lock may

exhibit undefined behavior.

bytes

message UnlockRequest (server/etcdserver/api/v3lock/v3lockpb/v3lock.proto)

Field Description Type

key key is the lock ownership key granted by Lock. bytes

message UnlockResponse (server/etcdserver/api/v3lock/v3lockpb/v3lock.proto)

Field Description Type

header etcdserverpb.ResponseHeader

service Election (server/etcdserver/api/v3election/v3electionpb/v3election.proto)

The election service exposes client-side election facilities as a gRPC interface.

Method Request Type Response Type Description

Campaign CampaignRequest CampaignResponse Campaign waits to acquire

leadership in an election, returning a

LeaderKey representing the

leadership if successful. The

LeaderKey can then be used to issue

new values on the election,

transactionally guard API requests

on leadership still being held, and

resign from the election.

Proclaim ProclaimRequest ProclaimResponse Proclaim updates the leader’s

posted value with a new value.

Leader LeaderRequest LeaderResponse Leader returns the current election

proclamation, if any.



Method Request Type Response Type Description

Observe LeaderRequest LeaderResponse Observe streams election

proclamations in-order as made by

the election’s elected leaders.

Resign ResignRequest ResignResponse Resign releases election leadership

so other campaigners may acquire

leadership on the election.

message CampaignRequest
(server/etcdserver/api/v3election/v3electionpb/v3election.proto)

Field Description Type

name name is the election’s identifier for the campaign. bytes

lease lease is the ID of the lease attached to leadership of the election. If the lease

expires or is revoked before resigning leadership, then the leadership is

transferred to the next campaigner, if any.

int64

value value is the initial proclaimed value set when the campaigner wins the

election.

bytes

message CampaignResponse
(server/etcdserver/api/v3election/v3electionpb/v3election.proto)

Field Description Type

header etcdserverpb.ResponseHeader

leader leader describes the resources used for holding

leadereship of the election.

LeaderKey

message LeaderKey
(server/etcdserver/api/v3election/v3electionpb/v3election.proto)

Field Description Type

name name is the election identifier that corresponds to the leadership key. bytes

key key is an opaque key representing the ownership of the election. If the key

is deleted, then leadership is lost.

bytes



Field Description Type

rev rev is the creation revision of the key. It can be used to test for ownership of

an election during transactions by testing the key’s creation revision

matches rev.

int64

lease lease is the lease ID of the election leader. int64

message LeaderRequest
(server/etcdserver/api/v3election/v3electionpb/v3election.proto)

Field Description Type

name name is the election identifier for the leadership information. bytes

message LeaderResponse
(server/etcdserver/api/v3election/v3electionpb/v3election.proto)

Field Description Type

header etcdserverpb.ResponseHeader

kv kv is the key-value pair representing the latest

leader update.

mvccpb.KeyValue

message ProclaimRequest
(server/etcdserver/api/v3election/v3electionpb/v3election.proto)

Field Description Type

leader leader is the leadership hold on the election. LeaderKey

value value is an update meant to overwrite the leader’s current value. bytes

message ProclaimResponse
(server/etcdserver/api/v3election/v3electionpb/v3election.proto)

Field Description Type

header etcdserverpb.ResponseHeader



message ResignRequest
(server/etcdserver/api/v3election/v3electionpb/v3election.proto)

Field Description Type

leader leader is the leadership to relinquish by resignation. LeaderKey

message ResignResponse
(server/etcdserver/api/v3election/v3electionpb/v3election.proto)

Field Description Type

header etcdserverpb.ResponseHeader

message Event (api/mvccpb/kv.proto)

Field Description Type

type type is the kind of event. If type is a PUT, it indicates new data has

been stored to the key. If type is a DELETE, it indicates the key was

deleted.

EventType

kv kv holds the KeyValue for the event. A PUT event contains current kv

pair. A PUT event with kv.Version=1 indicates the creation of a key. A

DELETE/EXPIRE event contains the deleted key with its modification

revision set to the revision of deletion.

KeyValue

prev_kv prev_kv holds the key-value pair before the event happens. KeyValue

message KeyValue (api/mvccpb/kv.proto)

Field Description Type

key key is the key in bytes. An empty key is not allowed. bytes

create_revision create_revision is the revision of last creation on this key. int64

mod_revision mod_revision is the revision of last modification on this key. int64

version version is the version of the key. A deletion resets the version to

zero and any modification of the key increases its version.

int64

value value is the value held by the key, in bytes. bytes



Field Description Type

lease lease is the ID of the lease that attached to key. When the

attached lease expires, the key will be deleted. If lease is 0, then

no lease is attached to the key.

int64

Last modified April 9, 2022: Fix typos (a2da31e)


https://github.com/etcd-io/website/commit/a2da31e79a3db4d5c40bc46c32f9c952b67ffdd4
https://github.com/etcd-io/website/commit/a2da31e79a3db4d5c40bc46c32f9c952b67ffdd4
https://github.com/etcd-io/website/commit/a2da31e79a3db4d5c40bc46c32f9c952b67ffdd4


Operations guide

etcd installation, maintenance, and troubleshooting guides

Authentication Guides
Guide to etcd authentication and role-based access control

Configuration options
etcd configuration files, flags, and environment variables

Transport security model
Securing data in transit

Clustering Guide
Bootstrapping an etcd cluster: Static, etcd Discovery, and DNS Discovery

Run etcd clusters as a Kubernetes StatefulSet
Running etcd as a Kubernetes StatefulSet

Run etcd clusters inside containers
Running etcd with rkt and Docker using static bootstrapping

Failure modes
Kinds of failures and etcd’s tolerance for them

Disaster recovery
etcd v3 snapshot & restore facilities

etcd gateway
etcd gateway, when to use it, and how to set it up

etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/op-guide/authentication/
https://etcd.io/docs/v3.5/op-guide/configuration/
https://etcd.io/docs/v3.5/op-guide/security/
https://etcd.io/docs/v3.5/op-guide/clustering/
https://etcd.io/docs/v3.5/op-guide/kubernetes/
https://etcd.io/docs/v3.5/op-guide/container/
https://etcd.io/docs/v3.5/op-guide/failures/
https://etcd.io/docs/v3.5/op-guide/recovery/
https://etcd.io/docs/v3.5/op-guide/gateway/
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


gRPC proxy
A stateless etcd reverse proxy operating at the gRPC layer

Hardware recommendations
Hardware guidelines for administering etcd clusters

Maintenance
Periodic etcd cluster maintenance guide

Monitoring etcd
Monitoring etcd for system health & cluster debugging

Performance
Understanding performance: latency & throughput

Design of runtime reconfiguration
The design of etcd’s runtime reconfiguration commands

Runtime reconfiguration
etcd incremental runtime reconfiguration support

Supported platforms
etcd support for common architectures & operating systems

Versioning
Versioning support by etcd

Data Corruption
etcd data corruption and recovery

Last modified June 14, 2021: Renaming content/en/next folder to content/en/v3.5. Updating

redirects, links, and config as needed. (#363) (138926b)


https://etcd.io/docs/v3.5/op-guide/grpc_proxy/
https://etcd.io/docs/v3.5/op-guide/hardware/
https://etcd.io/docs/v3.5/op-guide/maintenance/
https://etcd.io/docs/v3.5/op-guide/monitoring/
https://etcd.io/docs/v3.5/op-guide/performance/
https://etcd.io/docs/v3.5/op-guide/runtime-reconf-design/
https://etcd.io/docs/v3.5/op-guide/runtime-configuration/
https://etcd.io/docs/v3.5/op-guide/supported-platform/
https://etcd.io/docs/v3.5/op-guide/versioning/
https://etcd.io/docs/v3.5/op-guide/data_corruption/
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c


Authentication Guides

Guide to etcd authentication and role-based access control

Role-based access control

A basic authentication and role-based access control guide

Authentication

Guide to authenticating an etcd cluster

Last modified November 19, 2021: Made changes in the title (69fa78c)


etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/op-guide/authentication/rbac/
https://etcd.io/docs/v3.5/op-guide/authentication/authentication/
https://github.com/etcd-io/website/commit/69fa78c8b7dbd0ee663fada381b75910577b52dd
https://github.com/etcd-io/website/commit/69fa78c8b7dbd0ee663fada381b75910577b52dd
https://github.com/etcd-io/website/commit/69fa78c8b7dbd0ee663fada381b75910577b52dd
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play




Role-based access control

A basic authentication and role-based access control guide

Overview

Authentication was added in etcd 2.1. The etcd v3 API slightly modified the authentication

feature’s API and user interface to better fit the new data model. This guide is intended to

help users set up basic authentication and role-based access control in etcd v3.

Special users and roles

There is one special user, root , and one special role, root .

User root

The root  user, which has full access to etcd, must be created before activating

authentication. The idea behind the root  user is for administrative purposes: managing roles

and ordinary users. The root  user must have the root  role and is allowed to change

anything inside etcd.

Role root

The role root  may be granted to any user, in addition to the root user. A user with the root

role has both global read-write access and permission to update the cluster’s authentication

configuration. Furthermore, the root  role grants privileges for general cluster maintenance,

including modifying cluster membership, defragmenting the store, and taking snapshots.

Working with users

The user  subcommand for etcdctl  handles all things having to do with user accounts.

A listing of users can be found with:

etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


$ etcdctl user list

Creating a user is as easy as

$ etcdctl user add myusername

Creating a new user will prompt for a new password. The password can be supplied from

standard input when an option --interactive=false  is given. --new-user-password  can also be

used for supplying the password.

Roles can be granted and revoked for a user with:

$ etcdctl user grant-role myusername foo
$ etcdctl user revoke-role myusername bar

The user’s settings can be inspected with:

$ etcdctl user get myusername

And the password for a user can be changed with

$ etcdctl user passwd myusername

Changing the password will prompt again for a new password. The password can be supplied

from standard input when an option --interactive=false  is given.

Delete an account with:

$ etcdctl user delete myusername

Working with roles

The role  subcommand for etcdctl  handles all things having to do with access controls for

particular roles, as were granted to individual users.

List roles with:

$ etcdctl role list



Create a new role with:

$ etcdctl role add myrolename

A role has no password; it merely defines a new set of access rights.

Roles are granted access to a single key or a range of keys.

The range can be specified as an interval [start-key, end-key) where start-key should be

lexically less than end-key in an alphabetical manner.

Access can be granted as either read, write, or both, as in the following examples:

# Give read access to a key /foo
$ etcdctl role grant-permission myrolename read /foo

# Give read access to keys with a prefix /foo/. The prefix is equal to the range [/foo/, 
$ etcdctl role grant-permission myrolename --prefix=true read /foo/

# Give write-only access to the key at /foo/bar
$ etcdctl role grant-permission myrolename write /foo/bar

# Give full access to keys in a range of [key1, key5)
$ etcdctl role grant-permission myrolename readwrite key1 key5

# Give full access to keys with a prefix /pub/
$ etcdctl role grant-permission myrolename --prefix=true readwrite /pub/

To see what’s granted, we can look at the role at any time:

$ etcdctl role get myrolename

Revocation of permissions is done the same logical way:

$ etcdctl role revoke-permission myrolename /foo/bar

As is removing a role entirely:

$ etcdctl role delete myrolename

Enabling authentication



The minimal steps to enabling auth are as follows. The administrator can set up users and

roles before or after enabling authentication, as a matter of preference.

Make sure the root user is created:

$ etcdctl user add root
Password of root:

Enable authentication:

$ etcdctl auth enable

After this, etcd is running with authentication enabled. To disable it for any reason, use the

reciprocal command:

$ etcdctl --user root:rootpw auth disable

Using etcdctl to authenticate

etcdctl  supports a similar flag as curl  for authentication.

$ etcdctl --user user:password get foo

The password can be taken from a prompt:

$ etcdctl --user user get foo

The password can also be taken from a command line flag --password :

$ etcdctl --user user --password password get foo

Creating a user which cannot be authenticated with password is also possible like below:

$ etcdctl user add myusername --no-password

Such a user can only be authenticated with TLS Common Name.



Otherwise, all etcdctl  commands remain the same. Users and roles can still be created and

modified, but require authentication by a user with the root role.

Using TLS Common Name

As of version v3.2 if an etcd server is launched with the option --client-cert-auth=true , the

field of Common Name (CN) in the client’s TLS cert will be used as an etcd user. In this case,

the common name authenticates the user and the client does not need a password. Note

that if both of 1. --client-cert-auth=true  is passed and CN is provided by the client, and 2.

username and password are provided by the client, the username and password based

authentication is prioritized. Note that this feature cannot be used with gRPC-proxy and

gRPC-gateway. This is because gRPC-proxy terminates TLS from its client so all the clients

share a cert of the proxy. gRPC-gateway uses a TLS connection internally for transforming

HTTP request to gRPC request so it shares the same limitation. Therefore the clients cannot

provide their CN to the server correctly. gRPC-proxy will cause an error and stop if a given

cert has non empty CN. gRPC-proxy returns an error which indicates that the client has an

non empty CN in its cert.

Notes on password strength

The etcdctl  and etcd API do not enforce a specific password length during user creation or

user password update operations. It is the responsibility of the administrator to enforce

these requirements. For avoiding security risks related to password strength, TLS Common

Name based authentication and users created with --no-password  option can be utilized.

Last modified April 17, 2023: Update the RBAC page (26fb46d)


https://github.com/etcd-io/website/commit/26fb46dd29c5063e8c77158d0a921e9a9eb084ec
https://github.com/etcd-io/website/commit/26fb46dd29c5063e8c77158d0a921e9a9eb084ec
https://github.com/etcd-io/website/commit/26fb46dd29c5063e8c77158d0a921e9a9eb084ec


Authentication

Guide to authenticating an etcd cluster

auth , user , role  for authentication:

Note:

This is just a stub which needs to be filled and updated with more information on

authentication. The text above is just a code example.

export ETCDCTL_API=3
ENDPOINTS=localhost:2379

etcdctl --endpoints=${ENDPOINTS} role add root
etcdctl --endpoints=${ENDPOINTS} role get root

etcdctl --endpoints=${ENDPOINTS} user add root
etcdctl --endpoints=${ENDPOINTS} user grant-role root root
etcdctl --endpoints=${ENDPOINTS} user get root

etcdctl --endpoints=${ENDPOINTS} role add role0
etcdctl --endpoints=${ENDPOINTS} role grant-permission role0 readwrite foo
etcdctl --endpoints=${ENDPOINTS} user add user0
etcdctl --endpoints=${ENDPOINTS} user grant-role user0 role0

etcdctl --endpoints=${ENDPOINTS} auth enable
# now all client requests go through auth

etcdctl --endpoints=${ENDPOINTS} --user=user0:123 put foo bar
etcdctl --endpoints=${ENDPOINTS} get foo
# permission denied, user name is empty because the request does not issue an authenticat
etcdctl --endpoints=${ENDPOINTS} --user=user0:123 get foo
# user0 can read the key foo
etcdctl --endpoints=${ENDPOINTS} --user=user0:123 get foo1



etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Last modified November 19, 2021: Made changes in the page hierarchy for Authentication

and updated the redirect page accordingly (ab234d4)


https://github.com/etcd-io/website/commit/ab234d4cee0002b64527f5c47fba60bd302c1f31
https://github.com/etcd-io/website/commit/ab234d4cee0002b64527f5c47fba60bd302c1f31
https://github.com/etcd-io/website/commit/ab234d4cee0002b64527f5c47fba60bd302c1f31
https://github.com/etcd-io/website/commit/ab234d4cee0002b64527f5c47fba60bd302c1f31


Configuration options

etcd configuration files, flags, and environment variables

You can configure etcd through the following:

Command-line flags

Environment variables: every flag has a corresponding environment variable that has

the same name but is prefixed with ETCD_  and formatted in all caps and snake case . For

example, --some-flag  would be ETCD_SOME_FLAG .

Configuration file

Command-line flags

Flags are presented below using the format --flag-name DEFAULT_VALUE .

The list of flags provided below may not be up-to-date due to ongoing development changes.

For the latest available flags, run etcd --help  or refer to the etcd help .

Member

--name 'default'
  Human-readable name for this member.
--data-dir '${name}.etcd'



 Caution: If you mix-and-match configuration options, then the following rules apply.

Command-line flags take precedence over environment variables.

If you provide a configuration file all command-line flags and environment variables

are ignored.



Note: For details concerning new, updated, and deprecated v3.5 flags, see CHANGELOG-

3.5.md .


etcd

Docs Blog Community Install Play

https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Snake_case
https://github.com/etcd-io/etcd/blob/main/server/etcdmain/help.go
https://github.com/etcd-io/etcd/blob/main/server/etcdmain/help.go
https://github.com/etcd-io/etcd/blob/main/server/etcdmain/help.go
https://github.com/etcd-io/etcd/blob/main/CHANGELOG/CHANGELOG-3.5.md
https://github.com/etcd-io/etcd/blob/main/CHANGELOG/CHANGELOG-3.5.md
https://github.com/etcd-io/etcd/blob/main/CHANGELOG/CHANGELOG-3.5.md
https://github.com/etcd-io/etcd/blob/main/CHANGELOG/CHANGELOG-3.5.md
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


  Path to the data directory.
--wal-dir ''
  Path to the dedicated wal directory.
--snapshot-count '100000'
  Number of committed transactions to trigger a snapshot to disk.
--heartbeat-interval '100'
  Time (in milliseconds) of a heartbeat interval.
--election-timeout '1000'
  Time (in milliseconds) for an election to timeout. See tuning documentation for details
--initial-election-tick-advance 'true'
  Whether to fast-forward initial election ticks on boot for faster election.
--listen-peer-urls 'http://localhost:2380'
  List of URLs to listen on for peer traffic.
--listen-client-urls 'http://localhost:2379'
  List of URLs to listen on for client grpc traffic and http as long as --listen-client-h
--listen-client-http-urls ''
  List of URLs to listen on for http only client traffic. Enabling this flag removes http
--max-snapshots '5'
  Maximum number of snapshot files to retain (0 is unlimited).
--max-wals '5'
  Maximum number of wal files to retain (0 is unlimited).
--quota-backend-bytes '0'
  Raise alarms when backend size exceeds the given quota (0 defaults to low space quota)
--backend-bbolt-freelist-type 'map'
  BackendFreelistType specifies the type of freelist that boltdb backend uses(array and m
--backend-batch-interval ''
  BackendBatchInterval is the maximum time before commit the backend transaction.
--backend-batch-limit '0'
  BackendBatchLimit is the maximum operations before commit the backend transaction.
--max-txn-ops '128'
  Maximum number of operations permitted in a transaction.
--max-request-bytes '1572864'
  Maximum client request size in bytes the server will accept.
--grpc-keepalive-min-time '5s'
  Minimum duration interval that a client should wait before pinging server.
--grpc-keepalive-interval '2h'
  Frequency duration of server-to-client ping to check if a connection is alive (0 to dis
--grpc-keepalive-timeout '20s'
  Additional duration of wait before closing a non-responsive connection (0 to disable).
--socket-reuse-port 'false'
  Enable to set socket option SO_REUSEPORT on listeners allowing rebinding of a port alre
--socket-reuse-address 'false'
  Enable to set socket option SO_REUSEADDR on listeners allowing binding to an address in

Clustering



--initial-advertise-peer-urls 'http://localhost:2380'
  List of this member's peer URLs to advertise to the rest of the cluster.
--initial-cluster 'default=http://localhost:2380'
  Initial cluster configuration for bootstrapping.
--initial-cluster-state 'new'
  Initial cluster state ('new' or 'existing').
--initial-cluster-token 'etcd-cluster'
  Initial cluster token for the etcd cluster during bootstrap.
  Specifying this can protect you from unintended cross-cluster interaction when running 
--advertise-client-urls 'http://localhost:2379'
  List of this member's client URLs to advertise to the public.
  The client URLs advertised should be accessible to machines that talk to etcd cluster. 
--discovery ''
  Discovery URL used to bootstrap the cluster.
--discovery-fallback 'proxy'
  Expected behavior ('exit' or 'proxy') when discovery services fails.
  "proxy" supports v2 API only.
--discovery-proxy ''
  HTTP proxy to use for traffic to discovery service.
--discovery-srv ''
  DNS srv domain used to bootstrap the cluster.
--discovery-srv-name ''
  Suffix to the dns srv name queried when bootstrapping.
--strict-reconfig-check 'true'
  Reject reconfiguration requests that would cause quorum loss.
--pre-vote 'true'
  Enable the raft Pre-Vote algorithm to prevent disruption when a node that has been part
--auto-compaction-retention '0'
  Auto compaction retention length. 0 means disable auto compaction.
--auto-compaction-mode 'periodic'
  Interpret 'auto-compaction-retention' one of: periodic|revision. 'periodic' for duratio
--enable-v2 'false'
  Accept etcd V2 client requests. Deprecated and to be decommissioned in v3.6.
--v2-deprecation 'not-yet'
  Phase of v2store deprecation. Allows to opt-in for higher compatibility mode.
  Supported values:
    'not-yet'                // Issues a warning if v2store have meaningful content (defa
    'write-only'             // Custom v2 state is not allowed (planned default in v3.6)
    'write-only-drop-data'   // Custom v2 state will get DELETED !
    'gone'                   // v2store is not maintained any longer. (planned default in

Security

--cert-file ''
  Path to the client server TLS cert file.
--key-file ''



  Path to the client server TLS key file.
--client-cert-auth 'false'
  Enable client cert authentication.
  It's recommended to enable client cert authentication to prevent attacks from unauthent
--client-crl-file ''
  Path to the client certificate revocation list file.
--client-cert-allowed-hostname ''
  Allowed TLS hostname for client cert authentication.
--trusted-ca-file ''
  Path to the client server TLS trusted CA cert file.
  Note setting this parameter will also automatically enable client cert authentication n
--auto-tls 'false'
  Client TLS using generated certificates.
--peer-cert-file ''
  Path to the peer server TLS cert file.
--peer-key-file ''
  Path to the peer server TLS key file.
--peer-client-cert-auth 'false'
  Enable peer client cert authentication.
  It's recommended to enable peer client cert authentication to prevent attacks from unau
--peer-trusted-ca-file ''
  Path to the peer server TLS trusted CA file.
--peer-cert-allowed-cn ''
  Required CN for client certs connecting to the peer endpoint.
--peer-cert-allowed-hostname ''
  Allowed TLS hostname for inter peer authentication.
--peer-auto-tls 'false'
  Peer TLS using self-generated certificates if --peer-key-file and --peer-cert-file are 
--self-signed-cert-validity '1'
  The validity period of the client and peer certificates that are automatically generate
--peer-crl-file ''
  Path to the peer certificate revocation list file.
--cipher-suites ''
  Comma-separated list of supported TLS cipher suites between client/server and peers (em
--cors '*'
  Comma-separated whitelist of origins for CORS, or cross-origin resource sharing, (empty
--host-whitelist '*'
  Acceptable hostnames from HTTP client requests, if server is not secure (empty or * mea
--tls-min-version 'TLS1.2'
  Minimum TLS version supported by etcd.
--tls-max-version ''
  Maximum TLS version supported by etcd (empty will be auto-populated by Go).

Auth

--auth-token 'simple'
  Specify a v3 authentication token type and token specific options, especially for JWT. 



--bcrypt-cost 10
  Specify the cost / strength of the bcrypt algorithm for hashing auth passwords. Valid v
--auth-token-ttl 300
  Time (in seconds) of the auth-token-ttl.

Profiling and monitoring

--enable-pprof 'false'
  Enable runtime profiling data via HTTP server. Address is at client URL + "/debug/pprof
--metrics 'basic'
  Set level of detail for exported metrics, specify 'extensive' to include server side gr
--listen-metrics-urls ''
  List of URLs to listen on for the metrics and health endpoints.

Logging

--logger 'zap'
  Currently only supports 'zap' for structured logging.
--log-outputs 'default'
  Specify 'stdout' or 'stderr' to skip journald logging even when running under systemd, 
--log-level 'info'
  Configures log level. Only supports debug, info, warn, error, panic, or fatal.
--enable-log-rotation 'false'
  Enable log rotation of a single log-outputs file target.
--log-rotation-config-json '{"maxsize": 100, "maxage": 0, "maxbackups": 0, "localtime": f
  Configures log rotation if enabled with a JSON logger config. MaxSize(MB), MaxAge(days,

Experimental distributed tracing

--experimental-enable-distributed-tracing 'false'
  Enable experimental distributed tracing.
--experimental-distributed-tracing-address 'localhost:4317'
  Distributed tracing collector address.
--experimental-distributed-tracing-service-name 'etcd'
  Distributed tracing service name, must be same across all etcd instances.
--experimental-distributed-tracing-instance-id ''
  Distributed tracing instance ID, must be unique per each etcd instance.
--experimental-distributed-tracing-sampling-rate '0'
  Number of samples to collect per million spans for OpenTelemetry Tracing (if enabled wi

v2 Proxy



--proxy 'off'
  Proxy mode setting ('off', 'readonly' or 'on').
--proxy-failure-wait 5000
  Time (in milliseconds) an endpoint will be held in a failed state.
--proxy-refresh-interval 30000
  Time (in milliseconds) of the endpoints refresh interval.
--proxy-dial-timeout 1000
  Time (in milliseconds) for a dial to timeout.
--proxy-write-timeout 5000
  Time (in milliseconds) for a write to timeout.
--proxy-read-timeout 0
  Time (in milliseconds) for a read to timeout.

Experimental features

--experimental-initial-corrupt-check 'false'
  Enable to check data corruption before serving any client/peer traffic.
--experimental-corrupt-check-time '0s'
  Duration of time between cluster corruption check passes.
--experimental-enable-v2v3 ''
  Serve v2 requests through the v3 backend under a given prefix. Deprecated and to be dec
--experimental-enable-lease-checkpoint 'false'
  ExperimentalEnableLeaseCheckpoint enables primary lessor to persist lease remainingTTL 
--experimental-compaction-batch-limit 1000
  ExperimentalCompactionBatchLimit sets the maximum revisions deleted in each compaction 
--experimental-peer-skip-client-san-verification 'false'
  Skip verification of SAN field in client certificate for peer connections.
--experimental-watch-progress-notify-interval '10m'
  Duration of periodical watch progress notification.
--experimental-warning-apply-duration '100ms'
  Warning is generated if requests take more than this duration.
--experimental-txn-mode-write-with-shared-buffer 'true'
  Enable the write transaction to use a shared buffer in its readonly check operations.
--experimental-bootstrap-defrag-threshold-megabytes
  Enable the defrag during etcd server bootstrap on condition that it will free at least 

Unsafe features

 Note: flags will be deprecated in v3.6.



--force-new-cluster 'false'
  Force to create a new one-member cluster.
--unsafe-no-fsync 'false'
  Disables fsync, unsafe, will cause data loss.

Configuration file

An etcd configuration file consists of a YAML map whose keys are command-line flag names

and values are the flag values. In order to use this file, specify the file path as a value to the -

-config-file  flag or ETCD_CONFIG_FILE  environment variable.

For an example, see the etcd.conf.yml sample .

Last modified June 24, 2024: Update doc of listen-client-urls and listen-client-http-urls

(0d6e903)

 Warning: using unsafe features may break the guarantees given by the consensus

protocol!





https://github.com/etcd-io/etcd/blob/main/etcd.conf.yml.sample
https://github.com/etcd-io/etcd/blob/main/etcd.conf.yml.sample
https://github.com/etcd-io/etcd/blob/main/etcd.conf.yml.sample
https://github.com/etcd-io/website/commit/0d6e903e30ada08436ab3ae5dc10680c503b190b
https://github.com/etcd-io/website/commit/0d6e903e30ada08436ab3ae5dc10680c503b190b
https://github.com/etcd-io/website/commit/0d6e903e30ada08436ab3ae5dc10680c503b190b
https://github.com/etcd-io/website/commit/0d6e903e30ada08436ab3ae5dc10680c503b190b


Transport security model

Securing data in transit

etcd supports automatic TLS as well as authentication through client certificates for both

clients to server as well as peer (server to server / cluster) communication. Note that etcd

doesn’t enable RBAC based authentication or the authentication feature in the

transport layer by default to reduce friction for users getting started with the

database. Further, changing this default would be a breaking change for the project

which was established since 2013. An etcd cluster which doesn’t enable security

features can expose its data to any clients.

To get up and running, first have a CA certificate and a signed key pair for one member. It is

recommended to create and sign a new key pair for every member in a cluster.

For convenience, the cfssl  tool provides an easy interface to certificate generation, and we

provide an example using the tool here . Alternatively, try this guide to generating self-signed

key pairs .

Basic setup

etcd takes several certificate related configuration options, either through command-line

flags or environment variables:

Client-to-server communication:

--cert-file=<path> : Certificate used for SSL/TLS connections to etcd. When this option is set,

advertise-client-urls can use the HTTPS schema.

--key-file=<path> : Key for the certificate. Must be unencrypted.

--client-cert-auth : When this is set etcd will check all incoming HTTPS requests for a client

certificate signed by the trusted CA, requests that don’t supply a valid client certificate will fail.

If authentication is enabled, the certificate provides credentials for the user name given by

the Common Name field.

--trusted-ca-file=<path> : Trusted certificate authority.







etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/op-guide/authentication/
https://github.com/cloudflare/cfssl
https://github.com/cloudflare/cfssl
https://github.com/cloudflare/cfssl
https://github.com/etcd-io/etcd/tree/master/hack/tls-setup
https://github.com/etcd-io/etcd/tree/master/hack/tls-setup
https://github.com/etcd-io/etcd/tree/master/hack/tls-setup
https://github.com/coreos/docs/blob/master/os/generate-self-signed-certificates.md
https://github.com/coreos/docs/blob/master/os/generate-self-signed-certificates.md
https://github.com/coreos/docs/blob/master/os/generate-self-signed-certificates.md
https://github.com/coreos/docs/blob/master/os/generate-self-signed-certificates.md
https://etcd.io/docs/v3.5/op-guide/authentication/
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


--auto-tls : Use automatically generated self-signed certificates for TLS connections with

clients.

Peer (server-to-server / cluster) communication:

The peer options work the same way as the client-to-server options:

--peer-cert-file=<path> : Certificate used for SSL/TLS connections between peers. This will be

used both for listening on the peer address as well as sending requests to other peers.

--peer-key-file=<path> : Key for the certificate. Must be unencrypted.

--peer-client-cert-auth : When set, etcd will check all incoming peer requests from the

cluster for valid client certificates signed by the supplied CA.

--peer-trusted-ca-file=<path> : Trusted certificate authority.

--peer-auto-tls : Use automatically generated self-signed certificates for TLS connections

between peers.

If either a client-to-server or peer certificate is supplied the key must also be set. All of these

configuration options are also available through the environment variables, ETCD_CA_FILE ,

ETCD_PEER_CA_FILE  and so on.

Common options:

--cipher-suites : Comma-separated list of supported TLS cipher suites between server/client

and peers (empty will be auto-populated by Go).

--tls-min-version=<version>  Sets the minimum TLS version supported by etcd.

--tls-max-version=<version>  Sets the maximum TLS version supported by etcd. If not set the

maximum version supported by Go will be used.

Example 1: Client-to-server transport security with
HTTPS

For this, have a CA certificate ( ca.crt ) and signed key pair ( server.crt , server.key ) ready.

Let us configure etcd to provide simple HTTPS transport security step by step:

$ etcd --name infra0 --data-dir infra0 \
  --cert-file=/path/to/server.crt --key-file=/path/to/server.key \
  --advertise-client-urls=https://127.0.0.1:2379 --listen-client-urls=https://127.0.0.1:2





This should start up fine and it will be possible to test the configuration by speaking HTTPS to

etcd:

The command should show that the handshake succeed. Since we use self-signed certificates

with our own certificate authority, the CA must be passed to curl using the --cacert  option.

Another possibility would be to add the CA certificate to the system’s trusted certificates

directory (usually in /etc/pki/tls/certs  or /etc/ssl/certs ).

OSX 10.9+ Users: curl 7.30.0 on OSX 10.9+ doesn’t understand certificates passed in on the

command line. Instead, import the dummy ca.crt directly into the keychain or add the -k

flag to curl to ignore errors. To test without the -k  flag, run open ./tests/fixtures/ca/ca.crt

and follow the prompts. Please remove this certificate after testing! If there is a workaround,

let us know.

Example 2: Client-to-server authentication with HTTPS
client certificates

For now we’ve given the etcd client the ability to verify the server identity and provide

transport security. We can however also use client certificates to prevent unauthorized

access to etcd.

The clients will provide their certificates to the server and the server will check whether the

cert is signed by the supplied CA and decide whether to serve the request.

The same files mentioned in the first example are needed for this, as well as a key pair for the

client ( client.crt , client.key ) signed by the same certificate authority.

Now try the same request as above to this server:

$ curl --cacert /path/to/ca.crt https://127.0.0.1:2379/v2/keys/foo -XPUT -d value=bar -v


$ etcd --name infra0 --data-dir infra0 \
  --client-cert-auth --trusted-ca-file=/path/to/ca.crt --cert-file=/path/to/server.crt -
  --advertise-client-urls https://127.0.0.1:2379 --listen-client-urls https://127.0.0.1:2



$ curl --cacert /path/to/ca.crt https://127.0.0.1:2379/v2/keys/foo -XPUT -d value=bar -v




The request should be rejected by the server:

...
routines:SSL3_READ_BYTES:sslv3 alert bad certificate
...

To make it succeed, we need to give the CA signed client certificate to the server:

The output should include:

...
SSLv3, TLS handshake, CERT verify (15):
...
TLS handshake, Finished (20)

And also the response from the server:

Specify cipher suites to block weak TLS cipher suites .

TLS handshake would fail when client hello is requested with invalid cipher suites.

For instance:

$ curl --cacert /path/to/ca.crt --cert /path/to/client.crt --key /path/to/client.key \
  -L https://127.0.0.1:2379/v2/keys/foo -XPUT -d value=bar -v



{
    "action": "set",
    "node": {
        "createdIndex": 12,
        "key": "/foo",
        "modifiedIndex": 12,
        "value": "bar"
    }
}





$ etcd \
  --cert-file ./server.crt \
  --key-file ./server.key \
  --trusted-ca-file ./ca.crt \



https://github.com/etcd-io/etcd/issues/8320
https://github.com/etcd-io/etcd/issues/8320
https://github.com/etcd-io/etcd/issues/8320


Then, client requests must specify one of the cipher suites specified in the server:

Example 3: Transport security & client certificates in a
cluster

etcd supports the same model as above for peer communication, that means the

communication between etcd members in a cluster.

Assuming we have our ca.crt  and two members with their own key pairs ( member1.crt  &

member1.key , member2.crt  & member2.key ) signed by this CA, we launch etcd as follows:

  --cipher-suites TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_256_GCM_SH

# valid cipher suite
$ curl \
  --cacert /path/to/ca.crt \
  --cert /path/to/client.crt \
  --key /path/to/client.key \
  -L [CLIENT-URL]/metrics \
  --ciphers ECDHE-RSA-AES128-GCM-SHA256

# request succeeds
etcd_server_version{server_version="3.2.22"} 1
...



# invalid cipher suite
$ curl \
  --cacert /path/to/ca.crt \
  --cert /path/to/client.crt \
  --key /path/to/client.key \
  -L [CLIENT-URL]/metrics \
  --ciphers ECDHE-RSA-DES-CBC3-SHA

# request fails with
(35) error:14094410:SSL routines:ssl3_read_bytes:sslv3 alert handshake failure



DISCOVERY_URL=... # from https://discovery.etcd.io/new

# member1
$ etcd --name infra1 --data-dir infra1 \





The etcd members will form a cluster and all communication between members in the cluster

will be encrypted and authenticated using the client certificates. The output of etcd will show

that the addresses it connects to use HTTPS.

Example 4: Automatic self-signed transport security

NOTE: When you specify ClientAutoTLS and PeerAutoTLS, the validity period of the client

certificate and peer certificate automatically generated by etcd is only 1 year. You can specify

the --self-signed-cert-validity flag to set the validity period of the certificate in years.

For cases where communication encryption, but not authentication, is needed, etcd supports

encrypting its messages with automatically generated self-signed certificates. This simplifies

deployment because there is no need for managing certificates and keys outside of etcd.

Configure etcd to use self-signed certificates for client and peer connections with the flags --

auto-tls  and --peer-auto-tls :

Self-signed certificates do not authenticate identity so curl will return an error:

  --peer-client-cert-auth --peer-trusted-ca-file=/path/to/ca.crt --peer-cert-file=/path/t
  --initial-advertise-peer-urls=https://10.0.1.10:2380 --listen-peer-urls=https://10.0.1
  --discovery ${DISCOVERY_URL}

# member2
$ etcd --name infra2 --data-dir infra2 \
  --peer-client-cert-auth --peer-trusted-ca-file=/path/to/ca.crt --peer-cert-file=/path/t
  --initial-advertise-peer-urls=https://10.0.1.11:2380 --listen-peer-urls=https://10.0.1
  --discovery ${DISCOVERY_URL}

DISCOVERY_URL=... # from https://discovery.etcd.io/new

# member1
$ etcd --name infra1 --data-dir infra1 \
  --auto-tls --peer-auto-tls \
  --initial-advertise-peer-urls=https://10.0.1.10:2380 --listen-peer-urls=https://10.0.1
  --discovery ${DISCOVERY_URL}

# member2
$ etcd --name infra2 --data-dir infra2 \
  --auto-tls --peer-auto-tls \
  --initial-advertise-peer-urls=https://10.0.1.11:2380 --listen-peer-urls=https://10.0.1
  --discovery ${DISCOVERY_URL}





To disable certificate chain checking, invoke curl with the -k  flag:

Notes for DNS SRV

Since v3.1.0 (except v3.2.9), discovery SRV bootstrapping authenticates ServerName  with a

root domain name from --discovery-srv  flag. This is to avoid man-in-the-middle cert attacks,

by requiring a certificate to have matching root domain name in its Subject Alternative Name

(SAN) field. For instance, etcd --discovery-srv=etcd.local  will only authenticate peers/clients

when the provided certs have root domain etcd.local  as an entry in Subject Alternative

Name (SAN) field

Notes for etcd proxy

etcd proxy terminates the TLS from its client if the connection is secure, and uses proxy’s own

key/cert specified in --peer-key-file  and --peer-cert-file  to communicate with etcd

members.

The proxy communicates with etcd members through both the --advertise-client-urls  and

--advertise-peer-urls  of a given member. It forwards client requests to etcd members’

advertised client urls, and it syncs the initial cluster configuration through etcd members’

advertised peer urls.

When client authentication is enabled for an etcd member, the administrator must ensure

that the peer certificate specified in the proxy’s --peer-cert-file  option is valid for that

authentication. The proxy’s peer certificate must also be valid for peer authentication if peer

authentication is enabled.

Notes for TLS authentication

Since v3.2.0 , TLS certificates get reloaded on every client connection . This is useful when

replacing expiry certs without stopping etcd servers; it can be done by overwriting old certs

with new ones. Refreshing certs for every connection should not have too much overhead,

but can be improved in the future, with caching layer. Example tests can be found here .

curl: (60) SSL certificate problem: Invalid certificate chain


$ curl -k https://127.0.0.1:2379/v2/keys/foo -Xput -d value=bar -v


 



https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.2.md#v320-2017-06-09
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.2.md#v320-2017-06-09
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.2.md#v320-2017-06-09
https://github.com/etcd-io/etcd/pull/7829
https://github.com/etcd-io/etcd/pull/7829
https://github.com/etcd-io/etcd/pull/7829
https://github.com/etcd-io/etcd/blob/b041ce5d514a4b4aaeefbffb008f0c7570a18986/integration/v3_grpc_test.go#L1601-L1757
https://github.com/etcd-io/etcd/blob/b041ce5d514a4b4aaeefbffb008f0c7570a18986/integration/v3_grpc_test.go#L1601-L1757
https://github.com/etcd-io/etcd/blob/b041ce5d514a4b4aaeefbffb008f0c7570a18986/integration/v3_grpc_test.go#L1601-L1757


Since v3.2.0 , server denies incoming peer certs with wrong IP SAN . For instance, if peer

cert contains any IP addresses in Subject Alternative Name (SAN) field, server authenticates a

peer only when the remote IP address matches one of those IP addresses. This is to prevent

unauthorized endpoints from joining the cluster. For example, peer B’s CSR (with cfssl ) is:

when peer B’s actual IP address is 10.138.0.2 , not 10.138.0.27 . When peer B tries to join the

cluster, peer A will reject B with the error x509: certificate is valid for 10.138.0.27, not

10.138.0.2 , because B’s remote IP address does not match the one in Subject Alternative

Name (SAN) field.

Since v3.2.0 , server resolves TLS DNSNames  when checking SAN . For instance, if peer cert

contains only DNS names (no IP addresses) in Subject Alternative Name (SAN) field, server

authenticates a peer only when forward-lookups ( dig b.com ) on those DNS names have

matching IP with the remote IP address. For example, peer B’s CSR (with cfssl ) is:

 

{
  "CN": "etcd peer",
  "hosts": [
    "*.example.default.svc",
    "*.example.default.svc.cluster.local",
    "10.138.0.27"
  ],
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "US",
      "L": "CA",
      "ST": "San Francisco"
    }
  ]
}



 

{
  "CN": "etcd peer",
  "hosts": [
    "b.com"
  ],



https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.2.md#v320-2017-06-09
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.2.md#v320-2017-06-09
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.2.md#v320-2017-06-09
https://github.com/etcd-io/etcd/pull/7687
https://github.com/etcd-io/etcd/pull/7687
https://github.com/etcd-io/etcd/pull/7687
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.2.md#v320-2017-06-09
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.2.md#v320-2017-06-09
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.2.md#v320-2017-06-09
https://github.com/etcd-io/etcd/pull/7767
https://github.com/etcd-io/etcd/pull/7767
https://github.com/etcd-io/etcd/pull/7767


when peer B’s remote IP address is 10.138.0.2 . When peer B tries to join the cluster, peer A

looks up the incoming host b.com  to get the list of IP addresses (e.g. dig b.com ). And rejects

B if the list does not contain the IP 10.138.0.2 , with the error tls: 10.138.0.2 does not match

any of DNSNames ["b.com"] .

Since v3.2.2 , server accepts connections if IP matches, without checking DNS entries . For

instance, if peer cert contains IP addresses and DNS names in Subject Alternative Name (SAN)

field, and the remote IP address matches one of those IP addresses, server just accepts

connection without further checking the DNS names. For example, peer B’s CSR (with cfssl )

is:

when peer B’s remote IP address is 10.138.0.2  and invalid.domain  is a invalid host. When

peer B tries to join the cluster, peer A successfully authenticates B, since Subject Alternative

Name (SAN) field has a valid matching IP address. See issue#8206  for more detail.

Since v3.2.5 , server supports reverse-lookup on wildcard DNS SAN . For instance, if peer

cert contains only DNS names (no IP addresses) in Subject Alternative Name (SAN) field,

server first reverse-lookups the remote IP address to get a list of names mapping to that

address (e.g. nslookup IPADDR ). Then accepts the connection if those names have a matching

name with peer cert’s DNS names (either by exact or wildcard match). If none is matched,

server forward-lookups each DNS entry in peer cert (e.g. look up example.default.svc  when

the entry is *.example.default.svc ), and accepts connection only when the host’s resolved

addresses have the matching IP address with the peer’s remote IP address. For example, peer

B’s CSR (with cfssl ) is:

when peer B’s remote IP address is 10.138.0.2 . When peer B tries to join the cluster, peer A

reverse-lookup the IP 10.138.0.2  to get the list of host names. And either exact or wildcard

 

{
  "CN": "etcd peer",
  "hosts": [
    "invalid.domain",
    "10.138.0.2"
  ],





 

{
  "CN": "etcd peer",
  "hosts": [
    "*.example.default.svc",
    "*.example.default.svc.cluster.local"
  ],



https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.2.md#v322-2017-07-07
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.2.md#v322-2017-07-07
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.2.md#v322-2017-07-07
https://github.com/etcd-io/etcd/pull/8223
https://github.com/etcd-io/etcd/pull/8223
https://github.com/etcd-io/etcd/pull/8223
https://github.com/etcd-io/etcd/issues/8206
https://github.com/etcd-io/etcd/issues/8206
https://github.com/etcd-io/etcd/issues/8206
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.2.md#v325-2017-08-04
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.2.md#v325-2017-08-04
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.2.md#v325-2017-08-04
https://github.com/etcd-io/etcd/pull/8281
https://github.com/etcd-io/etcd/pull/8281
https://github.com/etcd-io/etcd/pull/8281


match the host names with peer B’s cert DNS names in Subject Alternative Name (SAN) field.

If none of reverse/forward lookups worked, it returns an error "tls: "10.138.0.2" does not

match any of DNSNames ["*.example.default.svc","*.example.default.svc.cluster.local"] . See

issue#8268  for more detail.

v3.3.0  adds etcd --peer-cert-allowed-cn  flag to support CN(Common Name)-based auth

for inter-peer connections . Kubernetes TLS bootstrapping involves generating dynamic

certificates for etcd members and other system components (e.g. API server, kubelet, etc.).

Maintaining different CAs for each component provides tighter access control to etcd cluster

but often tedious. When --peer-cert-allowed-cn  flag is specified, node can only join with

matching common name even with shared CAs. For example, each member in 3-node cluster

is set up with CSRs (with cfssl ) as below:

Then only peers with matching common names will be authenticated if --peer-cert-allowed-

cn etcd.local  is given. And nodes with different CNs in CSRs or different --peer-cert-allowed-

cn  will be rejected:



 



{
  "CN": "etcd.local",
  "hosts": [
    "m1.etcd.local",
    "127.0.0.1",
    "localhost"
  ],



{
  "CN": "etcd.local",
  "hosts": [
    "m2.etcd.local",
    "127.0.0.1",
    "localhost"
  ],



{
  "CN": "etcd.local",
  "hosts": [
    "m3.etcd.local",
    "127.0.0.1",
    "localhost"
  ],



https://github.com/etcd-io/etcd/issues/8268
https://github.com/etcd-io/etcd/issues/8268
https://github.com/etcd-io/etcd/issues/8268
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.3.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.3.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.3.md
https://github.com/etcd-io/etcd/pull/8616
https://github.com/etcd-io/etcd/pull/8616
https://github.com/etcd-io/etcd/pull/8616
https://github.com/etcd-io/etcd/issues/8262
https://github.com/etcd-io/etcd/issues/8262
https://github.com/etcd-io/etcd/issues/8262
https://github.com/etcd-io/etcd/issues/8262


Each process should be started with:

v3.2.19  and v3.3.4  fixes TLS reload when certificate SAN field only includes IP addresses but

no domain names . For example, a member is set up with CSRs (with cfssl ) as below:

In Go, server calls (*tls.Config).GetCertificate  for TLS reload if and only if server’s

(*tls.Config).Certificates  field is not empty, or (*tls.ClientHelloInfo).ServerName  is not

empty with a valid SNI from the client. Previously, etcd always populates

(*tls.Config).Certificates  on the initial client TLS handshake, as non-empty. Thus, client

was always expected to supply a matching SNI in order to pass the TLS verification and to

trigger (*tls.Config).GetCertificate  to reload TLS assets.

However, a certificate whose SAN field does not include any domain names but only IP

addresses  would request *tls.ClientHelloInfo  with an empty ServerName  field, thus failing

$ etcd --peer-cert-allowed-cn m1.etcd.local

I | embed: rejected connection from "127.0.0.1:48044" (error "CommonName authentication f
I | embed: rejected connection from "127.0.0.1:55702" (error "remote error: tls: bad cert



etcd --peer-cert-allowed-cn etcd.local

I | pkg/netutil: resolving m3.etcd.local:32380 to 127.0.0.1:32380
I | pkg/netutil: resolving m2.etcd.local:22380 to 127.0.0.1:22380
I | pkg/netutil: resolving m1.etcd.local:2380 to 127.0.0.1:2380
I | etcdserver: published {Name:m3 ClientURLs:[https://m3.etcd.local:32379]} to cluster 9
I | embed: ready to serve client requests
I | etcdserver: published {Name:m1 ClientURLs:[https://m1.etcd.local:2379]} to cluster 9d
I | embed: ready to serve client requests
I | etcdserver: published {Name:m2 ClientURLs:[https://m2.etcd.local:22379]} to cluster 9
I | embed: ready to serve client requests
I | embed: serving client requests on 127.0.0.1:32379
I | embed: serving client requests on 127.0.0.1:22379
I | embed: serving client requests on 127.0.0.1:2379



 



{
  "CN": "etcd.local",
  "hosts": [
    "127.0.0.1"
  ],





https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.2.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.2.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.2.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.3.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.3.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.3.md
https://github.com/etcd-io/etcd/issues/9541
https://github.com/etcd-io/etcd/issues/9541
https://github.com/etcd-io/etcd/issues/9541
https://github.com/etcd-io/etcd/issues/9541
https://github.com/etcd-io/etcd/issues/9541
https://github.com/etcd-io/etcd/issues/9541
https://github.com/etcd-io/etcd/issues/9541
https://github.com/etcd-io/etcd/issues/9541


to trigger the TLS reload on initial TLS handshake; this becomes a problem when expired

certificates need to be replaced online.

Now, (*tls.Config).Certificates  is created empty on initial TLS client handshake, first to

trigger (*tls.Config).GetCertificate , and then to populate rest of the certificates on every

new TLS connection, even when client SNI is empty (e.g. cert only includes IPs).

Notes for Host Whitelist

etcd --host-whitelist  flag specifies acceptable hostnames from HTTP client requests. Client

origin policy protects against “DNS Rebinding”  attacks to insecure etcd servers. That is, any

website can simply create an authorized DNS name, and direct DNS to "localhost"  (or any

other address). Then, all HTTP endpoints of etcd server listening on "localhost"  becomes

accessible, thus vulnerable to DNS rebinding attacks. See CVE-2018-5702  for more detail.

Client origin policy works as follows:

1. If client connection is secure via HTTPS, allow any hostnames.

2. If client connection is not secure and "HostWhitelist"  is not empty, only allow HTTP

requests whose Host field is listed in whitelist.

Note that the client origin policy is enforced whether authentication is enabled or not, for

tighter controls.

By default, etcd --host-whitelist  and embed.Config.HostWhitelist  are set empty to allow all

hostnames. Note that when specifying hostnames, loopback addresses are not added

automatically. To allow loopback interfaces, add them to whitelist manually (e.g. "localhost" ,

"127.0.0.1" , etc.).

Frequently asked questions

I’m seeing a SSLv3 alert handshake failure when using TLS client
authentication?

The crypto/tls  package of golang  checks the key usage of the certificate public key before

using it. To use the certificate public key to do client auth, we need to add clientAuth  to

Extended Key Usage  when creating the certificate public key.

Here is how to do it:

Add the following section to openssl.cnf:





https://en.wikipedia.org/wiki/DNS_rebinding
https://en.wikipedia.org/wiki/DNS_rebinding
https://en.wikipedia.org/wiki/DNS_rebinding
https://bugs.chromium.org/p/project-zero/issues/detail?id=1447#c2
https://bugs.chromium.org/p/project-zero/issues/detail?id=1447#c2
https://bugs.chromium.org/p/project-zero/issues/detail?id=1447#c2


[ ssl_client ]
...
  extendedKeyUsage = clientAuth
...

When creating the cert be sure to reference it in the -extensions  flag:

$ openssl ca -config openssl.cnf -policy policy_anything -extensions ssl_client -out cert

The Verify  function in the crypto/x509  logic implements a common, but non-standard

extension - it requires that CA & intermediate certificates either define no extended key

usage, or a superset of those on the end-entity certificates. If certificates in your chain define

any extended key usages, they must also include serverAuth  and/or clientAuth .

Otherwise, you may see an error like unsuitable certificate purpose  (OpenSSL) or

certificate specifies an incompatible key usage  (Go).

With peer certificate authentication I receive “certificate is valid for
127.0.0.1, not $MY_IP”

Make sure to sign the certificates with a Subject Name the member’s public IP address. The

etcd-ca  tool for example provides an --ip=  option for its new-cert  command.

The certificate needs to be signed for the member’s FQDN in its Subject Name, use Subject

Alternative Names (short IP SANs) to add the IP address. The etcd-ca  tool provides --

domain=  option for its new-cert  command, and openssl can make it  too.

Does etcd encrypt data stored on disk drives?

No. etcd doesn’t encrypt key/value data stored on disk drives. If a user need to encrypt data

stored on etcd, there are some options:

Let client applications encrypt and decrypt the data

Use a feature of underlying storage systems for encrypting stored data like dm-crypt

I’m seeing a log warning that “directory X exist without
recommended permission -rwx——”

When etcd create certain new directories it sets file permission to 700 to prevent unprivileged

access as possible. However, if user has already created a directory with own preference,

etcd uses the existing directory and logs a warning message if the permission is different

than 700.







https://pkg.go.dev/crypto/x509#Certificate.Verify
https://pkg.go.dev/crypto/x509#Certificate.Verify
https://pkg.go.dev/crypto/x509#Certificate.Verify
http://wiki.cacert.org/FAQ/subjectAltName
http://wiki.cacert.org/FAQ/subjectAltName
http://wiki.cacert.org/FAQ/subjectAltName
https://en.wikipedia.org/wiki/Dm-crypt
https://en.wikipedia.org/wiki/Dm-crypt
https://en.wikipedia.org/wiki/Dm-crypt


Last modified October 25, 2023: Describe requirements on intermediate certificates

(2daba91)


https://github.com/etcd-io/website/commit/2daba9146a9aa9c8063c383b12e06fa5e61c9bc5
https://github.com/etcd-io/website/commit/2daba9146a9aa9c8063c383b12e06fa5e61c9bc5
https://github.com/etcd-io/website/commit/2daba9146a9aa9c8063c383b12e06fa5e61c9bc5
https://github.com/etcd-io/website/commit/2daba9146a9aa9c8063c383b12e06fa5e61c9bc5


Clustering Guide

Bootstrapping an etcd cluster: Static, etcd Discovery, and DNS Discovery

Overview

Starting an etcd cluster statically requires that each member knows another in the cluster. In

a number of cases, the IPs of the cluster members may be unknown ahead of time. In these

cases, the etcd cluster can be bootstrapped with the help of a discovery service.

Once an etcd cluster is up and running, adding or removing members is done via runtime

reconfiguration. To better understand the design behind runtime reconfiguration, we suggest

reading the runtime configuration design document.

This guide will cover the following mechanisms for bootstrapping an etcd cluster:

Static

etcd Discovery

DNS Discovery

Each of the bootstrapping mechanisms will be used to create a three machine etcd cluster

with the following details:

Name Address Hostname

infra0 10.0.1.10 infra0.example.com

infra1 10.0.1.11 infra1.example.com

infra2 10.0.1.12 infra2.example.com

Static

As we know the cluster members, their addresses and the size of the cluster before starting,

we can use an offline bootstrap configuration by setting the initial-cluster  flag. Each

machine will get either the following environment variables or command line:

etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/op-guide/runtime-configuration/
https://etcd.io/docs/v3.5/op-guide/runtime-configuration/
https://etcd.io/docs/v3.5/op-guide/runtime-reconf-design/
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


ETCD_INITIAL_CLUSTER="infra0=http://10.0.1.10:2380,infra1=http://10.0.1.11:2380,infra2=ht
ETCD_INITIAL_CLUSTER_STATE=new

--initial-cluster infra0=http://10.0.1.10:2380,infra1=http://10.0.1.11:2380,infra2=http:/
--initial-cluster-state new

Note that the URLs specified in initial-cluster  are the advertised peer URLs, i.e. they should

match the value of initial-advertise-peer-urls  on the respective nodes.

If spinning up multiple clusters (or creating and destroying a single cluster) with same

configuration for testing purpose, it is highly recommended that each cluster is given a

unique initial-cluster-token . By doing this, etcd can generate unique cluster IDs and

member IDs for the clusters even if they otherwise have the exact same configuration. This

can protect etcd from cross-cluster-interaction, which might corrupt the clusters.

etcd listens on listen-client-urls  to accept client traffic. etcd member advertises the URLs

specified in advertise-client-urls  to other members, proxies, clients. Please make sure the

advertise-client-urls  are reachable from intended clients. A common mistake is setting

advertise-client-urls  to localhost or leave it as default if the remote clients should reach

etcd.

On each machine, start etcd with these flags:

$ etcd --name infra0 --initial-advertise-peer-urls http://10.0.1.10:2380 \
  --listen-peer-urls http://10.0.1.10:2380 \
  --listen-client-urls http://10.0.1.10:2379,http://127.0.0.1:2379 \
  --advertise-client-urls http://10.0.1.10:2379 \
  --initial-cluster-token etcd-cluster-1 \
  --initial-cluster infra0=http://10.0.1.10:2380,infra1=http://10.0.1.11:2380,infra2=http
  --initial-cluster-state new

$ etcd --name infra1 --initial-advertise-peer-urls http://10.0.1.11:2380 \
  --listen-peer-urls http://10.0.1.11:2380 \
  --listen-client-urls http://10.0.1.11:2379,http://127.0.0.1:2379 \
  --advertise-client-urls http://10.0.1.11:2379 \
  --initial-cluster-token etcd-cluster-1 \
  --initial-cluster infra0=http://10.0.1.10:2380,infra1=http://10.0.1.11:2380,infra2=http
  --initial-cluster-state new

$ etcd --name infra2 --initial-advertise-peer-urls http://10.0.1.12:2380 \
  --listen-peer-urls http://10.0.1.12:2380 \
  --listen-client-urls http://10.0.1.12:2379,http://127.0.0.1:2379 \

https://etcd.io/docs/v3.5/op-guide/configuration/#member
https://etcd.io/docs/v3.5/op-guide/configuration/#clustering


  --advertise-client-urls http://10.0.1.12:2379 \
  --initial-cluster-token etcd-cluster-1 \
  --initial-cluster infra0=http://10.0.1.10:2380,infra1=http://10.0.1.11:2380,infra2=http
  --initial-cluster-state new

The command line parameters starting with --initial-cluster  will be ignored on

subsequent runs of etcd. Feel free to remove the environment variables or command line

flags after the initial bootstrap process. If the configuration needs changes later (for example,

adding or removing members to/from the cluster), see the runtime configuration guide.

TLS

etcd supports encrypted communication through the TLS protocol. TLS channels can be used

for encrypted internal cluster communication between peers as well as encrypted client

traffic. This section provides examples for setting up a cluster with peer and client TLS.

Additional information detailing etcd’s TLS support can be found in the security guide.

Self-signed certificates

A cluster using self-signed certificates both encrypts traffic and authenticates its connections.

To start a cluster with self-signed certificates, each cluster member should have a unique key

pair ( member.crt , member.key ) signed by a shared cluster CA certificate ( ca.crt ) for both peer

connections and client connections. Certificates may be generated by following the etcd TLS

setup  example.

On each machine, etcd would be started with these flags:

$ etcd --name infra0 --initial-advertise-peer-urls https://10.0.1.10:2380 \
  --listen-peer-urls https://10.0.1.10:2380 \
  --listen-client-urls https://10.0.1.10:2379,https://127.0.0.1:2379 \
  --advertise-client-urls https://10.0.1.10:2379 \
  --initial-cluster-token etcd-cluster-1 \
  --initial-cluster infra0=https://10.0.1.10:2380,infra1=https://10.0.1.11:2380,infra2=ht
  --initial-cluster-state new \
  --client-cert-auth --trusted-ca-file=/path/to/ca-client.crt \
  --cert-file=/path/to/infra0-client.crt --key-file=/path/to/infra0-client.key \
  --peer-client-cert-auth --peer-trusted-ca-file=ca-peer.crt \
  --peer-cert-file=/path/to/infra0-peer.crt --peer-key-file=/path/to/infra0-peer.key

$ etcd --name infra1 --initial-advertise-peer-urls https://10.0.1.11:2380 \
  --listen-peer-urls https://10.0.1.11:2380 \
  --listen-client-urls https://10.0.1.11:2379,https://127.0.0.1:2379 \
  --advertise-client-urls https://10.0.1.11:2379 \
  --initial-cluster-token etcd-cluster-1 \



https://etcd.io/docs/v3.5/op-guide/runtime-configuration/
https://etcd.io/docs/v3.5/op-guide/security/
https://github.com/etcd-io/etcd/tree/master/hack/tls-setup
https://github.com/etcd-io/etcd/tree/master/hack/tls-setup
https://github.com/etcd-io/etcd/tree/master/hack/tls-setup
https://github.com/etcd-io/etcd/tree/master/hack/tls-setup


  --initial-cluster infra0=https://10.0.1.10:2380,infra1=https://10.0.1.11:2380,infra2=ht
  --initial-cluster-state new \
  --client-cert-auth --trusted-ca-file=/path/to/ca-client.crt \
  --cert-file=/path/to/infra1-client.crt --key-file=/path/to/infra1-client.key \
  --peer-client-cert-auth --peer-trusted-ca-file=ca-peer.crt \
  --peer-cert-file=/path/to/infra1-peer.crt --peer-key-file=/path/to/infra1-peer.key

$ etcd --name infra2 --initial-advertise-peer-urls https://10.0.1.12:2380 \
  --listen-peer-urls https://10.0.1.12:2380 \
  --listen-client-urls https://10.0.1.12:2379,https://127.0.0.1:2379 \
  --advertise-client-urls https://10.0.1.12:2379 \
  --initial-cluster-token etcd-cluster-1 \
  --initial-cluster infra0=https://10.0.1.10:2380,infra1=https://10.0.1.11:2380,infra2=ht
  --initial-cluster-state new \
  --client-cert-auth --trusted-ca-file=/path/to/ca-client.crt \
  --cert-file=/path/to/infra2-client.crt --key-file=/path/to/infra2-client.key \
  --peer-client-cert-auth --peer-trusted-ca-file=ca-peer.crt \
  --peer-cert-file=/path/to/infra2-peer.crt --peer-key-file=/path/to/infra2-peer.key

Automatic certificates

If the cluster needs encrypted communication but does not require authenticated

connections, etcd can be configured to automatically generate its keys. On initialization, each

member creates its own set of keys based on its advertised IP addresses and hosts.

On each machine, etcd would be started with these flags:

$ etcd --name infra0 --initial-advertise-peer-urls https://10.0.1.10:2380 \
  --listen-peer-urls https://10.0.1.10:2380 \
  --listen-client-urls https://10.0.1.10:2379,https://127.0.0.1:2379 \
  --advertise-client-urls https://10.0.1.10:2379 \
  --initial-cluster-token etcd-cluster-1 \
  --initial-cluster infra0=https://10.0.1.10:2380,infra1=https://10.0.1.11:2380,infra2=ht
  --initial-cluster-state new \
  --auto-tls \
  --peer-auto-tls

$ etcd --name infra1 --initial-advertise-peer-urls https://10.0.1.11:2380 \
  --listen-peer-urls https://10.0.1.11:2380 \
  --listen-client-urls https://10.0.1.11:2379,https://127.0.0.1:2379 \
  --advertise-client-urls https://10.0.1.11:2379 \
  --initial-cluster-token etcd-cluster-1 \
  --initial-cluster infra0=https://10.0.1.10:2380,infra1=https://10.0.1.11:2380,infra2=ht
  --initial-cluster-state new \



  --auto-tls \
  --peer-auto-tls

$ etcd --name infra2 --initial-advertise-peer-urls https://10.0.1.12:2380 \
  --listen-peer-urls https://10.0.1.12:2380 \
  --listen-client-urls https://10.0.1.12:2379,https://127.0.0.1:2379 \
  --advertise-client-urls https://10.0.1.12:2379 \
  --initial-cluster-token etcd-cluster-1 \
  --initial-cluster infra0=https://10.0.1.10:2380,infra1=https://10.0.1.11:2380,infra2=ht
  --initial-cluster-state new \
  --auto-tls \
  --peer-auto-tls

Error cases

In the following example, we have not included our new host in the list of enumerated nodes.

If this is a new cluster, the node must be added to the list of initial cluster members.

$ etcd --name infra1 --initial-advertise-peer-urls http://10.0.1.11:2380 \
  --listen-peer-urls https://10.0.1.11:2380 \
  --listen-client-urls http://10.0.1.11:2379,http://127.0.0.1:2379 \
  --advertise-client-urls http://10.0.1.11:2379 \
  --initial-cluster infra0=http://10.0.1.10:2380 \
  --initial-cluster-state new
etcd: infra1 not listed in the initial cluster config
exit 1

In this example, we are attempting to map a node (infra0) on a different address

(127.0.0.1:2380) than its enumerated address in the cluster list (10.0.1.10:2380). If this node is

to listen on multiple addresses, all addresses must be reflected in the “initial-cluster”

configuration directive.

$ etcd --name infra0 --initial-advertise-peer-urls http://127.0.0.1:2380 \
  --listen-peer-urls http://10.0.1.10:2380 \
  --listen-client-urls http://10.0.1.10:2379,http://127.0.0.1:2379 \
  --advertise-client-urls http://10.0.1.10:2379 \
  --initial-cluster infra0=http://10.0.1.10:2380,infra1=http://10.0.1.11:2380,infra2=http
  --initial-cluster-state=new
etcd: error setting up initial cluster: infra0 has different advertised URLs in the clust
exit 1

If a peer is configured with a different set of configuration arguments and attempts to join

this cluster, etcd will report a cluster ID mismatch will exit.



$ etcd --name infra3 --initial-advertise-peer-urls http://10.0.1.13:2380 \
  --listen-peer-urls http://10.0.1.13:2380 \
  --listen-client-urls http://10.0.1.13:2379,http://127.0.0.1:2379 \
  --advertise-client-urls http://10.0.1.13:2379 \
  --initial-cluster infra0=http://10.0.1.10:2380,infra1=http://10.0.1.11:2380,infra3=http
  --initial-cluster-state=new
etcd: conflicting cluster ID to the target cluster (c6ab534d07e8fcc4 != bc25ea2a74fb18b0
exit 1

Discovery

In a number of cases, the IPs of the cluster peers may not be known ahead of time. This is

common when utilizing cloud providers or when the network uses DHCP. In these cases,

rather than specifying a static configuration, use an existing etcd cluster to bootstrap a new

one. This process is called “discovery”.

There two methods that can be used for discovery:

etcd discovery service

DNS SRV records

etcd discovery

To better understand the design of the discovery service protocol, we suggest reading the

discovery service protocol documentation.

Lifetime of a discovery URL

A discovery URL identifies a unique etcd cluster. Instead of reusing an existing discovery URL,

each etcd instance shares a new discovery URL to bootstrap the new cluster.

Moreover, discovery URLs should ONLY be used for the initial bootstrapping of a cluster. To

change cluster membership after the cluster is already running, see the runtime

reconfiguration guide.

Custom etcd discovery service

Discovery uses an existing cluster to bootstrap itself. If using a private etcd cluster, create a

URL like so:

$ curl -X PUT https://myetcd.local/v2/keys/discovery/6c007a14875d53d9bf0ef5a6fc0257c817f0

https://etcd.io/docs/v3.5/dev-internal/discovery_protocol/
https://etcd.io/docs/v3.5/op-guide/runtime-configuration/
https://etcd.io/docs/v3.5/op-guide/runtime-configuration/


By setting the size key to the URL, a discovery URL is created with an expected cluster size of

3.

The URL to use in this case will be

https://myetcd.local/v2/keys/discovery/6c007a14875d53d9bf0ef5a6fc0257c817f0fb83  and the

etcd members will use the

https://myetcd.local/v2/keys/discovery/6c007a14875d53d9bf0ef5a6fc0257c817f0fb83  directory

for registration as they start.

Each member must have a different name flag specified. Hostname  or machine-id  can be

a good choice. Or discovery will fail due to duplicated name.

Now we start etcd with those relevant flags for each member:

$ etcd --name infra0 --initial-advertise-peer-urls http://10.0.1.10:2380 \
  --listen-peer-urls http://10.0.1.10:2380 \
  --listen-client-urls http://10.0.1.10:2379,http://127.0.0.1:2379 \
  --advertise-client-urls http://10.0.1.10:2379 \
  --discovery https://myetcd.local/v2/keys/discovery/6c007a14875d53d9bf0ef5a6fc0257c817f0

$ etcd --name infra1 --initial-advertise-peer-urls http://10.0.1.11:2380 \
  --listen-peer-urls http://10.0.1.11:2380 \
  --listen-client-urls http://10.0.1.11:2379,http://127.0.0.1:2379 \
  --advertise-client-urls http://10.0.1.11:2379 \
  --discovery https://myetcd.local/v2/keys/discovery/6c007a14875d53d9bf0ef5a6fc0257c817f0

$ etcd --name infra2 --initial-advertise-peer-urls http://10.0.1.12:2380 \
  --listen-peer-urls http://10.0.1.12:2380 \
  --listen-client-urls http://10.0.1.12:2379,http://127.0.0.1:2379 \
  --advertise-client-urls http://10.0.1.12:2379 \
  --discovery https://myetcd.local/v2/keys/discovery/6c007a14875d53d9bf0ef5a6fc0257c817f0

This will cause each member to register itself with the custom etcd discovery service and

begin the cluster once all machines have been registered.

Public etcd discovery service

If no exiting cluster is available, use the public discovery service hosted at discovery.etcd.io .

To create a private discovery URL using the “new” endpoint, use the command:

$ curl https://discovery.etcd.io/new?size=3
https://discovery.etcd.io/3e86b59982e49066c5d813af1c2e2579cbf573de



This will create the cluster with an initial size of 3 members. If no size is specified, a default of

3 is used.

ETCD_DISCOVERY=https://discovery.etcd.io/3e86b59982e49066c5d813af1c2e2579cbf573de

--discovery https://discovery.etcd.io/3e86b59982e49066c5d813af1c2e2579cbf573de

Each member must have a different name flag specified or else discovery will fail due

to duplicated names. Hostname  or machine-id  can be a good choice.

Now we start etcd with those relevant flags for each member:

$ etcd --name infra0 --initial-advertise-peer-urls http://10.0.1.10:2380 \
  --listen-peer-urls http://10.0.1.10:2380 \
  --listen-client-urls http://10.0.1.10:2379,http://127.0.0.1:2379 \
  --advertise-client-urls http://10.0.1.10:2379 \
  --discovery https://discovery.etcd.io/3e86b59982e49066c5d813af1c2e2579cbf573de

$ etcd --name infra1 --initial-advertise-peer-urls http://10.0.1.11:2380 \
  --listen-peer-urls http://10.0.1.11:2380 \
  --listen-client-urls http://10.0.1.11:2379,http://127.0.0.1:2379 \
  --advertise-client-urls http://10.0.1.11:2379 \
  --discovery https://discovery.etcd.io/3e86b59982e49066c5d813af1c2e2579cbf573de

$ etcd --name infra2 --initial-advertise-peer-urls http://10.0.1.12:2380 \
  --listen-peer-urls http://10.0.1.12:2380 \
  --listen-client-urls http://10.0.1.12:2379,http://127.0.0.1:2379 \
  --advertise-client-urls http://10.0.1.12:2379 \
  --discovery https://discovery.etcd.io/3e86b59982e49066c5d813af1c2e2579cbf573de

This will cause each member to register itself with the discovery service and begin the cluster

once all members have been registered.

Use the environment variable ETCD_DISCOVERY_PROXY  to cause etcd to use an HTTP proxy to

connect to the discovery service.

Error and warning cases

Discovery server errors



$ etcd --name infra0 --initial-advertise-peer-urls http://10.0.1.10:2380 \
  --listen-peer-urls http://10.0.1.10:2380 \
  --listen-client-urls http://10.0.1.10:2379,http://127.0.0.1:2379 \
  --advertise-client-urls http://10.0.1.10:2379 \
  --discovery https://discovery.etcd.io/3e86b59982e49066c5d813af1c2e2579cbf573de
etcd: error: the cluster doesn’t have a size configuration value in https://discovery.etc
exit 1

Warnings

This is a harmless warning indicating the discovery URL will be ignored on this machine.

$ etcd --name infra0 --initial-advertise-peer-urls http://10.0.1.10:2380 \
  --listen-peer-urls http://10.0.1.10:2380 \
  --listen-client-urls http://10.0.1.10:2379,http://127.0.0.1:2379 \
  --advertise-client-urls http://10.0.1.10:2379 \
  --discovery https://discovery.etcd.io/3e86b59982e49066c5d813af1c2e2579cbf573de
etcdserver: discovery token ignored since a cluster has already been initialized. Valid l

DNS discovery

DNS SRV records  can be used as a discovery mechanism. The --discovery-srv  flag can be

used to set the DNS domain name where the discovery SRV records can be found. Setting --

discovery-srv example.com  causes DNS SRV records to be looked up in the listed order:

_etcd-server-ssl._tcp.example.com

_etcd-server._tcp.example.com

If _etcd-server-ssl._tcp.example.com  is found then etcd will attempt the bootstrapping

process over TLS.

To help clients discover the etcd cluster, the following DNS SRV records are looked up in the

listed order:

_etcd-client._tcp.example.com

_etcd-client-ssl._tcp.example.com

If _etcd-client-ssl._tcp.example.com  is found, clients will attempt to communicate with the

etcd cluster over SSL/TLS.

If etcd is using TLS, the discovery SRV record (e.g. example.com ) must be included in the SSL

certificate DNS SAN along with the hostname, or clustering will fail with log messages like the

following:



http://www.ietf.org/rfc/rfc2052.txt
http://www.ietf.org/rfc/rfc2052.txt
http://www.ietf.org/rfc/rfc2052.txt


[...] rejected connection from "10.0.1.11:53162" (error "remote error: tls: bad certifica

If etcd is using TLS without a custom certificate authority, the discovery domain (e.g.,

example.com) must match the SRV record domain (e.g., infra1.example.com). This is to

mitigate attacks that forge SRV records to point to a different domain; the domain would

have a valid certificate under PKI but be controlled by an unknown third party.

The -discovery-srv-name  flag additionally configures a suffix to the SRV name that is queried

during discovery. Use this flag to differentiate between multiple etcd clusters under the same

domain. For example, if discovery-srv=example.com  and -discovery-srv-name=foo  are set, the

following DNS SRV queries are made:

_etcd-server-ssl-foo._tcp.example.com

_etcd-server-foo._tcp.example.com

Create DNS SRV records

$ dig +noall +answer SRV _etcd-server._tcp.example.com
_etcd-server._tcp.example.com. 300 IN  SRV  0 0 2380 infra0.example.com.
_etcd-server._tcp.example.com. 300 IN  SRV  0 0 2380 infra1.example.com.
_etcd-server._tcp.example.com. 300 IN  SRV  0 0 2380 infra2.example.com.

$ dig +noall +answer SRV _etcd-client._tcp.example.com
_etcd-client._tcp.example.com. 300 IN SRV 0 0 2379 infra0.example.com.
_etcd-client._tcp.example.com. 300 IN SRV 0 0 2379 infra1.example.com.
_etcd-client._tcp.example.com. 300 IN SRV 0 0 2379 infra2.example.com.

$ dig +noall +answer infra0.example.com infra1.example.com infra2.example.com
infra0.example.com.  300  IN  A  10.0.1.10
infra1.example.com.  300  IN  A  10.0.1.11
infra2.example.com.  300  IN  A  10.0.1.12

Bootstrap the etcd cluster using DNS

etcd cluster members can advertise domain names or IP address, the bootstrap process will

resolve DNS A records. Since 3.2 (3.1 prints warnings) --listen-peer-urls  and --listen-

client-urls  will reject domain name for the network interface binding.

The resolved address in --initial-advertise-peer-urls must match one of the resolved

addresses in the SRV targets. The etcd member reads the resolved address to find out if it

belongs to the cluster defined in the SRV records.



$ etcd --name infra0 \
--discovery-srv example.com \
--initial-advertise-peer-urls http://infra0.example.com:2380 \
--initial-cluster-token etcd-cluster-1 \
--initial-cluster-state new \
--advertise-client-urls http://infra0.example.com:2379 \
--listen-client-urls http://0.0.0.0:2379 \
--listen-peer-urls http://0.0.0.0:2380

$ etcd --name infra1 \
--discovery-srv example.com \
--initial-advertise-peer-urls http://infra1.example.com:2380 \
--initial-cluster-token etcd-cluster-1 \
--initial-cluster-state new \
--advertise-client-urls http://infra1.example.com:2379 \
--listen-client-urls http://0.0.0.0:2379 \
--listen-peer-urls http://0.0.0.0:2380

$ etcd --name infra2 \
--discovery-srv example.com \
--initial-advertise-peer-urls http://infra2.example.com:2380 \
--initial-cluster-token etcd-cluster-1 \
--initial-cluster-state new \
--advertise-client-urls http://infra2.example.com:2379 \
--listen-client-urls http://0.0.0.0:2379 \
--listen-peer-urls http://0.0.0.0:2380

The cluster can also bootstrap using IP addresses instead of domain names:

$ etcd --name infra0 \
--discovery-srv example.com \
--initial-advertise-peer-urls http://10.0.1.10:2380 \
--initial-cluster-token etcd-cluster-1 \
--initial-cluster-state new \
--advertise-client-urls http://10.0.1.10:2379 \
--listen-client-urls http://10.0.1.10:2379 \
--listen-peer-urls http://10.0.1.10:2380

$ etcd --name infra1 \
--discovery-srv example.com \
--initial-advertise-peer-urls http://10.0.1.11:2380 \
--initial-cluster-token etcd-cluster-1 \
--initial-cluster-state new \



--advertise-client-urls http://10.0.1.11:2379 \
--listen-client-urls http://10.0.1.11:2379 \
--listen-peer-urls http://10.0.1.11:2380

$ etcd --name infra2 \
--discovery-srv example.com \
--initial-advertise-peer-urls http://10.0.1.12:2380 \
--initial-cluster-token etcd-cluster-1 \
--initial-cluster-state new \
--advertise-client-urls http://10.0.1.12:2379 \
--listen-client-urls http://10.0.1.12:2379 \
--listen-peer-urls http://10.0.1.12:2380

Since v3.1.0 (except v3.2.9), when etcd --discovery-srv=example.com  is configured with TLS,

server will only authenticate peers/clients when the provided certs have root domain

example.com  as an entry in Subject Alternative Name (SAN) field. See Notes for DNS SRV.

Gateway

etcd gateway is a simple TCP proxy that forwards network data to the etcd cluster. Please

read gateway guide for more information.

Proxy

When the --proxy  flag is set, etcd runs in proxy mode . This proxy mode only supports the

etcd v2 API; there are no plans to support the v3 API. Instead, for v3 API support, there will be

a new proxy with enhanced features following the etcd 3.0 release.

To setup an etcd cluster with proxies of v2 API, please read the the clustering doc in etcd 2.3

release .

Last modified October 26, 2021: Configuration page rework: remove duplication, make easier

to maintain, add missing flag (#491) (29c0731)







https://etcd.io/docs/v3.5/op-guide/security/#notes-for-dns-srv
https://etcd.io/docs/v3.5/op-guide/gateway/
https://github.com/etcd-io/etcd/blob/release-2.3/Documentation/proxy.md
https://github.com/etcd-io/etcd/blob/release-2.3/Documentation/proxy.md
https://github.com/etcd-io/etcd/blob/release-2.3/Documentation/proxy.md
https://github.com/etcd-io/etcd/blob/release-2.3/Documentation/clustering.md
https://github.com/etcd-io/etcd/blob/release-2.3/Documentation/clustering.md
https://github.com/etcd-io/etcd/blob/release-2.3/Documentation/clustering.md
https://github.com/etcd-io/etcd/blob/release-2.3/Documentation/clustering.md
https://github.com/etcd-io/website/commit/29c07319e2f7b01f9b6b4ed9b8c389d534bb2e8b
https://github.com/etcd-io/website/commit/29c07319e2f7b01f9b6b4ed9b8c389d534bb2e8b
https://github.com/etcd-io/website/commit/29c07319e2f7b01f9b6b4ed9b8c389d534bb2e8b
https://github.com/etcd-io/website/commit/29c07319e2f7b01f9b6b4ed9b8c389d534bb2e8b


Run etcd clusters as a Kubernetes

StatefulSet

Running etcd as a Kubernetes StatefulSet

Below demonstrates how to perform the static bootstrap process as a Kubernetes

StatefulSet.

Example Manifest

This manifest contains a service and statefulset for deploying a static etcd cluster in

kubernetes.

If you copy the contents of the manifest into a file named etcd.yaml , it can be applied to a

cluster with this command.

Upon being applied, wait for the pods to become ready.

The container used in the example includes etcdctl and can be called directly inside the pods.

$ kubectl apply --filename etcd.yaml


$ kubectl get pods
NAME     READY   STATUS    RESTARTS   AGE
etcd-0   1/1     Running   0          24m
etcd-1   1/1     Running   0          24m
etcd-2   1/1     Running   0          24m



$ kubectl exec -it etcd-0 -- etcdctl member list -wtable
+------------------+---------+--------+-------------------------+-----------------------
|        ID        | STATUS  |  NAME  |       PEER ADDRS        |      CLIENT ADDRS      
+------------------+---------+--------+-------------------------+-----------------------



etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/op-guide/clustering/#static
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


To deploy with a self-signed certificate, refer to the commented configuration headings

starting with ## TLS  to find values that you can uncomment. Additional instructions for

generating a cert with cert-manager is included in a section below.

| 4f98c3545405a0b0 | started | etcd-2 | http://etcd-2.etcd:2380 | http://etcd-2.etcd:2379
| a394e0ee91773643 | started | etcd-0 | http://etcd-0.etcd:2380 | http://etcd-0.etcd:2379
| d10297b8d2f01265 | started | etcd-1 | http://etcd-1.etcd:2380 | http://etcd-1.etcd:2379
+------------------+---------+--------+-------------------------+-----------------------

# file: etcd.yaml
---
apiVersion: v1
kind: Service
metadata:
  name: etcd
  namespace: default
spec:
  type: ClusterIP
  clusterIP: None
  selector:
    app: etcd
  ##
  ## Ideally we would use SRV records to do peer discovery for initialization.
  ## Unfortunately discovery will not work without logic to wait for these to
  ## populate in the container. This problem is relatively easy to overcome by
  ## making changes to prevent the etcd process from starting until the records
  ## have populated. The documentation on statefulsets briefly talk about it.
  ##   https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#stable-netw
  publishNotReadyAddresses: true
  ##
  ## The naming scheme of the client and server ports match the scheme that etcd
  ## uses when doing discovery with SRV records.
  ports:
  - name: etcd-client
    port: 2379
  - name: etcd-server
    port: 2380
  - name: etcd-metrics
    port: 8080
---
apiVersion: apps/v1
kind: StatefulSet
metadata:
  namespace: default
  name: etcd
spec:





  ##
  ## The service name is being set to leverage the service headlessly.
  ## https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
  serviceName: etcd
  ##
  ## If you are increasing the replica count of an existing cluster, you should
  ## also update the --initial-cluster-state flag as noted further down in the
  ## container configuration.
  replicas: 3
  ##
  ## For initialization, the etcd pods must be available to eachother before
  ## they are "ready" for traffic. The "Parallel" policy makes this possible.
  podManagementPolicy: Parallel
  ##
  ## To ensure availability of the etcd cluster, the rolling update strategy
  ## is used. For availability, there must be at least 51% of the etcd nodes
  ## online at any given time.
  updateStrategy:
    type: RollingUpdate
  ##
  ## This is label query over pods that should match the replica count.
  ## It must match the pod template's labels. For more information, see the
  ## following documentation:
  ##   https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-se
  selector:
    matchLabels:
      app: etcd
  ##
  ## Pod configuration template.
  template:
    metadata:
      ##
      ## The labeling here is tied to the "matchLabels" of this StatefulSet and
      ## "affinity" configuration of the pod that will be created.
      ##
      ## This example's labeling scheme is fine for one etcd cluster per
      ## namespace, but should you desire multiple clusters per namespace, you
      ## will need to update the labeling schema to be unique per etcd cluster.
      labels:
        app: etcd
      annotations:
        ##
        ## This gets referenced in the etcd container's configuration as part of
        ## the DNS name. It must match the service name created for the etcd
        ## cluster. The choice to place it in an annotation instead of the env
        ## settings is because there should only be 1 service per etcd cluster.
        serviceName: etcd
    spec:
      ##



      ## Configuring the node affinity is necessary to prevent etcd servers from
      ## ending up on the same hardware together.
      ##
      ## See the scheduling documentation for more information about this:
      ##   https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#node
      affinity:
        ## The podAntiAffinity is a set of rules for scheduling that describe
        ## when NOT to place a pod from this StatefulSet on a node.
        podAntiAffinity:
          ##
          ## When preparing to place the pod on a node, the scheduler will check
          ## for other pods matching the rules described by the labelSelector
          ## separated by the chosen topology key.
          requiredDuringSchedulingIgnoredDuringExecution:
          ## This label selector is looking for app=etcd
          - labelSelector:
              matchExpressions:
              - key: app
                operator: In
                values:
                - etcd
            ## This topology key denotes a common label used on nodes in the
            ## cluster. The podAntiAffinity configuration essentially states
            ## that if another pod has a label of app=etcd on the node, the
            ## scheduler should not place another pod on the node.
            ##   https://kubernetes.io/docs/reference/labels-annotations-taints/#kubernet
            topologyKey: "kubernetes.io/hostname"
      ##
      ## Containers in the pod
      containers:
      ## This example only has this etcd container.
      - name: etcd
        image: quay.io/coreos/etcd:v3.5.15
        imagePullPolicy: IfNotPresent
        ports:
        - name: etcd-client
          containerPort: 2379
        - name: etcd-server
          containerPort: 2380
        - name: etcd-metrics
          containerPort: 8080
        ##
        ## These probes will fail over TLS for self-signed certificates, so etcd
        ## is configured to deliver metrics over port 8080 further down.
        ##
        ## As mentioned in the "Monitoring etcd" page, /readyz and /livez were
        ## added in v3.5.12. Prior to this, monitoring required extra tooling
        ## inside the container to make these probes work.
        ##



        ## The values in this readiness probe should be further validated, it
        ## is only an example configuration.
        readinessProbe:
          httpGet:
            path: /readyz
            port: 8080
          initialDelaySeconds: 10
          periodSeconds: 5
          timeoutSeconds: 5
          successThreshold: 1
          failureThreshold: 30
        ## The values in this liveness probe should be further validated, it
        ## is only an example configuration.
        livenessProbe:
          httpGet:
            path: /livez
            port: 8080
          initialDelaySeconds: 15
          periodSeconds: 10
          timeoutSeconds: 5
          failureThreshold: 3
        env:
        ##
        ## Environment variables defined here can be used by other parts of the
        ## container configuration. They are interpreted by Kubernetes, instead
        ## of in the container environment.
        ##
        ## These env vars pass along information about the pod.
        - name: K8S_NAMESPACE
          valueFrom:
            fieldRef:
             fieldPath: metadata.namespace
        - name: HOSTNAME
          valueFrom:
            fieldRef:
             fieldPath: metadata.name
        - name: SERVICE_NAME
          valueFrom:
            fieldRef:
              fieldPath: metadata.annotations['serviceName']
        ##
        ## Configuring etcdctl inside the container to connect to the etcd node
        ## in the container reduces confusion when debugging.
        - name: ETCDCTL_ENDPOINTS
          value: $(HOSTNAME).$(SERVICE_NAME):2379
        ##
        ## TLS client configuration for etcdctl in the container.
        ## These files paths are part of the "etcd-client-certs" volume mount.
        # - name: ETCDCTL_KEY



        #   value: /etc/etcd/certs/client/tls.key
        # - name: ETCDCTL_CERT
        #   value: /etc/etcd/certs/client/tls.crt
        # - name: ETCDCTL_CACERT
        #   value: /etc/etcd/certs/client/ca.crt
        ##
        ## Use this URI_SCHEME value for non-TLS clusters.
        - name: URI_SCHEME
          value: "http"
        ## TLS: Use this URI_SCHEME for TLS clusters.
        # - name: URI_SCHEME
        # value: "https"
        ##
        ## If you're using a different container, the executable may be in a
        ## different location. This example uses the full path to help remove
        ## ambiguity to you, the reader.
        ## Often you can just use "etcd" instead of "/usr/local/bin/etcd" and it
        ## will work because the $PATH includes a directory containing "etcd".
        command:
        - /usr/local/bin/etcd
        ##
        ## Arguments used with the etcd command inside the container.
        args:
        ##
        ## Configure the name of the etcd server.
        - --name=$(HOSTNAME)
        ##
        ## Configure etcd to use the persistent storage configured below.
        - --data-dir=/data
        ##
        ## In this example we're consolidating the WAL into sharing space with
        ## the data directory. This is not ideal in production environments and
        ## should be placed in it's own volume.
        - --wal-dir=/data/wal
        ##
        ## URL configurations are parameterized here and you shouldn't need to
        ## do anything with these.
        - --listen-peer-urls=$(URI_SCHEME)://0.0.0.0:2380
        - --listen-client-urls=$(URI_SCHEME)://0.0.0.0:2379
        - --advertise-client-urls=$(URI_SCHEME)://$(HOSTNAME).$(SERVICE_NAME):2379
        ##
        ## This must be set to "new" for initial cluster bootstrapping. To scale
        ## the cluster up, this should be changed to "existing" when the replica
        ## count is increased. If set incorrectly, etcd makes an attempt to
        ## start but fail safely.
        - --initial-cluster-state=new
        ##
        ## Token used for cluster initialization. The recommendation for this is
        ## to use a unique token for every cluster. This example parameterized



        ## to be unique to the namespace, but if you are deploying multiple etcd
        ## clusters in the same namespace, you should do something extra to
        ## ensure uniqueness amongst clusters.
        - --initial-cluster-token=etcd-$(K8S_NAMESPACE)
        ##
        ## The initial cluster flag needs to be updated to match the number of
        ## replicas configured. When combined, these are a little hard to read.
        ## Here is what a single parameterized peer looks like:
        ##   etcd-0=$(URI_SCHEME)://etcd-0.$(SERVICE_NAME):2380
        - --initial-cluster=etcd-0=$(URI_SCHEME)://etcd-0.$(SERVICE_NAME):2380,etcd-1=$(U
        ##
        ## The peer urls flag should be fine as-is.
        - --initial-advertise-peer-urls=$(URI_SCHEME)://$(HOSTNAME).$(SERVICE_NAME):2380
        ##
        ## This avoids probe failure if you opt to configure TLS.
        - --listen-metrics-urls=http://0.0.0.0:8080
        ##
        ## These are some configurations you may want to consider enabling, but
        ## should look into further to identify what settings are best for you.
        # - --auto-compaction-mode=periodic
        # - --auto-compaction-retention=10m
        ##
        ## TLS client configuration for etcd, reusing the etcdctl env vars.
        # - --client-cert-auth
        # - --trusted-ca-file=$(ETCDCTL_CACERT)
        # - --cert-file=$(ETCDCTL_CERT)
        # - --key-file=$(ETCDCTL_KEY)
        ##
        ## TLS server configuration for etcdctl in the container.
        ## These files paths are part of the "etcd-server-certs" volume mount.
        # - --peer-client-cert-auth
        # - --peer-trusted-ca-file=/etc/etcd/certs/server/ca.crt
        # - --peer-cert-file=/etc/etcd/certs/server/tls.crt
        # - --peer-key-file=/etc/etcd/certs/server/tls.key
        ##
        ## This is the mount configuration.
        volumeMounts:
        - name: etcd-data
          mountPath: /data
        ##
        ## TLS client configuration for etcdctl
        # - name: etcd-client-tls
        #   mountPath: "/etc/etcd/certs/client"
        #   readOnly: true
        ##
        ## TLS server configuration
        # - name: etcd-server-tls
        #   mountPath: "/etc/etcd/certs/server"
        #   readOnly: true



Generating Certificates

In this section, we use Helm  to install an operator called cert-manager .

With cert-manager installed in the cluster, self-signed certificates can be generated in the

cluster. These generated certificates get placed inside a secret object that can be attached as

files in containers.

This is the helm command to install cert-manager.

This is an example ClusterIssuer configuration for generating self-signed certificates.

      volumes:
      ##
      ## TLS client configuration
      # - name: etcd-client-tls
      #   secret:
      #     secretName: etcd-client-tls
      #     optional: false
      ##
      ## TLS server configuration
      # - name: etcd-server-tls
      #   secret:
      #     secretName: etcd-server-tls
      #     optional: false
  ##
  ## This StatefulSet will uses the volumeClaimTemplate field to create a PVC in
  ## the cluster for each replica. These PVCs can not be easily resized later.
  volumeClaimTemplates:
  - metadata:
      name: etcd-data
    spec:
      accessModes: ["ReadWriteOnce"]
      ##
      ## In some clusters, it is necessary to explicitly set the storage class.
      ## This example will end up using the default storage class.
      # storageClassName: ""
      resources:
        requests:
          storage: 1Gi

 

$ helm upgrade --install --create-namespace --namespace cert-manager cert-manager cert-ma




https://helm.sh/
https://helm.sh/
https://helm.sh/
https://cert-manager.io/
https://cert-manager.io/
https://cert-manager.io/


This manifest creates Certificate objects for the client and server certs, referencing the

ClusterIssuer “selfsigned”. The dnsNames should be an exhaustive list of valid hostnames for

the certificates that cert-manager creates.

# file: issuer.yaml
apiVersion: cert-manager.io/v1
kind: ClusterIssuer
metadata:
  name: selfsigned
spec:
  selfSigned: {}

# file: certificates.yaml
---
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
  name: etcd-server
  namespace: default
spec:
  secretName: etcd-server-tls
  issuerRef:
    name: selfsigned
    kind: ClusterIssuer
  commonName: etcd
  dnsNames:
  - etcd
  - etcd.default
  - etcd.default.svc.cluster.local
  - etcd-0
  - etcd-0.etcd
  - etcd-0.etcd.default
  - etcd-0.etcd.default.svc
  - etcd-0.etcd.default.svc.cluster.local
  - etcd-1
  - etcd-1.etcd
  - etcd-1.etcd.default
  - etcd-1.etcd.default.svc
  - etcd-1.etcd.default.svc.cluster.local
  - etcd-2
  - etcd-2.etcd
  - etcd-2.etcd.default
  - etcd-2.etcd.default.svc
  - etcd-2.etcd.default.svc.cluster.local
---
apiVersion: cert-manager.io/v1





Last modified August 5, 2024: formatting - it really doesnt matter (10d90f3)

kind: Certificate
metadata:
  name: etcd-client
  namespace: default
spec:
  secretName: etcd-client-tls
  issuerRef:
    name: selfsigned
    kind: ClusterIssuer
  commonName: etcd
  dnsNames:
  - etcd
  - etcd.default
  - etcd.default.svc.cluster.local
  - etcd-0
  - etcd-0.etcd
  - etcd-0.etcd.default
  - etcd-0.etcd.default.svc
  - etcd-0.etcd.default.svc.cluster.local
  - etcd-1
  - etcd-1.etcd
  - etcd-1.etcd.default
  - etcd-1.etcd.default.svc
  - etcd-1.etcd.default.svc.cluster.local
  - etcd-2
  - etcd-2.etcd
  - etcd-2.etcd.default
  - etcd-2.etcd.default.svc
  - etcd-2.etcd.default.svc.cluster.local



https://github.com/etcd-io/website/commit/10d90f33f1edf5df3882aa7769526729b0a535fd
https://github.com/etcd-io/website/commit/10d90f33f1edf5df3882aa7769526729b0a535fd
https://github.com/etcd-io/website/commit/10d90f33f1edf5df3882aa7769526729b0a535fd


Run etcd clusters inside containers

Running etcd with rkt and Docker using static bootstrapping

The following guide shows how to run etcd with rkt and Docker using the static bootstrap

process.

rkt

Running a single node etcd

The following rkt run command will expose the etcd client API on port 2379 and expose the

peer API on port 2380.

Use the host IP address when configuring etcd.

export NODE1=192.168.1.21

Trust the CoreOS App Signing Key .

sudo rkt trust --prefix quay.io/coreos/etcd
# gpg key fingerprint is: 18AD 5014 C99E F7E3 BA5F  6CE9 50BD D3E0 FC8A 365E

Run the v3.2  version of etcd or specify another release version.

sudo rkt run --net=default:IP=${NODE1} quay.io/coreos/etcd:v3.2 -- -name=node1 -advertise

List the cluster member.

etcdctl --endpoints=http://192.168.1.21:2379 member list

Running a 3 node etcd cluster

Setup a 3 node cluster with rkt locally, using the -initial-cluster  flag.



etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/op-guide/clustering/#static
https://etcd.io/docs/v3.5/op-guide/clustering/#static
https://coreos.com/security/app-signing-key/
https://coreos.com/security/app-signing-key/
https://coreos.com/security/app-signing-key/
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


# node 1
sudo rkt run --net=default:IP=${NODE1} quay.io/coreos/etcd:v3.2 -- -name=node1 -advertise

# node 2
sudo rkt run --net=default:IP=${NODE2} quay.io/coreos/etcd:v3.2 -- -name=node2 -advertise

# node 3
sudo rkt run --net=default:IP=${NODE3} quay.io/coreos/etcd:v3.2 -- -name=node3 -advertise

Verify the cluster is healthy and can be reached.

ETCDCTL_API=3 etcdctl --endpoints=http://172.16.28.21:2379,http://172.16.28.22:2379,http

DNS

Production clusters which refer to peers by DNS name known to the local resolver must

mount the host’s DNS configuration .

Docker

In order to expose the etcd API to clients outside of Docker host, use the host IP address of

the container. Please see docker inspect  for more detail on how to get the IP address.

Alternatively, specify --net=host  flag to docker run  command to skip placing the container

inside of a separate network stack.

Running a single node etcd

Use the host IP address when configuring etcd:

export NODE1=192.168.1.21

Configure a Docker volume to store etcd data:

docker volume create --name etcd-data

export NODE1=172.16.28.21
export NODE2=172.16.28.22
export NODE3=172.16.28.23







https://coreos.com/kubernetes/docs/latest/kubelet-wrapper.html#customizing-rkt-options
https://coreos.com/kubernetes/docs/latest/kubelet-wrapper.html#customizing-rkt-options
https://coreos.com/kubernetes/docs/latest/kubelet-wrapper.html#customizing-rkt-options
https://docs.docker.com/engine/reference/commandline/inspect
https://docs.docker.com/engine/reference/commandline/inspect
https://docs.docker.com/engine/reference/commandline/inspect


export DATA_DIR="etcd-data"

Run the latest version of etcd:

REGISTRY=quay.io/coreos/etcd
# available from v3.2.5
REGISTRY=gcr.io/etcd-development/etcd

docker run \
  -p 2379:2379 \
  -p 2380:2380 \
  --volume=${DATA_DIR}:/etcd-data \
  --name etcd ${REGISTRY}:latest \
  /usr/local/bin/etcd \
  --data-dir=/etcd-data --name node1 \
  --initial-advertise-peer-urls http://${NODE1}:2380 --listen-peer-urls http://0.0.0.0:23
  --advertise-client-urls http://${NODE1}:2379 --listen-client-urls http://0.0.0.0:2379 \
  --initial-cluster node1=http://${NODE1}:2380

List the cluster member:

etcdctl --endpoints=http://${NODE1}:2379 member list

Running a 3 node etcd cluster

REGISTRY=quay.io/coreos/etcd
# available from v3.2.5
REGISTRY=gcr.io/etcd-development/etcd

# For each machine
ETCD_VERSION=latest
TOKEN=my-etcd-token
CLUSTER_STATE=new
NAME_1=etcd-node-0
NAME_2=etcd-node-1
NAME_3=etcd-node-2
HOST_1=10.20.30.1
HOST_2=10.20.30.2
HOST_3=10.20.30.3
CLUSTER=${NAME_1}=http://${HOST_1}:2380,${NAME_2}=http://${HOST_2}:2380,${NAME_3}=http://
DATA_DIR=/var/lib/etcd

# For node 1
THIS_NAME=${NAME_1}
THIS_IP=${HOST_1}



docker run \
  -p 2379:2379 \
  -p 2380:2380 \
  --volume=${DATA_DIR}:/etcd-data \
  --name etcd ${REGISTRY}:${ETCD_VERSION} \
  /usr/local/bin/etcd \
  --data-dir=/etcd-data --name ${THIS_NAME} \
  --initial-advertise-peer-urls http://${THIS_IP}:2380 --listen-peer-urls http://0.0.0.0
  --advertise-client-urls http://${THIS_IP}:2379 --listen-client-urls http://0.0.0.0:2379
  --initial-cluster ${CLUSTER} \
  --initial-cluster-state ${CLUSTER_STATE} --initial-cluster-token ${TOKEN}

# For node 2
THIS_NAME=${NAME_2}
THIS_IP=${HOST_2}
docker run \
  -p 2379:2379 \
  -p 2380:2380 \
  --volume=${DATA_DIR}:/etcd-data \
  --name etcd ${REGISTRY}:${ETCD_VERSION} \
  /usr/local/bin/etcd \
  --data-dir=/etcd-data --name ${THIS_NAME} \
  --initial-advertise-peer-urls http://${THIS_IP}:2380 --listen-peer-urls http://0.0.0.0
  --advertise-client-urls http://${THIS_IP}:2379 --listen-client-urls http://0.0.0.0:2379
  --initial-cluster ${CLUSTER} \
  --initial-cluster-state ${CLUSTER_STATE} --initial-cluster-token ${TOKEN}

# For node 3
THIS_NAME=${NAME_3}
THIS_IP=${HOST_3}
docker run \
  -p 2379:2379 \
  -p 2380:2380 \
  --volume=${DATA_DIR}:/etcd-data \
  --name etcd ${REGISTRY}:${ETCD_VERSION} \
  /usr/local/bin/etcd \
  --data-dir=/etcd-data --name ${THIS_NAME} \
  --initial-advertise-peer-urls http://${THIS_IP}:2380 --listen-peer-urls http://0.0.0.0
  --advertise-client-urls http://${THIS_IP}:2379 --listen-client-urls http://0.0.0.0:2379
  --initial-cluster ${CLUSTER} \
  --initial-cluster-state ${CLUSTER_STATE} --initial-cluster-token ${TOKEN}

To run etcdctl  using API version 3:

docker exec etcd /usr/local/bin/etcdctl put foo bar



Bare Metal

To provision a 3 node etcd cluster on bare-metal, the examples in the baremetal repo  may

be useful.

Mounting a certificate volume

The etcd release container does not include default root certificates. To use HTTPS with

certificates trusted by a root authority (e.g., for discovery), mount a certificate directory into

the etcd container:

REGISTRY=quay.io/coreos/etcd
# available from v3.2.5
REGISTRY=docker://gcr.io/etcd-development/etcd

rkt run \
  --insecure-options=image \
  --volume etcd-ssl-certs-bundle,kind=host,source=/etc/ssl/certs/ca-certificates.crt \
  --mount volume=etcd-ssl-certs-bundle,target=/etc/ssl/certs/ca-certificates.crt \
  ${REGISTRY}:latest -- --name my-name \
  --initial-advertise-peer-urls http://localhost:2380 --listen-peer-urls http://localhost
  --advertise-client-urls http://localhost:2379 --listen-client-urls http://localhost:237
  --discovery https://discovery.etcd.io/c11fbcdc16972e45253491a24fcf45e1

REGISTRY=quay.io/coreos/etcd
# available from v3.2.5
REGISTRY=gcr.io/etcd-development/etcd

docker run \
  -p 2379:2379 \
  -p 2380:2380 \
  --volume=/etc/ssl/certs/ca-certificates.crt:/etc/ssl/certs/ca-certificates.crt \
  ${REGISTRY}:latest \
  /usr/local/bin/etcd --name my-name \
  --initial-advertise-peer-urls http://localhost:2380 --listen-peer-urls http://localhost
  --advertise-client-urls http://localhost:2379 --listen-client-urls http://localhost:237
  --discovery https://discovery.etcd.io/86a9ff6c8cb8b4c4544c1a2f88f8b801

Last modified January 24, 2023: removed /bin/sh (1be83b2)





https://github.com/coreos/coreos-baremetal/tree/master/examples
https://github.com/coreos/coreos-baremetal/tree/master/examples
https://github.com/coreos/coreos-baremetal/tree/master/examples
https://github.com/etcd-io/website/commit/1be83b29f39f51d6a10cc065f56a4c6b5d09e3b2
https://github.com/etcd-io/website/commit/1be83b29f39f51d6a10cc065f56a4c6b5d09e3b2
https://github.com/etcd-io/website/commit/1be83b29f39f51d6a10cc065f56a4c6b5d09e3b2




Failure modes

Kinds of failures and etcd’s tolerance for them

Failures are common in a large deployment of machines. A machine fails when its hardware

or software malfunctions. Multiple machines fail together when there are power failures or

network issues. Multiple kinds of failures can also happen at once; it is almost impossible to

enumerate all possible failure cases.

In this section, we catalog kinds of failures and discuss how etcd is designed to tolerate these

failures. Most users, if not all, can map a particular failure into one kind of failure. To prepare

for rare or unrecoverable failures, always back up the etcd cluster.

Minor followers failure

When fewer than half of the followers fail, the etcd cluster can still accept requests and make

progress without any major disruption. For example, two follower failures will not affect a five

member etcd cluster’s operation. However, clients will lose connectivity to the failed

members. Client libraries should hide these interruptions from users for read requests by

automatically reconnecting to other members. Operators should expect the system load on

the other members to increase due to the reconnections.

Leader failure

When a leader fails, the etcd cluster automatically elects a new leader. The election does not

happen instantly once the leader fails. It takes about an election timeout to elect a new

leader since the failure detection model is timeout based.

During the leader election the cluster cannot process any writes. Write requests sent during

the election are queued for processing until a new leader is elected.

Writes already sent to the old leader but not yet committed may be lost. The new leader has

the power to rewrite any uncommitted entries from the previous leader. From the user

perspective, some write requests might time out after a new leader election. However, no

committed writes are ever lost.

etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/op-guide/recovery/
https://etcd.io/docs/v3.5/op-guide/maintenance/#snapshot-backup
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


The new leader extends timeouts automatically for all leases. This mechanism ensures a

lease will not expire before the granted TTL even if it was granted by the old leader.

Majority failure

When the majority members of the cluster fail, the etcd cluster fails and cannot accept more

writes.

The etcd cluster can only recover from a majority failure once the majority of members

become available. If a majority of members cannot come back online, then the operator must

start disaster recovery to recover the cluster.

Once a majority of members works, the etcd cluster elects a new leader automatically and

returns to a healthy state. The new leader extends timeouts automatically for all leases. This

mechanism ensures no lease expires due to server side unavailability.

Network partition

A network partition is similar to a minor followers failure or a leader failure. A network

partition divides the etcd cluster into two parts; one with a member majority and the other

with a member minority. The majority side becomes the available cluster and the minority

side is unavailable. There is no “split-brain” in etcd because cluster members are explicitly

added/removed with each such change is approved by the current majority of members.

If the leader is on the majority side, then from the majority point of view the failure is a

minority follower failure. If the leader is on the minority side, then it is a leader failure. The

leader on the minority side steps down and the majority side elects a new leader.

Once the network partition clears, the minority side automatically recognizes the leader from

the majority side and recovers its state.

Failure during bootstrapping

A cluster bootstrap is only successful if all required members successfully start. If any failure

happens during bootstrapping, remove the data directories on all members and re-bootstrap

the cluster with a new cluster-token or new discovery token.

Of course, it is possible to recover a failed bootstrapped cluster like recovering a running

cluster. However, it almost always takes more time and resources to recover that cluster than

bootstrapping a new one, since there is no data to recover.

https://etcd.io/docs/v3.5/op-guide/recovery/


Last modified February 20, 2023: Fix minor spelling error in upgrade docs. (6aa3ed0)


https://github.com/etcd-io/website/commit/6aa3ed0c9c2a311164d8c2ef2a26ba34cb1f54e0
https://github.com/etcd-io/website/commit/6aa3ed0c9c2a311164d8c2ef2a26ba34cb1f54e0
https://github.com/etcd-io/website/commit/6aa3ed0c9c2a311164d8c2ef2a26ba34cb1f54e0


Disaster recovery

etcd v3 snapshot & restore facilities

etcd is designed to withstand machine failures. An etcd cluster automatically recovers from

temporary failures (e.g., machine reboots) and tolerates up to (N-1)/2 permanent failures for a

cluster of N members. When a member permanently fails, whether due to hardware failure

or disk corruption, it loses access to the cluster. If the cluster permanently loses more than

(N-1)/2 members then it disastrously fails, irrevocably losing quorum. Once quorum is lost,

the cluster cannot reach consensus and therefore cannot continue accepting updates.

To recover from disastrous failure, etcd v3 provides snapshot and restore facilities to

recreate the cluster without v3 key data loss. To recover v2 keys, refer to the v2 admin guide.

Snapshotting the keyspace

Recovering a cluster first needs a snapshot of the keyspace from an etcd member. A

snapshot may either be taken from a live member with the etcdctl snapshot save  command

or by copying the member/snap/db  file from an etcd data directory. For example, the following

command snapshots the keyspace served by $ENDPOINT  to the file snapshot.db :

Note that taking the snapshot from the member/snap/db  file might lose data that has not been

written yet, but is included in the wal (write-ahead-log) folder.

Status of a snapshot

To understand which revision and hash a given snapshot contains, you can use the etcdutl

snapshot status  command:

$ ETCDCTL_API=3 etcdctl --endpoints $ENDPOINT snapshot save snapshot.db


$ etcdutl snapshot status snapshot.db -w table
+---------+----------+------------+------------+



etcd

Docs Blog Community Install Play

https://etcd.io/docs/v2.3/admin_guide#disaster-recovery
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Restoring a cluster

Revision Difference

When you are restoring a cluster, existing clients may perceive the revision going back by

many hundreds or thousands. This is due to the fact that a given snapshot only contains the

data lineage up until the point of when it was taken, whereas the current state might already

be further ahead.

This is particularly a problem when running Kubernetes using etcd, where controllers and

operators may use so called informers  which act as local caches and get notified on updates

using watches. Restoring to an older revision may not correctly refresh the caches, causing

unpredictable and inconsistent behavior in the controllers.

When restoring from a snapshot in the context of either: known consumers of the watch API,

local cached copies of etcd data or when using Kubernetes in general - it is highly

recommended to restore using “revision bumps” below.

Restoring from snapshot

To restore a cluster, all that is needed is a single snapshot “db” file. A cluster restore with

etcdutl snapshot restore  creates new etcd data directories; all members should restore

using the same snapshot. Restoring overwrites some snapshot metadata (specifically, the

member ID and cluster ID); the member loses its former identity. This metadata overwrite

prevents the new member from inadvertently joining an existing cluster. Therefore in order

to start a cluster from a snapshot, the restore must start a new logical cluster.

A simple restore can be excuted like this:

Integrity Checks

Snapshot integrity may be optionally verified at restore time. If the snapshot is taken with

etcdctl snapshot save , it will have an integrity hash that is checked by etcdutl snapshot

|  HASH   | REVISION | TOTAL KEYS | TOTAL SIZE |
+---------+----------+------------+------------+
| 7ef846e |   485261 |      11642 |      94 MB |
+---------+----------+------------+------------+

$ etcdutl snapshot restore snapshot.db --data-dir output-dir




restore . If the snapshot is copied from the data directory, there is no integrity hash and it will

only restore by using --skip-hash-check .

Restoring with revision bump

In order to ensure the revisions are never decreasing after a restore, you can supply the --

bump-revision  option. This option takes a 64 bit integer, which denotes how many revisions to

add to the current revision of the snapshot. Since each write to etcd increases the revision by

one, you may cover a week old snapshot with bumping by 1'000'000'000 assuming that etcd

runs with less than 1500 writes per second.

In the context of Kubernetes controllers, it is important to also mark all the revisions,

including the bump, as compacted using --mark-compacted . This ensures that all watches are

terminated and etcd does not respond to requests about revisions that happened after

taking the snapshot - effectively invalidating its informer caches.

A full invocation may look like this:

Restoring with updated membership

The members of an etcd cluster are stored in etcd itself and maintained through the raft

consensus algorithm. When quorum is lost entirely, you may want to reconsider where and

how the new cluster is formed, for example, on an entirely new set of members.

When restoring from a snapshot, you can directly supply the new membership into the

datastore as follows:

This ensures that the newly constructed cluster only connects to the other restored members

with the given token and not older members that might still be alive and try to connect.

Alternatively, when starting up etcd, you can supply --force-new-cluster  to overwrite cluster

membership while keeping existing application data. Note that this is strongly discouraged

$ etcdutl snapshot restore snapshot.db --bump-revision 1000000000 --mark-compacted --data


$ etcdutl snapshot restore snapshot.db \
  --name m1 \
  --initial-cluster m1=http://host1:2380,m2=http://host2:2380,m3=http://host3:2380 \
  --initial-cluster-token etcd-cluster-1 \
  --initial-advertise-peer-urls http://host1:2380





because it will panic if other members from previous cluster are still alive. Make sure to save

snapshots periodically.

End-2-End Example

Grab a snapshot from a live cluster using:

Continuing from the previous example, the following creates new etcd data directories

( m1.etcd , m2.etcd , m3.etcd ) for a three member cluster:

Next, start etcd  with the new data directories:

$ etcdctl snapshot save snapshot.db


$ etcdutl snapshot restore snapshot.db \
  --name m1 \
  --initial-cluster m1=http://host1:2380,m2=http://host2:2380,m3=http://host3:2380 \
  --initial-cluster-token etcd-cluster-1 \
  --initial-advertise-peer-urls http://host1:2380
$ etcdutl snapshot restore snapshot.db \
  --name m2 \
  --initial-cluster m1=http://host1:2380,m2=http://host2:2380,m3=http://host3:2380 \
  --initial-cluster-token etcd-cluster-1 \
  --initial-advertise-peer-urls http://host2:2380
$ etcdutl snapshot restore snapshot.db \
  --name m3 \
  --initial-cluster m1=http://host1:2380,m2=http://host2:2380,m3=http://host3:2380 \
  --initial-cluster-token etcd-cluster-1 \
  --initial-advertise-peer-urls http://host3:2380



$ etcd \
  --name m1 \
  --listen-client-urls http://host1:2379 \
  --advertise-client-urls http://host1:2379 \
  --listen-peer-urls http://host1:2380 &
$ etcd \
  --name m2 \
  --listen-client-urls http://host2:2379 \
  --advertise-client-urls http://host2:2379 \
  --listen-peer-urls http://host2:2380 &
$ etcd \





Now the restored etcd cluster should be available and serving the keyspace from the

snapshot.

Last modified April 11, 2024: Fix command line example status of snapshot section in op-

guide/recovery (639b131)

  --name m3 \
  --listen-client-urls http://host3:2379 \
  --advertise-client-urls http://host3:2379 \
  --listen-peer-urls http://host3:2380 &



https://github.com/etcd-io/website/commit/639b1316db7738ac747122bc325bfd3693225c45
https://github.com/etcd-io/website/commit/639b1316db7738ac747122bc325bfd3693225c45
https://github.com/etcd-io/website/commit/639b1316db7738ac747122bc325bfd3693225c45
https://github.com/etcd-io/website/commit/639b1316db7738ac747122bc325bfd3693225c45


etcd gateway

etcd gateway, when to use it, and how to set it up

What is etcd gateway

etcd gateway is a simple TCP proxy that forwards network data to the etcd cluster. The

gateway is stateless and transparent; it neither inspects client requests nor interferes with

cluster responses. It does not terminate TLS connections, do TLS handshakes on behalf of its

clients, or verify if the connection is secured.

The gateway supports multiple etcd server endpoints and works on a simple round-robin

policy. It only routes to available endpoints and hides failures from its clients. Other retry

policies, such as weighted round-robin, may be supported in the future.

When to use etcd gateway

Every application that accesses etcd must first have the address of an etcd cluster client

endpoint. If multiple applications on the same server access the same etcd cluster, every

application still needs to know the advertised client endpoints of the etcd cluster. If the etcd

cluster is reconfigured to have different endpoints, every application may also need to

update its endpoint list. This wide-scale reconfiguration is both tedious and error prone.

etcd gateway solves this problem by serving as a stable local endpoint. A typical etcd gateway

configuration has each machine running a gateway listening on a local address and every

etcd application connecting to its local gateway. The upshot is only the gateway needs to

update its endpoints instead of updating each and every application.

In summary, to automatically propagate cluster endpoint changes, the etcd gateway runs on

every machine serving multiple applications accessing the same etcd cluster.

When not to use etcd gateway

Improving performance

etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


The gateway is not designed for improving etcd cluster performance. It does not provide

caching, watch coalescing or batching. The etcd team is developing a caching proxy designed

for improving cluster scalability.

Running on a cluster management system

Advanced cluster management systems like Kubernetes natively support service discovery.

Applications can access an etcd cluster with a DNS name or a virtual IP address managed by

the system. For example, kube-proxy is equivalent to etcd gateway.

Start etcd gateway

Consider an etcd cluster with the following static endpoints:

Name Address Hostname Port

infra0 10.0.1.10 infra0.example.com 2379

infra1 10.0.1.11 infra1.example.com 2379

infra2 10.0.1.12 infra2.example.com 2379

Start the etcd gateway to use these static endpoints with the command:

Alternatively, if using DNS for service discovery, consider the DNS SRV entries:

$ etcd gateway start --endpoints=infra0.example.com:2379,infra1.example.com:2379,infra2.e
2016-08-16 11:21:18.867350 I | tcpproxy: ready to proxy client requests to [...]



$ dig +noall +answer SRV _etcd-client._tcp.example.com
_etcd-client._tcp.example.com. 300 IN SRV 0 0 2379 infra0.example.com.
_etcd-client._tcp.example.com. 300 IN SRV 0 0 2379 infra1.example.com.
_etcd-client._tcp.example.com. 300 IN SRV 0 0 2379 infra2.example.com.



$ dig +noall +answer infra0.example.com infra1.example.com infra2.example.com
infra0.example.com.  300  IN  A  10.0.1.10
infra1.example.com.  300  IN  A  10.0.1.11
infra2.example.com.  300  IN  A  10.0.1.12





Start the etcd gateway to fetch the endpoints from the DNS SRV entries with the command:

Configuration flags

etcd cluster

--endpoints

Comma-separated list of etcd server targets for forwarding client connections.

Default: 127.0.0.1:2379

Port must be included.

Invalid example: https://127.0.0.1:2379  (gateway does not terminate TLS). Note that the

gateway does not verify the HTTP schema or inspect the requests, it only forwards

requests to the given endpoints.

--discovery-srv

DNS domain used to bootstrap cluster endpoints through SRV records.

Default: (not set)

Network

--listen-addr

Interface and port to bind for accepting client requests.

Default: 127.0.0.1:23790

--retry-delay

Duration of delay before retrying to connect to failed endpoints.

Default: 1m0s

Invalid example: “123” (expects time unit in format)

Security

$ etcd gateway start --discovery-srv=example.com
2016-08-16 11:21:18.867350 I | tcpproxy: ready to proxy client requests to [...]





--insecure-discovery

Accept SRV records that are insecure or susceptible to man-in-the-middle attacks.

Default: false

--trusted-ca-file

Path to the client TLS CA file for the etcd cluster to verify the endpoints returned from

SRV discovery. Note that it is ONLY used for authenticating the discovered endpoints

rather than creating connections for data transferring. The gateway never terminates TLS

connections or create TLS connections on behalf of its clients.

Default: (not set)

Last modified January 21, 2023: Clarify port requirement for gateway endpoints (c4ecad8)


https://github.com/etcd-io/website/commit/c4ecad8110a8c46af9a5ac0673b2bd1d1f849dc3
https://github.com/etcd-io/website/commit/c4ecad8110a8c46af9a5ac0673b2bd1d1f849dc3
https://github.com/etcd-io/website/commit/c4ecad8110a8c46af9a5ac0673b2bd1d1f849dc3


gRPC proxy

A stateless etcd reverse proxy operating at the gRPC layer

The gRPC proxy is a stateless etcd reverse proxy operating at the gRPC layer (L7). The proxy is

designed to reduce the total processing load on the core etcd cluster. For horizontal

scalability, it coalesces watch and lease API requests. To protect the cluster against abusive

clients, it caches key range requests.

The gRPC proxy supports multiple etcd server endpoints. When the proxy starts, it randomly

picks one etcd server endpoint to use. This endpoint serves all requests until the proxy

detects an endpoint failure. If the gRPC proxy detects an endpoint failure, it switches to a

different endpoint, if available, to hide failures from its clients. Other retry policies, such as

weighted round-robin, may be supported in the future.

Scalable watch API

The gRPC proxy coalesces multiple client watchers ( c-watchers ) on the same key or range

into a single watcher ( s-watcher ) connected to an etcd server. The proxy broadcasts all

events from the s-watcher  to its c-watchers .

Assuming N clients watch the same key, one gRPC proxy can reduce the watch load on the

etcd server from N to 1. Users can deploy multiple gRPC proxies to further distribute server

load.

In the following example, three clients watch on key A. The gRPC proxy coalesces the three

watchers, creating a single watcher attached to the etcd server.

            +-------------+
            | etcd server |
            +------+------+
                   ^ watch key A (s-watcher)
                   |
           +-------+-----+
           | gRPC proxy  | <-------+
           |             |         |
           ++-----+------+         |watch key A (c-watcher)
watch key A ^     ^ watch key A    |
(c-watcher) |     | (c-watcher)    |

etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


    +-------+-+  ++--------+  +----+----+
    |  client |  |  client |  |  client |
    |         |  |         |  |         |
    +---------+  +---------+  +---------+

Limitations

To effectively coalesce multiple client watchers into a single watcher, the gRPC proxy

coalesces new c-watchers  into an existing s-watcher  when possible. This coalesced s-

watcher  may be out of sync with the etcd server due to network delays or buffered

undelivered events. When the watch revision is unspecified, the gRPC proxy will not

guarantee the c-watcher  will start watching from the most recent store revision. For

example, if a client watches from an etcd server with revision 1000, that watcher will begin at

revision 1000. If a client watches from the gRPC proxy, may begin watching from revision 990.

Similar limitations apply to cancellation. When the watcher is cancelled, the etcd server’s

revision may be greater than the cancellation response revision.

These two limitations should not cause problems for most use cases. In the future, there may

be additional options to force the watcher to bypass the gRPC proxy for more accurate

revision responses.

Scalable lease API

To keep its leases alive, a client must establish at least one gRPC stream to an etcd server for

sending periodic heartbeats. If an etcd workload involves heavy lease activity spread over

many clients, these streams may contribute to excessive CPU utilization. To reduce the total

number of streams on the core cluster, the proxy supports lease stream coalescing.

Assuming N clients are updating leases, a single gRPC proxy reduces the stream load on the

etcd server from N to 1. Deployments may have additional gRPC proxies to further distribute

streams across multiple proxies.

In the following example, three clients update three independent leases ( L1 , L2 , and L3 ).

The gRPC proxy coalesces the three client lease streams ( c-streams ) into a single lease keep

alive stream ( s-stream ) attached to an etcd server. The proxy forwards client-side lease

heartbeats from the c-streams to the s-stream, then returns the responses to the

corresponding c-streams.

          +-------------+
          | etcd server |
          +------+------+
                 ^



                 | heartbeat L1, L2, L3
                 | (s-stream)
                 v
         +-------+-----+
         | gRPC proxy  +<-----------+
         +---+------+--+            | heartbeat L3
             ^      ^               | (c-stream)
heartbeat L1 |      | heartbeat L2  |
(c-stream)   v      v (c-stream)    v
      +------+-+  +-+------+  +-----+--+
      | client |  | client |  | client |
      +--------+  +--------+  +--------+

Abusive clients protection

The gRPC proxy caches responses for requests when it does not break consistency

requirements. This can protect the etcd server from abusive clients in tight for loops.

Start etcd gRPC proxy

Consider an etcd cluster with the following static endpoints:

Name Address Hostname

infra0 10.0.1.10 infra0.example.com

infra1 10.0.1.11 infra1.example.com

infra2 10.0.1.12 infra2.example.com

Start the etcd gRPC proxy to use these static endpoints with the command:

The etcd gRPC proxy starts and listens on port 2379. It forwards client requests to one of the

three endpoints provided above.

Sending requests through the proxy:

$ etcd grpc-proxy start --endpoints=infra0.example.com,infra1.example.com,infra2.example


$ ETCDCTL_API=3 etcdctl --endpoints=127.0.0.1:2379 put foo bar




Client endpoint synchronization and name resolution

The proxy supports registering its endpoints for discovery by writing to a user-defined

endpoint. This serves two purposes. First, it allows clients to synchronize their endpoints

against a set of proxy endpoints for high availability. Second, it is an endpoint provider for

etcd gRPC naming.

Register proxy(s) by providing a user-defined prefix:

The proxy will list all its members for member list:

This lets clients automatically discover proxy endpoints through Sync:

OK
$ ETCDCTL_API=3 etcdctl --endpoints=127.0.0.1:2379 get foo
foo
bar

$ etcd grpc-proxy start --endpoints=localhost:2379 \
  --listen-addr=127.0.0.1:23790 \
  --advertise-client-url=127.0.0.1:23790 \
  --resolver-prefix="___grpc_proxy_endpoint" \
  --resolver-ttl=60

$ etcd grpc-proxy start --endpoints=localhost:2379 \
  --listen-addr=127.0.0.1:23791 \
  --advertise-client-url=127.0.0.1:23791 \
  --resolver-prefix="___grpc_proxy_endpoint" \
  --resolver-ttl=60



ETCDCTL_API=3 etcdctl --endpoints=http://localhost:23790 member list --write-out table

+----+---------+--------------------------------+------------+-----------------+
| ID | STATUS  |              NAME              | PEER ADDRS |  CLIENT ADDRS   |
+----+---------+--------------------------------+------------+-----------------+
|  0 | started | Gyu-Hos-MBP.sfo.coreos.systems |            | 127.0.0.1:23791 |
|  0 | started | Gyu-Hos-MBP.sfo.coreos.systems |            | 127.0.0.1:23790 |
+----+---------+--------------------------------+------------+-----------------+



cli, err := clientv3.New(clientv3.Config{


https://etcd.io/docs/v3.5/dev-guide/grpc_naming/


Note that if a proxy is configured without a resolver prefix,

The member list API to the grpc-proxy returns its own advertise-client-url :

Namespacing

Suppose an application expects full control over the entire key space, but the etcd cluster is

shared with other applications. To let all applications run without interfering with each other,

the proxy can partition the etcd keyspace so clients appear to have access to the complete

keyspace. When the proxy is given the flag --namespace , all client requests going into the

proxy are translated to have a user-defined prefix on the keys. Accesses to the etcd cluster

will be under the prefix and responses from the proxy will strip away the prefix; to the client,

it appears as if there is no prefix at all.

To namespace a proxy, start it with --namespace :

    Endpoints: []string{"http://localhost:23790"},
})
if err != nil {
    log.Fatal(err)
}
defer cli.Close()

// fetch registered grpc-proxy endpoints
if err := cli.Sync(context.Background()); err != nil {
    log.Fatal(err)
}

$ etcd grpc-proxy start --endpoints=localhost:2379 \
  --listen-addr=127.0.0.1:23792 \
  --advertise-client-url=127.0.0.1:23792



ETCDCTL_API=3 etcdctl --endpoints=http://localhost:23792 member list --write-out table

+----+---------+--------------------------------+------------+-----------------+
| ID | STATUS  |              NAME              | PEER ADDRS |  CLIENT ADDRS   |
+----+---------+--------------------------------+------------+-----------------+
|  0 | started | Gyu-Hos-MBP.sfo.coreos.systems |            | 127.0.0.1:23792 |
+----+---------+--------------------------------+------------+-----------------+





Accesses to the proxy are now transparently prefixed on the etcd cluster:

TLS termination

Terminate TLS from a secure etcd cluster with the gRPC proxy by serving an unencrypted

local endpoint.

To try it out, start a single member etcd cluster with client https:

Confirm the client port is serving https:

Next, start a gRPC proxy on localhost:12379  by connecting to the etcd endpoint

https://localhost:2379  using the client certificates:

$ etcd grpc-proxy start --endpoints=localhost:2379 \
  --listen-addr=127.0.0.1:23790 \
  --namespace=my-prefix/



$ ETCDCTL_API=3 etcdctl --endpoints=localhost:23790 put my-key abc
# OK
$ ETCDCTL_API=3 etcdctl --endpoints=localhost:23790 get my-key
# my-key
# abc
$ ETCDCTL_API=3 etcdctl --endpoints=localhost:2379 get my-prefix/my-key
# my-prefix/my-key
# abc



$ etcd --listen-client-urls https://localhost:2379 --advertise-client-urls https://localh


# fails
$ ETCDCTL_API=3 etcdctl --endpoints=http://localhost:2379 endpoint status
# works
$ ETCDCTL_API=3 etcdctl --endpoints=https://localhost:2379 --cert=client.crt --key=client



$ etcd grpc-proxy start --endpoints=https://localhost:2379 --listen-addr localhost:12379 




Finally, test the TLS termination by putting a key into the proxy over http:

Metrics and Health

The gRPC proxy exposes /health  and Prometheus /metrics  endpoints for the etcd

members defined by --endpoints . An alternative define an additional URL that will respond

to both the /metrics  and /health  endpoints with the --metrics-addr  flag.

Known issue

The main interface of the proxy serves both HTTP2 and HTTP/1.1. If proxy is setup with TLS as

show in the above example, when using a client such as cURL against the listening interface

will require explicitly setting the protocol to HTTP/1.1 on the request to return /metrics  or

/health . By using the --metrics-addr  flag the secondary interface will not have this

requirement.

Last modified April 9, 2022: Fix typos (a2da31e)

$ ETCDCTL_API=3 etcdctl --endpoints=http://localhost:12379 put abc def
# OK



$ etcd grpc-proxy start \
  --endpoints https://localhost:2379 \
  --metrics-addr https://0.0.0.0:4443 \
  --listen-addr 127.0.0.1:23790 \
  --key client.key \
  --key-file proxy-server.key \
  --cert client.crt \
  --cert-file proxy-server.crt \
  --cacert ca.pem \
  --trusted-ca-file proxy-ca.pem



 $ curl --cacert proxy-ca.pem --key proxy-client.key --cert proxy-client.crt https://127




https://github.com/etcd-io/website/commit/a2da31e79a3db4d5c40bc46c32f9c952b67ffdd4
https://github.com/etcd-io/website/commit/a2da31e79a3db4d5c40bc46c32f9c952b67ffdd4
https://github.com/etcd-io/website/commit/a2da31e79a3db4d5c40bc46c32f9c952b67ffdd4


Hardware recommendations

Hardware guidelines for administering etcd clusters

etcd usually runs well with limited resources for development or testing purposes; it’s

common to develop with etcd on a laptop or a cheap cloud machine. However, when running

etcd clusters in production, some hardware guidelines are useful for proper administration.

These suggestions are not hard rules; they serve as a good starting point for a robust

production deployment. As always, deployments should be tested with simulated workloads

before running in production.

CPUs

Few etcd deployments require a lot of CPU capacity. Typical clusters need two to four cores to

run smoothly. Heavily loaded etcd deployments, serving thousands of clients or tens of

thousands of requests per second, tend to be CPU bound since etcd can serve requests from

memory. Such heavy deployments usually need eight to sixteen dedicated cores.

Memory

etcd has a relatively small memory footprint but its performance still depends on having

enough memory. An etcd server will aggressively cache key-value data and spends most of

the rest of its memory tracking watchers. Typically 8GB is enough. For heavy deployments

with thousands of watchers and millions of keys, allocate 16GB to 64GB memory accordingly.

Disks

Fast disks are the most critical factor for etcd deployment performance and stability.

A slow disk will increase etcd request latency and potentially hurt cluster stability. Since etcd’s

consensus protocol depends on persistently storing metadata to a log, a majority of etcd

cluster members must write every request down to disk. Additionally, etcd will also

incrementally checkpoint its state to disk so it can truncate this log. If these writes take too

long, heartbeats may time out and trigger an election, undermining the stability of the

etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


cluster. In general, to tell whether a disk is fast enough for etcd, a benchmarking tool such as

fio  can be used. Read here  for an example.

etcd is very sensitive to disk write latency. Typically 50 sequential IOPS (e.g., a 7200 RPM disk)

is required. For heavily loaded clusters, 500 sequential IOPS (e.g., a typical local SSD or a high

performance virtualized block device) is recommended. Note that most cloud providers

publish concurrent IOPS rather than sequential IOPS; the published concurrent IOPS can be

10x greater than the sequential IOPS. To measure actual sequential IOPS, we suggest using a

disk benchmarking tool such as diskbench  or fio .

etcd requires only modest disk bandwidth but more disk bandwidth buys faster recovery

times when a failed member has to catch up with the cluster. Typically 10MB/s will recover

100MB data within 15 seconds. For large clusters, 100MB/s or higher is suggested for

recovering 1GB data within 15 seconds.

When possible, back etcd’s storage with a SSD. A SSD usually provides lower write latencies

and with less variance than a spinning disk, thus improving the stability and reliability of etcd.

If using spinning disk, get the fastest disks possible (15,000 RPM). Using RAID 0 is also an

effective way to increase disk speed, for both spinning disks and SSD. With at least three

cluster members, mirroring and/or parity variants of RAID are unnecessary; etcd’s consistent

replication already gets high availability.

Network

Multi-member etcd deployments benefit from a fast and reliable network. In order for etcd to

be both consistent and partition tolerant, an unreliable network with partitioning outages will

lead to poor availability. Low latency ensures etcd members can communicate fast. High

bandwidth can reduce the time to recover a failed etcd member. 1GbE is sufficient for

common etcd deployments. For large etcd clusters, a 10GbE network will reduce mean time

to recovery.

Deploy etcd members within a single data center when possible to avoid latency overheads

and lessen the possibility of partitioning events. If a failure domain in another data center is

required, choose a data center closer to the existing one. Please also read the tuning

documentation for more information on cross data center deployment.

Example hardware configurations

Here are a few example hardware setups on AWS and GCE environments. As mentioned

before, but must be stressed regardless, administrators should test an etcd deployment with

a simulated workload before putting it into production.

 

 

https://github.com/axboe/fio
https://github.com/axboe/fio
https://github.com/axboe/fio
https://prog.world/is-storage-speed-suitable-for-etcd-ask-fio/
https://prog.world/is-storage-speed-suitable-for-etcd-ask-fio/
https://prog.world/is-storage-speed-suitable-for-etcd-ask-fio/
https://github.com/ongardie/diskbenchmark
https://github.com/ongardie/diskbenchmark
https://github.com/ongardie/diskbenchmark
https://github.com/axboe/fio
https://github.com/axboe/fio
https://github.com/axboe/fio
https://etcd.io/docs/v3.5/tuning/


Note that these configurations assume these machines are totally dedicated to etcd. Running

other applications along with etcd on these machines may cause resource contentions and

lead to cluster instability.

Small cluster

A small cluster serves fewer than 100 clients, fewer than 200 of requests per second, and

stores no more than 100MB of data.

Example application workload: A 50-node Kubernetes cluster

Provider Type vCPUs

Memory

(GB)

Max

concurrent

IOPS

Disk bandwidth

(MB/s)

AWS m4.large 2 8 3600 56.25

GCE n1-standard-2 +

50GB PD SSD

2 7.5 1500 25

Medium cluster

A medium cluster serves fewer than 500 clients, fewer than 1,000 of requests per second,

and stores no more than 500MB of data.

Example application workload: A 250-node Kubernetes cluster

Provider Type vCPUs

Memory

(GB)

Max

concurrent

IOPS

Disk bandwidth

(MB/s)

AWS m4.xlarge 4 16 6000 93.75

GCE n1-standard-4 +

150GB PD SSD

4 15 4500 75

Large cluster

A large cluster serves fewer than 1,500 clients, fewer than 10,000 of requests per second, and

stores no more than 1GB of data.

Example application workload: A 1,000-node Kubernetes cluster



Provider Type vCPUs

Memory

(GB)

Max

concurrent

IOPS

Disk bandwidth

(MB/s)

AWS m4.2xlarge 8 32 8000 125

GCE n1-standard-8 +

250GB PD SSD

8 30 7500 125

xLarge cluster

An xLarge cluster serves more than 1,500 clients, more than 10,000 of requests per second,

and stores more than 1GB data.

Example application workload: A 3,000 node Kubernetes cluster

Provider Type vCPUs

Memory

(GB)

Max

concurrent

IOPS

Disk bandwidth

(MB/s)

AWS m4.4xlarge 16 64 16,000 250

GCE n1-standard-16 +

500GB PD SSD

16 60 15,000 250

Last modified August 9, 2023: fix broken link again (35877ad)


https://github.com/etcd-io/website/commit/35877ad710dead2f074b1cf5cb8e607143ca9503
https://github.com/etcd-io/website/commit/35877ad710dead2f074b1cf5cb8e607143ca9503
https://github.com/etcd-io/website/commit/35877ad710dead2f074b1cf5cb8e607143ca9503


Maintenance

Periodic etcd cluster maintenance guide

Overview

An etcd cluster needs periodic maintenance to remain reliable. Depending on an etcd

application’s needs, this maintenance can usually be automated and performed without

downtime or significantly degraded performance.

All etcd maintenance manages storage resources consumed by the etcd keyspace. Failure to

adequately control the keyspace size is guarded by storage space quotas; if an etcd member

runs low on space, a quota will trigger cluster-wide alarms which will put the system into a

limited-operation maintenance mode. To avoid running out of space for writes to the

keyspace, the etcd keyspace history must be compacted. Storage space itself may be

reclaimed by defragmenting etcd members. Finally, periodic snapshot backups of etcd

member state makes it possible to recover any unintended logical data loss or corruption

caused by operational error.

Raft log retention

etcd --snapshot-count  configures the number of applied Raft entries to hold in-memory

before compaction. When --snapshot-count  reaches, server first persists snapshot data onto

disk, and then truncates old entries. When a slow follower requests logs before a compacted

index, leader sends the snapshot forcing the follower to overwrite its state.

Higher --snapshot-count  holds more Raft entries in memory until snapshot, thus causing

recurrent higher memory usage . Since leader retains latest Raft entries for longer, a slow

follower has more time to catch up before leader snapshot. --snapshot-count  is a tradeoff

between higher memory usage and better availabilities of slow followers.

Since v3.2, the default value of --snapshot-count  has changed from from 10,000 to 100,000 .

In performance-wise, --snapshot-count  greater than 100,000 may impact the write

throughput. Higher number of in-memory objects can slow down Go GC mark phase

runtime.scanobject , and infrequent memory reclamation makes allocation slow.

Performance varies depending on the workloads and system environments. However, in







etcd

Docs Blog Community Install Play

https://github.com/kubernetes/kubernetes/issues/60589#issuecomment-371977156
https://github.com/kubernetes/kubernetes/issues/60589#issuecomment-371977156
https://github.com/kubernetes/kubernetes/issues/60589#issuecomment-371977156
https://github.com/etcd-io/etcd/pull/7160
https://github.com/etcd-io/etcd/pull/7160
https://github.com/etcd-io/etcd/pull/7160
https://golang.org/src/runtime/mgc.go
https://golang.org/src/runtime/mgc.go
https://golang.org/src/runtime/mgc.go
https://golang.org/src/runtime/mgc.go
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


general, too frequent compaction affects cluster availabilities and write throughputs. Too

infrequent compaction is also harmful placing too much pressure on Go garbage collector.

See https://www.slideshare.net/mitakeh/understanding-performance-aspects-of-etcd-and-

raft  for more research results.

History compaction: v3 API Key-Value Database

Since etcd keeps an exact history of its keyspace, this history should be periodically

compacted to avoid performance degradation and eventual storage space exhaustion.

Compacting the keyspace history drops all information about keys superseded prior to a

given keyspace revision. The space used by these keys then becomes available for additional

writes to the keyspace.

The keyspace can be compacted automatically with etcd ’s time windowed history retention

policy, or manually with etcdctl . The etcdctl  method provides fine-grained control over the

compacting process whereas automatic compacting fits applications that only need key

history for some length of time.

An etcdctl  initiated compaction works as follows:

Revisions prior to the compaction revision become inaccessible:

Auto Compaction

etcd  can be set to automatically compact the keyspace with the --auto-compaction-*  option

with a period of hours:

v3.0.0  and v3.1.0  with --auto-compaction-retention=10  run periodic compaction on v3 key-

value store for every 10-hour. Compactor only supports periodic compaction. Compactor



# compact up to revision 3
$ etcdctl compact 3



$ etcdctl get --rev=2 somekey
Error:  rpc error: code = 11 desc = etcdserver: mvcc: required revision has been compacte



# keep one hour of history
$ etcd --auto-compaction-retention=1



 

https://www.slideshare.net/mitakeh/understanding-performance-aspects-of-etcd-and-raft
https://www.slideshare.net/mitakeh/understanding-performance-aspects-of-etcd-and-raft
https://www.slideshare.net/mitakeh/understanding-performance-aspects-of-etcd-and-raft
https://www.slideshare.net/mitakeh/understanding-performance-aspects-of-etcd-and-raft
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.0.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.0.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.0.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.1.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.1.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.1.md


records latest revisions every 5-minute, until it reaches the first compaction period (e.g. 10-

hour). In order to retain key-value history of last compaction period, it uses the last revision

that was fetched before compaction period, from the revision records that were collected

every 5-minute. When --auto-compaction-retention=10 , compactor uses revision 100 for

compact revision where revision 100 is the latest revision fetched from 10 hours ago. If

compaction succeeds or requested revision has already been compacted, it resets period

timer and starts over with new historical revision records (e.g. restart revision collect and

compact for the next 10-hour period). If compaction fails, it retries in 5 minutes.

v3.2.0  compactor runs every hour . Compactor only supports periodic compaction.

Compactor continues to record latest revisions every 5-minute. For every hour, it uses the

last revision that was fetched before compaction period, from the revision records that were

collected every 5-minute. That is, for every hour, compactor discards historical data created

before compaction period. The retention window of compaction period moves to next hour.

For instance, when hourly writes are 100 and --auto-compaction-retention=10 , v3.1 compacts

revision 1000, 2000, and 3000 for every 10-hour, while v3.2.x, v3.3.0, v3.3.1, and v3.3.2

compact revision 1000, 1100, and 1200 for every 1-hour. If compaction succeeds or

requested revision has already been compacted, it resets period timer and removes used

compacted revision from historical revision records (e.g. start next revision collect and

compaction from previously collected revisions). If compaction fails, it retries in 5 minutes.

In v3.3.0 , v3.3.1 , and v3.3.2 , --auto-compaction-mode=revision --auto-compaction-

retention=1000  automatically Compact  on "latest revision" - 1000  every 5-minute (when

latest revision is 30000, compact on revision 29000). For instance, --auto-compaction-

mode=periodic --auto-compaction-retention=72h  automatically Compact  with 72-hour retention

window, for every 7.2-hour. For instance, --auto-compaction-mode=periodic --auto-compaction-

retention=30m  automatically Compact  with 30-minute retention window, for every 3-minute.

Periodic compactor continues to record latest revisions for every 1/10 of given compaction

period (e.g. 1-hour when --auto-compaction-mode=periodic --auto-compaction-retention=10h ).

For every 1/10 of given compaction period, compactor uses the last revision that was fetched

before compaction period, to discard historical data. The retention window of compaction

period moves for every 1/10 of given compaction period. For instance, when hourly writes are

100 and --auto-compaction-retention=10 , v3.1 compacts revision 1000, 2000, and 3000 for

every 10-hour, while v3.2.x, v3.3.0, v3.3.1, and v3.3.2 compact revision 1000, 1100, and 1200

for every 1-hour. Furthermore, when writes per minute are 1000, v3.3.0, v3.3.1, and v3.3.2

with --auto-compaction-mode=periodic --auto-compaction-retention=30m  compact revision

30000, 33000, and 36000, for every 3-minute with more finer granularity.

When --auto-compaction-retention=10h , etcd first waits 10-hour for the first compaction, and

then does compaction every hour (1/10 of 10-hour) afterwards like this:

0Hr  (rev = 1)
1hr  (rev = 10)
...

 

  

https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.2.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.2.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.2.md
https://github.com/etcd-io/etcd/pull/7875
https://github.com/etcd-io/etcd/pull/7875
https://github.com/etcd-io/etcd/pull/7875
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.3.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.3.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.3.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.3.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.3.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.3.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.3.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.3.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.3.md


8hr  (rev = 80)
9hr  (rev = 90)
10hr (rev = 100, Compact(1))
11hr (rev = 110, Compact(10))
...

Whether compaction succeeds or not, this process repeats for every 1/10 of given

compaction period. If compaction succeeds, it just removes compacted revision from

historical revision records.

In v3.3.3 , --auto-compaction-mode=revision --auto-compaction-retention=1000  automatically

Compact  on "latest revision" - 1000  every 5-minute (when latest revision is 30000, compact

on revision 29000). Previously, --auto-compaction-mode=periodic --auto-compaction-

retention=72h  automatically Compact  with 72-hour retention window for every 7.2-hour. Now,

Compact  happens, for every 1-hour but still with 72-hour retention window. Previously,

--auto-compaction-mode=periodic --auto-compaction-retention=30m  automatically Compact  with

30-minute retention window for every 3-minute. Now, Compact  happens, for every 30-

minute but still with 30-minute retention window. Periodic compactor keeps recording

latest revisions for every compaction period when given period is less than 1-hour, or for

every 1-hour when given compaction period is greater than 1-hour (e.g. 1-hour when --auto-

compaction-mode=periodic --auto-compaction-retention=24h ). For every compaction period or 1-

hour, compactor uses the last revision that was fetched before compaction period, to discard

historical data. The retention window of compaction period moves for every given

compaction period or hour. For instance, when hourly writes are 100 and --auto-compaction-

mode=periodic --auto-compaction-retention=24h , v3.2.x , v3.3.0 , v3.3.1 , and v3.3.2

compact revision 2400, 2640, and 2880 for every 2.4-hour, while v3.3.3 or later compacts

revision 2400, 2500, 2600 for every 1-hour. Furthermore, when --auto-compaction-

mode=periodic --auto-compaction-retention=30m  and writes per minute are about 1000, v3.3.0 ,

v3.3.1 , and v3.3.2  compact revision 30000, 33000, and 36000, for every 3-minute, while

v3.3.3 or later compacts revision 30000, 60000, and 90000, for every 30-minute.

Defragmentation

After compacting the keyspace, the backend database may exhibit internal fragmentation.

Any internal fragmentation is space that is free to use by the backend but still consumes

storage space. Compacting old revisions internally fragments etcd  by leaving gaps in

backend database. Fragmented space is available for use by etcd  but unavailable to the host

filesystem. In other words, deleting application data does not reclaim the space on disk.

The process of defragmentation releases this storage space back to the file system.

Defragmentation is issued on a per-member basis so that cluster-wide latency spikes may be

avoided.



https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.3.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.3.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.3.md


To defragment an etcd member, use the etcdctl defrag  command:

Note that defragmentation to a live member blocks the system from reading and

writing data while rebuilding its states.

Note that defragmentation request does not get replicated over cluster. That is, the

request is only applied to the local node. Specify all members in --endpoints  flag or --

cluster  flag to automatically find all cluster members.

Run defragment operations for all endpoints in the cluster associated with the default

endpoint:

To defragment an etcd data directory directly, while etcd is not running, use the command:

Space quota

The space quota in etcd  ensures the cluster operates in a reliable fashion. Without a space

quota, etcd  may suffer from poor performance if the keyspace grows excessively large, or it

may simply run out of storage space, leading to unpredictable cluster behavior. If the

keyspace’s backend database for any member exceeds the space quota, etcd  raises a

cluster-wide alarm that puts the cluster into a maintenance mode which only accepts key

reads and deletes. Only after freeing enough space in the keyspace and defragmenting the

backend database, along with clearing the space quota alarm can the cluster resume normal

operation.

By default, etcd  sets a conservative space quota suitable for most applications, but it may be

configured on the command line, in bytes:

$ etcdctl defrag
Finished defragmenting etcd member[127.0.0.1:2379]



$ etcdctl defrag --cluster
Finished defragmenting etcd member[http://127.0.0.1:2379]
Finished defragmenting etcd member[http://127.0.0.1:22379]
Finished defragmenting etcd member[http://127.0.0.1:32379]



$ etcdctl defrag --data-dir <path-to-etcd-data-dir>




The space quota can be triggered with a loop:

Removing excessive keyspace data and defragmenting the backend database will put the

cluster back within the quota limits:

The metric etcd_mvcc_db_total_size_in_use_in_bytes  indicates the actual database usage after

a history compaction, while etcd_debugging_mvcc_db_total_size_in_bytes  shows the database

size including free space waiting for defragmentation. The latter increases only when the

# set a very small 16 MiB quota
$ etcd --quota-backend-bytes=$((16*1024*1024))



# fill keyspace
$ while [ 1 ]; do dd if=/dev/urandom bs=1024 count=1024  | ETCDCTL_API=3 etcdctl put key 
...
Error:  rpc error: code = 8 desc = etcdserver: mvcc: database space exceeded
# confirm quota space is exceeded
$ ETCDCTL_API=3 etcdctl --write-out=table endpoint status
+----------------+------------------+-----------+---------+-----------+-----------+-----
|    ENDPOINT    |        ID        |  VERSION  | DB SIZE | IS LEADER | RAFT TERM | RAFT 
+----------------+------------------+-----------+---------+-----------+-----------+-----
| 127.0.0.1:2379 | bf9071f4639c75cc | 2.3.0+git | 18 MB   | true      |         2 |      
+----------------+------------------+-----------+---------+-----------+-----------+-----
# confirm alarm is raised
$ ETCDCTL_API=3 etcdctl alarm list
memberID:13803658152347727308 alarm:NOSPACE



# get current revision
$ rev=$(ETCDCTL_API=3 etcdctl --endpoints=:2379 endpoint status --write-out="json" | egre
# compact away all old revisions
$ ETCDCTL_API=3 etcdctl compact $rev
compacted revision 1516
# defragment away excessive space
$ ETCDCTL_API=3 etcdctl defrag
Finished defragmenting etcd member[127.0.0.1:2379]
# disarm alarm
$ ETCDCTL_API=3 etcdctl alarm disarm
memberID:13803658152347727308 alarm:NOSPACE
# test puts are allowed again
$ ETCDCTL_API=3 etcdctl put newkey 123
OK





former is close to it, meaning when both of these metrics are close to the quota, a history

compaction is required to avoid triggering the space quota.

etcd_debugging_mvcc_db_total_size_in_bytes  is renamed to etcd_mvcc_db_total_size_in_bytes

from v3.4.

NOTE: it is possible to get an ErrGRPCNoSpace  error for a Put/Txn/LeaseGrant request, and still

have the write request succeed in the backend, because etcd checks space quota at the API

layer and the internal Apply layer, and the Apply layer will only raise the NOSPACE  alarm

without blocking the transaction from proceeding.

Snapshot backup

Snapshotting the etcd  cluster on a regular basis serves as a durable backup for an etcd

keyspace. By taking periodic snapshots of an etcd member’s backend database, an etcd

cluster can be recovered to a point in time with a known good state.

A snapshot is taken with etcdctl :

Last modified August 17, 2024: fix typo (264cc3e)

$ etcdctl snapshot save backup.db
$ etcdutl --write-out=table snapshot status backup.db
+----------+----------+------------+------------+
|   HASH   | REVISION | TOTAL KEYS | TOTAL SIZE |
+----------+----------+------------+------------+
| fe01cf57 |       10 |          7 | 2.1 MB     |
+----------+----------+------------+------------+





https://github.com/etcd-io/website/commit/264cc3ea5f2b3be1d36a1e5085cba73f4761c318
https://github.com/etcd-io/website/commit/264cc3ea5f2b3be1d36a1e5085cba73f4761c318
https://github.com/etcd-io/website/commit/264cc3ea5f2b3be1d36a1e5085cba73f4761c318


Monitoring etcd

Monitoring etcd for system health & cluster debugging

Each etcd server provides local monitoring information on its client port through http

endpoints. The monitoring data is useful for both system health checking and cluster

debugging.

Debug endpoint

If --log-level=debug  is set, the etcd server exports debugging information on its client port

under the /debug  path. Take care when setting --log-level=debug , since there will be

degraded performance and verbose logging.

The /debug/pprof  endpoint is the standard go runtime profiling endpoint. This can be used to

profile CPU, heap, mutex, and goroutine utilization. For example, here go tool pprof  gets the

top 10 functions where etcd spends its time:

$ go tool pprof http://localhost:2379/debug/pprof/profile
Fetching profile from http://localhost:2379/debug/pprof/profile
Please wait... (30s)
Saved profile in /home/etcd/pprof/pprof.etcd.localhost:2379.samples.cpu.001.pb.gz
Entering interactive mode (type "help" for commands)
(pprof) top10
310ms of 480ms total (64.58%)
Showing top 10 nodes out of 157 (cum >= 10ms)
    flat  flat%   sum%        cum   cum%
   130ms 27.08% 27.08%      130ms 27.08%  runtime.futex
    70ms 14.58% 41.67%       70ms 14.58%  syscall.Syscall
    20ms  4.17% 45.83%       20ms  4.17%  github.com/coreos/etcd/vendor/golang.org/x/net/
    20ms  4.17% 50.00%       30ms  6.25%  runtime.pcvalue
    20ms  4.17% 54.17%       50ms 10.42%  runtime.schedule
    10ms  2.08% 56.25%       10ms  2.08%  github.com/coreos/etcd/vendor/github.com/coreos
    10ms  2.08% 58.33%       10ms  2.08%  github.com/coreos/etcd/vendor/github.com/coreos
    10ms  2.08% 60.42%       10ms  2.08%  github.com/coreos/etcd/vendor/github.com/coreos
    10ms  2.08% 62.50%       10ms  2.08%  github.com/coreos/etcd/vendor/github.com/promet
    10ms  2.08% 64.58%       10ms  2.08%  github.com/coreos/etcd/vendor/golang.org/x/net/



etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


The /debug/requests  endpoint gives gRPC traces and performance statistics through a web

browser. For example, here is a Range  request for the key abc :

When Elapsed (s)
2017/08/18 17:34:51.999317 0.000244 /etcdserverpb.KV/Range
17:34:51.999382  .    65 ... RPC: from 127.0.0.1:47204 deadline:4.99937774
17:34:51.999395  .    13 ... recv: key:"abc"
17:34:51.999499  .   104 ... OK
17:34:51.999535  .    36 ... sent: header:<cluster_id:14841639068965178418

Metrics endpoint

Each etcd server exports metrics under the /metrics  path on its client port and optionally on

locations given by --listen-metrics-urls .

The metrics can be fetched with curl :

Health Check

Since v3.3.0, in addition to responding to the /metrics  endpoint, any locations specified by -

-listen-metrics-urls  will also respond to the /health  endpoint. This can be useful if the

standard endpoint is configured with mutual (client) TLS authentication, but a load balancer

or monitoring service still needs access to the health check.

Since v3.5.12, two new endpoints /livez  and /readyz  are added.

the /livez  endpoint reflects whether the process is alive or if it needs a restart.

the /readyz  endpoint reflects whether the process is ready to serve traffic.

Design details of the endpoints are documented in the KEP .

$ curl -L http://localhost:2379/metrics | grep -v debugging # ignore unstable debugging m

# HELP etcd_disk_backend_commit_duration_seconds The latency distributions of commit cal
# TYPE etcd_disk_backend_commit_duration_seconds histogram
etcd_disk_backend_commit_duration_seconds_bucket{le="0.002"} 72756
etcd_disk_backend_commit_duration_seconds_bucket{le="0.004"} 401587
etcd_disk_backend_commit_duration_seconds_bucket{le="0.008"} 405979
etcd_disk_backend_commit_duration_seconds_bucket{le="0.016"} 406464
...





https://github.com/kubernetes/enhancements/tree/master/keps/sig-etcd/4331-livez-readyz
https://github.com/kubernetes/enhancements/tree/master/keps/sig-etcd/4331-livez-readyz
https://github.com/kubernetes/enhancements/tree/master/keps/sig-etcd/4331-livez-readyz


Each endpoint includes several individual health checks, and you can use the verbose

parameter to print out the details of the checks and their status, for example

and you would see the response similar to

The http API also supports to exclude specific checks, for example

Prometheus

Running a Prometheus  monitoring service is the easiest way to ingest and record etcd’s

metrics.

First, install Prometheus:

Set Prometheus’s scraper to target the etcd cluster endpoints:

curl -k http://localhost:2379/readyz?verbose


[+]data_corruption ok
[+]serializable_read ok
[+]linearizable_read ok
ok



curl -k http://localhost:2379/readyz?exclude=data_corruption




PROMETHEUS_VERSION="2.0.0"
wget https://github.com/prometheus/prometheus/releases/download/v$PROMETHEUS_VERSION/prom
tar -xvzf /tmp/prometheus-$PROMETHEUS_VERSION.linux-amd64.tar.gz --directory /tmp/ --stri
/tmp/prometheus -version



cat > /tmp/test-etcd.yaml <<EOF
global:
  scrape_interval: 10s
scrape_configs:
  - job_name: test-etcd



https://prometheus.io/
https://prometheus.io/
https://prometheus.io/


Set up the Prometheus handler:

Now Prometheus will scrape etcd metrics every 10 seconds.

Alerting

There is a set of default alerts  for etcd v3 clusters for Prometheus.

Grafana

Grafana  has built-in Prometheus support; just add a Prometheus data source:

Name:   test-etcd
Type:   Prometheus
Url:    http://localhost:9090
Access: proxy

Then import the default etcd dashboard template and customize. For instance, if Prometheus

data source name is my-etcd , the datasource  field values in JSON also need to be my-etcd .

Sample dashboard:

    static_configs:
    - targets: ['10.240.0.32:2379','10.240.0.33:2379','10.240.0.34:2379']
EOF
cat /tmp/test-etcd.yaml

nohup /tmp/prometheus \
    -config.file /tmp/test-etcd.yaml \
    -web.listen-address ":9090" \
    -storage.local.path "test-etcd.data" >> /tmp/test-etcd.log  2>&1 &





Note

Note that job labels may need to be adjusted to fit a particular need. The rules were

written to apply to a single cluster so it is recommended to choose labels unique to a

cluster.



https://github.com/etcd-io/etcd/tree/master/contrib/mixin
https://github.com/etcd-io/etcd/tree/master/contrib/mixin
https://github.com/etcd-io/etcd/tree/master/contrib/mixin
http://grafana.org/
http://grafana.org/
http://grafana.org/
https://etcd.io/docs/v3.5/op-guide/grafana.json


Distributed tracing

In v3.5 etcd has added support for distributed tracing using OpenTelemetry .

To enable this experimental feature, pass the --experimental-enable-distributed-tracing=true

to the etcd server, along with the --experimental-distributed-tracing-sampling-rate=<number>

flag to choose how many samples to collect per million spans, the default sampling rate is 0 .

Configure the distributed tracing by starting etcd server with the following optional flags:

--experimental-distributed-tracing-address  - (Optional) - “localhost:4317” - Address of

the tracing collector.

--experimental-distributed-tracing-service-name  - (Optional) - “etcd” - Distributed tracing

service name, must be same across all etcd instances.

--experimental-distributed-tracing-instance-id  - (Optional) - Instance ID, while optional

it’s strongly recommended to set, must be unique per etcd instance.



Note

This feature is still experimental and can change at any time.

https://github.com/open-telemetry
https://github.com/open-telemetry
https://github.com/open-telemetry


Before enabling the distributed tracing, make sure to have the OpenTelemetry endpoint, if

that address differs to the default one, override with the --experimental-distributed-tracing-

address  flag. Due to OpenTelemetry having different ways of running, refer to the collector

documentation  to learn more.

Last modified January 2, 2024: Document the new livez/readyz endpoints. (e55accd)



Note

There is a resource overhead, as with any observability signal, according to our initial

measurements that overhead could be between 2% - 4% CPU overhead.



https://opentelemetry.io/docs/collector/getting-started/
https://opentelemetry.io/docs/collector/getting-started/
https://opentelemetry.io/docs/collector/getting-started/
https://opentelemetry.io/docs/collector/getting-started/
https://github.com/etcd-io/website/commit/e55accd3cad594e3485d68a7f94a3576bb1948b5
https://github.com/etcd-io/website/commit/e55accd3cad594e3485d68a7f94a3576bb1948b5
https://github.com/etcd-io/website/commit/e55accd3cad594e3485d68a7f94a3576bb1948b5


Performance

Understanding performance: latency & throughput

Understanding performance

etcd provides stable, sustained high performance. Two factors define performance: latency

and throughput. Latency is the time taken to complete an operation. Throughput is the total

operations completed within some time period. Usually average latency increases as the

overall throughput increases when etcd accepts concurrent client requests. In common cloud

environments, like a standard n-4  on Google Compute Engine (GCE) or a comparable

machine type on AWS, a three member etcd cluster finishes a request in less than one

millisecond under light load, and can complete more than 30,000 requests per second under

heavy load.

etcd uses the Raft consensus algorithm to replicate requests among members and reach

agreement. Consensus performance, especially commit latency, is limited by two physical

constraints: network IO latency and disk IO latency. The minimum time to finish an etcd

request is the network Round Trip Time (RTT) between members, plus the time fdatasync

requires to commit the data to permanent storage. The RTT within a datacenter may be as

long as several hundred microseconds. A typical RTT within the United States is around 50ms,

and can be as slow as 400ms between continents. The typical fdatasync latency for a spinning

disk is about 10ms. For SSDs, the latency is often lower than 1ms. To increase throughput,

etcd batches multiple requests together and submits them to Raft. This batching policy lets

etcd attain high throughput despite heavy load.

There are other sub-systems which impact the overall performance of etcd. Each serialized

etcd request must run through etcd’s boltdb-backed MVCC storage engine, which usually

takes tens of microseconds to finish. Periodically etcd incrementally snapshots its recently

applied requests, merging them back with the previous on-disk snapshot. This process may

lead to a latency spike. Although this is usually not a problem on SSDs, it may double the

observed latency on HDD. Likewise, inflight compactions can impact etcd’s performance.

Fortunately, the impact is often insignificant since the compaction is staggered so it does not

compete for resources with regular requests. The RPC system, gRPC, gives etcd a well-

defined, extensible API, but it also introduces additional latency, especially for local reads.

etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Benchmarks

Benchmarking etcd performance can be done with the benchmark  CLI tool included with

etcd.

For some baseline performance numbers, we consider a three member etcd cluster with the

following hardware configuration:

Google Cloud Compute Engine

3 machines of 8 vCPUs + 16GB Memory + 50GB SSD

1 machine(client) of 16 vCPUs + 30GB Memory + 50GB SSD

Ubuntu 17.04

etcd 3.2.0, go 1.8.3

With this configuration, etcd can approximately write:

Number

of keys

Key

size

in

bytes

Value

size

in

bytes

Number of

connections

Number

of

clients

Target

etcd

server

Average

write

QPS

Average

latency

per

request

Avera

serv

R

10,000 8 256 1 1 leader

only

583 1.6ms 48 

100,000 8 256 100 1000 leader

only

44,341 22ms 124

100,000 8 256 100 1000 all

members

50,104 20ms 126

Sample commands are:



# write to leader
benchmark --endpoints=${HOST_1} --target-leader --conns=1 --clients=1 \
    put --key-size=8 --sequential-keys --total=10000 --val-size=256
benchmark --endpoints=${HOST_1} --target-leader  --conns=100 --clients=1000 \
    put --key-size=8 --sequential-keys --total=100000 --val-size=256

# write to all members
benchmark --endpoints=${HOST_1},${HOST_2},${HOST_3} --conns=100 --clients=1000 \
    put --key-size=8 --sequential-keys --total=100000 --val-size=256



https://github.com/etcd-io/etcd/tree/master/tools/benchmark
https://github.com/etcd-io/etcd/tree/master/tools/benchmark
https://github.com/etcd-io/etcd/tree/master/tools/benchmark


Linearizable read requests go through a quorum of cluster members for consensus to fetch

the most recent data. Serializable read requests are cheaper than linearizable reads since

they are served by any single etcd member, instead of a quorum of members, in exchange

for possibly serving stale data. etcd can read:

Number

of

requests

Key

size

in

bytes

Value

size

in

bytes

Number of

connections

Number

of

clients Consistency

Average

read

QPS

Average

latency

per

request

10,000 8 256 1 1 Linearizable 1,353 0.7ms

10,000 8 256 1 1 Serializable 2,909 0.3ms

100,000 8 256 100 1000 Linearizable 141,578 5.5ms

100,000 8 256 100 1000 Serializable 185,758 2.2ms

Sample commands are:

We encourage running the benchmark test when setting up an etcd cluster for the first time

in a new environment to ensure the cluster achieves adequate performance; cluster latency

and throughput can be sensitive to minor environment differences.

Last modified June 14, 2021: Renaming content/en/next folder to content/en/v3.5. Updating

redirects, links, and config as needed. (#363) (138926b)

# Single connection read requests
benchmark --endpoints=${HOST_1},${HOST_2},${HOST_3} --conns=1 --clients=1 \
    range YOUR_KEY --consistency=l --total=10000
benchmark --endpoints=${HOST_1},${HOST_2},${HOST_3} --conns=1 --clients=1 \
    range YOUR_KEY --consistency=s --total=10000

# Many concurrent read requests
benchmark --endpoints=${HOST_1},${HOST_2},${HOST_3} --conns=100 --clients=1000 \
    range YOUR_KEY --consistency=l --total=100000
benchmark --endpoints=${HOST_1},${HOST_2},${HOST_3} --conns=100 --clients=1000 \
    range YOUR_KEY --consistency=s --total=100000





https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c


Design of runtime reconfiguration

The design of etcd’s runtime reconfiguration commands

Runtime reconfiguration is one of the hardest and most error prone features in a distributed

system, especially in a consensus based system like etcd.

Read on to learn about the design of etcd’s runtime reconfiguration commands and how we

tackled these problems.

Two phase config changes keep the cluster safe

In etcd, every runtime reconfiguration has to go through two phases for safety reasons. For

example, to add a member, first inform the cluster of the new configuration and then start

the new member.

Phase 1 - Inform cluster of new configuration

To add a member into an etcd cluster, make an API call to request a new member to be

added to the cluster. This is the only way to add a new member into an existing cluster. The

API call returns when the cluster agrees on the configuration change.

Phase 2 - Start new member

To join the new etcd member into the existing cluster, specify the correct initial-cluster

and set initial-cluster-state  to existing . When the member starts, it will contact the

existing cluster first and verify the current cluster configuration matches the expected one

specified in initial-cluster . When the new member successfully starts, the cluster has

reached the expected configuration.

By splitting the process into two discrete phases users are forced to be explicit regarding

cluster membership changes. This actually gives users more flexibility and makes things

easier to reason about. For example, if there is an attempt to add a new member with the

same ID as an existing member in an etcd cluster, the action will fail immediately during

phase one without impacting the running cluster. Similar protection is provided to prevent

adding new members by mistake. If a new etcd member attempts to join the cluster before

the cluster has accepted the configuration change, it will not be accepted by the cluster.

etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/op-guide/runtime-configuration/#add-a-new-member
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Without the explicit workflow around cluster membership etcd would be vulnerable to

unexpected cluster membership changes. For example, if etcd is running under an init

system such as systemd, etcd would be restarted after being removed via the membership

API, and attempt to rejoin the cluster on startup. This cycle would continue every time a

member is removed via the API and systemd is set to restart etcd after failing, which is

unexpected.

We expect runtime reconfiguration to be an infrequent operation. We decided to keep it

explicit and user-driven to ensure configuration safety and keep the cluster always running

smoothly under explicit control.

Permanent loss of quorum requires new cluster

If a cluster permanently loses a majority of its members, a new cluster will need to be started

from an old data directory to recover the previous state.

It is entirely possible to force removing the failed members from the existing cluster to

recover. However, we decided not to support this method since it bypasses the normal

consensus committing phase, which is unsafe. If the member to remove is not actually dead

or force removed through different members in the same cluster, etcd will end up with a

diverged cluster with same clusterID. This is very dangerous and hard to debug/fix

afterwards.

With a correct deployment, the possibility of permanent majority loss is very low. But it is a

severe enough problem that is worth special care. We strongly suggest reading the disaster

recovery documentation and preparing for permanent majority loss before putting etcd into

production.

Do not use public discovery service for runtime
reconfiguration

The public discovery service should only be used for bootstrapping a cluster. To join member

into an existing cluster, use the runtime reconfiguration API.

The discovery service is designed for bootstrapping an etcd cluster in a cloud environment,

when the IP addresses of all the members are not known beforehand. After successfully

bootstrapping a cluster, the IP addresses of all the members are known. Technically, the

discovery service should no longer be needed.

It seems that using public discovery service is a convenient way to do runtime

reconfiguration, after all discovery service already has all the cluster configuration

information. However relying on public discovery service brings troubles:

https://etcd.io/docs/v3.5/op-guide/recovery/
https://etcd.io/docs/v3.5/op-guide/recovery/


1. it introduces external dependencies for the entire life-cycle of the cluster, not just

bootstrap time. If there is a network issue between the cluster and public discovery

service, the cluster will suffer from it.

2. public discovery service must reflect correct runtime configuration of the cluster during

its life-cycle. It has to provide security mechanisms to avoid bad actions, and it is hard.

3. public discovery service has to keep tens of thousands of cluster configurations. Our

public discovery service backend is not ready for that workload.

To have a discovery service that supports runtime reconfiguration, the best choice is to build

a private one.

Last modified August 19, 2021: fix v3.5 links (#457) (cb192bf)


https://github.com/etcd-io/website/commit/cb192bf87e7641b17d5b1838098a8c10e47927ad
https://github.com/etcd-io/website/commit/cb192bf87e7641b17d5b1838098a8c10e47927ad
https://github.com/etcd-io/website/commit/cb192bf87e7641b17d5b1838098a8c10e47927ad


Runtime reconfiguration

etcd incremental runtime reconfiguration support

etcd comes with support for incremental runtime reconfiguration, which allows users to

update the membership of the cluster at run time.

Reconfiguration requests can only be processed when a majority of cluster members are

functioning. It is highly recommended to always have a cluster size greater than two in

production. It is unsafe to remove a member from a two member cluster. The majority of a

two member cluster is also two. If there is a failure during the removal process, the cluster

might not be able to make progress and need to restart from majority failure.

To better understand the design behind runtime reconfiguration, please read the runtime

reconfiguration document.

Reconfiguration use cases

This section will walk through some common reasons for reconfiguring a cluster. Most of

these reasons just involve combinations of adding or removing a member, which are

explained below under Cluster Reconfiguration Operations.

Cycle or upgrade multiple machines

If multiple cluster members need to move due to planned maintenance (hardware upgrades,

network downtime, etc.), it is recommended to modify members one at a time.

It is safe to remove the leader, however there is a brief period of downtime while the election

process takes place. If the cluster holds more than 50MB of v2 data, it is recommended to

migrate the member’s data directory.

Change the cluster size

Increasing the cluster size can enhance failure tolerance and provide better read

performance. Since clients can read from any member, increasing the number of members

increases the overall serialized read throughput.

etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/op-guide/runtime-reconf-design/
https://etcd.io/docs/v3.5/op-guide/runtime-reconf-design/
https://etcd.io/docs/v2.3/admin_guide/#member-migration
https://etcd.io/docs/v2.3/admin_guide/#fault-tolerance-table
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Decreasing the cluster size can improve the write performance of a cluster, with a trade-off of

decreased resilience. Writes into the cluster are replicated to a majority of members of the

cluster before considered committed. Decreasing the cluster size lowers the majority, and

each write is committed more quickly.

Replace a failed machine

If a machine fails due to hardware failure, data directory corruption, or some other fatal

situation, it should be replaced as soon as possible. Machines that have failed but haven’t

been removed adversely affect the quorum and reduce the tolerance for an additional

failure.

To replace the machine, follow the instructions for removing the member from the cluster,

and then add a new member in its place. If the cluster holds more than 50MB, it is

recommended to migrate the failed member’s data directory if it is still accessible.

Restart cluster from majority failure

If the majority of the cluster is lost or all of the nodes have changed IP addresses, then

manual action is necessary to recover safely. The basic steps in the recovery process include

creating a new cluster using the old data, forcing a single member to act as the leader, and

finally using runtime configuration to add new members to this new cluster one at a time.

Recover cluster from minority failure

If a specific member is lost, then it is equivalent to replacing a failed machine. The steps are

mentioned in Replace a failed machine.

Cluster reconfiguration operations

With these use cases in mind, the involved operations can be described for each.

Before making any change, a simple majority (quorum) of etcd members must be available.

This is essentially the same requirement for any kind of write to etcd.

All changes to the cluster must be done sequentially:

To update a single member peerURLs, issue an update operation

To replace a healthy single member, remove the old member then add a new member

To increase from 3 to 5 members, issue two add operations

To decrease from 5 to 3, issue two remove operations

https://etcd.io/docs/v2.3/admin_guide/#member-migration
https://etcd.io/docs/v3.5/op-guide/recovery


All of these examples use the etcdctl  command line tool that ships with etcd. To change

membership without etcdctl , use the v2 HTTP members API or the v3 gRPC members API.

Update a member

Update advertise client URLs

To update the advertise client URLs of a member, simply restart that member with updated

client urls flag ( --advertise-client-urls ) or environment variable

( ETCD_ADVERTISE_CLIENT_URLS ). The restarted member will self publish the updated URLs. A

wrongly updated client URL will not affect the health of the etcd cluster.

Update advertise peer URLs

To update the advertise peer URLs of a member, first update it explicitly via member

command and then restart the member. The additional action is required since updating

peer URLs changes the cluster wide configuration and can affect the health of the etcd

cluster.

To update the advertise peer URLs, first find the target member’s ID. To list all members with

etcdctl :

This example will update  a8266ecf031671f3 member ID and change its peerURLs value to

http://10.0.1.10:2380 :

Remove a member

Suppose the member ID to remove is a8266ecf031671f3. Use the remove  command to

perform the removal:

$ etcdctl member list
6e3bd23ae5f1eae0: name=node2 peerURLs=http://localhost:23802 clientURLs=http://127.0.0.1
924e2e83e93f2560: name=node3 peerURLs=http://localhost:23803 clientURLs=http://127.0.0.1
a8266ecf031671f3: name=node1 peerURLs=http://localhost:23801 clientURLs=http://127.0.0.1



$ etcdctl member update a8266ecf031671f3 --peer-urls=http://10.0.1.10:2380
Updated member with ID a8266ecf031671f3 in cluster



$ etcdctl member remove a8266ecf031671f3


https://etcd.io/docs/v2.3/members_api/
https://etcd.io/docs/v3.5/dev-guide/api_reference_v3/


The target member will stop itself at this point and print out the removal in the log:

etcd: this member has been permanently removed from the cluster. Exiting.

It is safe to remove the leader, however the cluster will be inactive while a new leader is

elected. This duration is normally the period of election timeout plus the voting process.

Add a new member

Adding a member is a two step process:

Add the new member to the cluster via the HTTP members API, the gRPC members API,

or the etcdctl member add  command.

Start the new member with the new cluster configuration, including a list of the updated

members (existing members + the new member).

etcdctl  adds a new member to the cluster by specifying the member’s name and advertised

peer URLs:

etcdctl  has informed the cluster about the new member and printed out the environment

variables needed to successfully start it. Now start the new etcd process with the relevant

flags for the new member:

The new member will run as a part of the cluster and immediately begin catching up with the

rest of the cluster.

Removed member a8266ecf031671f3 from cluster

$ etcdctl member add infra3 --peer-urls=http://10.0.1.13:2380
added member 9bf1b35fc7761a23 to cluster

ETCD_NAME="infra3"
ETCD_INITIAL_CLUSTER="infra0=http://10.0.1.10:2380,infra1=http://10.0.1.11:2380,infra2=ht
ETCD_INITIAL_CLUSTER_STATE=existing



$ export ETCD_NAME="infra3"
$ export ETCD_INITIAL_CLUSTER="infra0=http://10.0.1.10:2380,infra1=http://10.0.1.11:2380
$ export ETCD_INITIAL_CLUSTER_STATE=existing
$ etcd --listen-client-urls http://10.0.1.13:2379 --advertise-client-urls http://10.0.1.1



https://etcd.io/docs/v2.3/members_api/
https://etcd.io/docs/v3.5/dev-guide/api_reference_v3/
https://etcd.io/docs/v3.5/op-guide/configuration#member
https://etcd.io/docs/v3.5/op-guide/configuration#clustering
https://etcd.io/docs/v3.5/op-guide/configuration#clustering


If adding multiple members the best practice is to configure a single member at a time and

verify it starts correctly before adding more new members. If adding a new member to a 1-

node cluster, the cluster cannot make progress before the new member starts because it

needs two members as majority to agree on the consensus. This behavior only happens

between the time etcdctl member add  informs the cluster about the new member and the

new member successfully establishing a connection to the existing one.

Add a new member as learner

Starting from v3.4, etcd supports adding a new member as learner / non-voting member. The

motivation and design can be found in design doc. In order to make the process of adding a

new member safer, and to reduce cluster downtime when the new member is added, it is

recommended that the new member is added to cluster as a learner until it catches up. This

can be described as a three step process:

Add the new member as learner via gRPC members API or the etcdctl member add --

learner  command.

Start the new member with the new cluster configuration, including a list of the updated

members (existing members + the new member). This step is exactly the same as before.

Promote the newly added learner to voting member via gRPC members API or the

etcdctl member promote  command. etcd server validates promote request to ensure its

operational safety. Only after its raft log has caught up to leader’s can learner be

promoted to a voting member. If a learner member has not caught up to leader’s raft log,

member promote request will fail (see error cases when promoting a member section for

more details). In this case, user should wait and retry later.

In v3.4, etcd server limits the number of learners that cluster can have to one. The main

consideration is to limit the extra workload on leader due to propagating data from leader to

learner.

Use etcdctl member add  with flag --learner  to add new member to cluster as learner.

After new etcd process is started for the newly added learner member, use etcdctl member

promote  to promote learner to voting member.

$ etcdctl member add infra3 --peer-urls=http://10.0.1.13:2380 --learner
Member 9bf1b35fc7761a23 added to cluster a7ef944b95711739

ETCD_NAME="infra3"
ETCD_INITIAL_CLUSTER="infra0=http://10.0.1.10:2380,infra1=http://10.0.1.11:2380,infra2=ht
ETCD_INITIAL_CLUSTER_STATE=existing



https://etcd.io/docs/v3.5/learning/design-learner
https://etcd.io/docs/v3.5/dev-guide/api_reference_v3/
https://etcd.io/docs/v3.5/dev-guide/api_reference_v3/


$ etcdctl member promote 9bf1b35fc7761a23
Member 9e29bbaa45d74461 promoted in cluster a7ef944b95711739

Error cases when adding members

In the following case a new host is not included in the list of enumerated nodes. If this is a

new cluster, the node must be added to the list of initial cluster members.

In this case, give a different address (10.0.1.14:2380) from the one used to join the cluster

(10.0.1.13:2380):

If etcd starts using the data directory of a removed member, etcd automatically exits if it

connects to any active member in the cluster:

Error cases when adding a learner member

Cannot add learner to cluster if the cluster already has 1 learner (v3.4).

$ etcdctl member add infra4 --peer-urls=http://10.0.1.14:2380 --learner
Error: etcdserver: too many learner members in cluster

$ etcd --name infra3 \
  --initial-cluster infra0=http://10.0.1.10:2380,infra1=http://10.0.1.11:2380,infra2=http
  --initial-cluster-state existing
etcdserver: assign ids error: the member count is unequal
exit 1



$ etcd --name infra4 \
  --initial-cluster infra0=http://10.0.1.10:2380,infra1=http://10.0.1.11:2380,infra2=http
  --initial-cluster-state existing
etcdserver: assign ids error: unmatched member while checking PeerURLs
exit 1



$ etcd
etcd: this member has been permanently removed from the cluster. Exiting.
exit 1





Error cases when promoting a learner member

Learner can only be promoted to voting member if it is in sync with leader.

$ etcdctl member promote 9bf1b35fc7761a23
Error: etcdserver: can only promote a learner member which is in sync with leader

Promoting a member that is not a learner will fail.

$ etcdctl member promote 9bf1b35fc7761a23
Error: etcdserver: can only promote a learner member

Promoting a member that does not exist in cluster will fail.

$ etcdctl member promote 12345abcde
Error: etcdserver: member not found

Strict reconfiguration check mode (-strict-reconfig-check)

As described in the above, the best practice of adding new members is to configure a single

member at a time and verify it starts correctly before adding more new members. This step

by step approach is very important because if newly added members is not configured

correctly (for example the peer URLs are incorrect), the cluster can lose quorum. The quorum

loss happens since the newly added member are counted in the quorum even if that member

is not reachable from other existing members. Also quorum loss might happen if there is a

connectivity issue or there are operational issues.

For avoiding this problem, etcd provides an option -strict-reconfig-check . If this option is

passed to etcd, etcd rejects reconfiguration requests if the number of started members will

be less than a quorum of the reconfigured cluster.

It is enabled by default.

Last modified October 26, 2021: Configuration page rework: remove duplication, make easier

to maintain, add missing flag (#491) (29c0731)


https://github.com/etcd-io/website/commit/29c07319e2f7b01f9b6b4ed9b8c389d534bb2e8b
https://github.com/etcd-io/website/commit/29c07319e2f7b01f9b6b4ed9b8c389d534bb2e8b
https://github.com/etcd-io/website/commit/29c07319e2f7b01f9b6b4ed9b8c389d534bb2e8b
https://github.com/etcd-io/website/commit/29c07319e2f7b01f9b6b4ed9b8c389d534bb2e8b


Supported platforms

etcd support for common architectures & operating systems

Support tiers

etcd runs on different platforms, but the guarantees it provides depends on a platform’s

support tier:

Tier 1: fully supported by etcd maintainers ; etcd is guaranteed to pass all tests including

functional and robustness tests.

Tier 2: etcd is guaranteed to pass integration and end-to-end tests but not necessarily

functional or robustness tests.

Tier 3: etcd is guaranteed to build, may be lightly tested (or not), and so it should be

considered unstable.

Current support

The following table lists currently supported platforms and their corresponding etcd support

tier:

Architecture Operating system Support tier Maintainers

AMD64 Linux 1 etcd maintainers

ARM64 Linux 1 etcd maintainers

AMD64 Darwin 3

AMD64 Windows 3

ARM Linux 3

386 Linux 3

ppc64le Linux 3







etcd

Docs Blog Community Install Play

https://github.com/etcd-io/etcd/blob/main/OWNERS
https://github.com/etcd-io/etcd/blob/main/OWNERS
https://github.com/etcd-io/etcd/blob/main/OWNERS
https://github.com/etcd-io/etcd/blob/main/OWNERS
https://github.com/etcd-io/etcd/blob/main/OWNERS
https://github.com/etcd-io/etcd/blob/main/OWNERS
https://github.com/etcd-io/etcd/blob/main/OWNERS
https://github.com/etcd-io/etcd/blob/main/OWNERS
https://github.com/etcd-io/etcd/blob/main/OWNERS
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Architecture Operating system Support tier Maintainers

s390x Linux 3

Unlisted platforms are unsupported.

Supporting a new platform

Want to contribute to etcd as the “official” maintainer of a new platform? In addition to

committing to support the platform, you must setup etcd continuous integration (CI)

satisfying the following requirements, depending on the support tier:

etcd continuous integration Tier 1 Tier 2 Tier 3

Build passes ✓ ✓ ✓

Unit tests pass ✓ ✓

Integration and end-to-end tests pass ✓ ✓

Robustness tests pass ✓

For an example of setting up tier-2 CI for ARM64, see etcd PR #12928 .

Unsupported platforms

To avoid inadvertently running an etcd server on an unsupported platform, etcd prints a

warning message and exits immediately unless the environment variable

ETCD_UNSUPPORTED_ARCH  is set to the target architecture.

Last modified October 18, 2023: Complete migration to owners file. (bc148e9)



32-bit systems

etcd has known issues on 32-bit systems due to a bug in the Go runtime. For more

information see the Go issue #599  and the atomic package bug note .
 



https://github.com/etcd-io/etcd/pull/12928
https://github.com/etcd-io/etcd/pull/12928
https://github.com/etcd-io/etcd/pull/12928
https://github.com/etcd-io/website/commit/bc148e9f1f9461a6009568a930f53f9246dee387
https://github.com/etcd-io/website/commit/bc148e9f1f9461a6009568a930f53f9246dee387
https://github.com/etcd-io/website/commit/bc148e9f1f9461a6009568a930f53f9246dee387
https://github.com/golang/go/issues/599
https://github.com/golang/go/issues/599
https://github.com/golang/go/issues/599
https://golang.org/pkg/sync/atomic/#pkg-note-BUG
https://golang.org/pkg/sync/atomic/#pkg-note-BUG
https://golang.org/pkg/sync/atomic/#pkg-note-BUG


Versioning

Versioning support by etcd

This document describes the versions supported by the etcd project.

Service versioning and supported versions

etcd versions are expressed as x.y.z, where x is the major version, y is the minor version, and

z is the patch version, following Semantic Versioning  terminology. New minor versions may

add additional features to the API.

The etcd project maintains release branches for the current version and previous release. For

example, when v3.5 is the current version, v3.4 is supported. When v3.6 is released, v3.4 goes

out of support.

Applicable fixes, including security fixes, may be backported to those two release branches,

depending on severity and feasibility. Patch releases are cut from those branches when

required.

The project Maintainers  own this decision.

You can check the running etcd cluster version with etcdctl :

API versioning

The v3  API responses should not change after the 3.0.0 release but new features will be

added over time.





etcdctl --endpoints=127.0.0.1:2379 endpoint status


etcd

Docs Blog Community Install Play

https://semver.org/
https://semver.org/
https://semver.org/
https://github.com/etcd-io/etcd/blob/main/OWNERS
https://github.com/etcd-io/etcd/blob/main/OWNERS
https://github.com/etcd-io/etcd/blob/main/OWNERS
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Last modified October 18, 2023: Complete migration to owners file. (bc148e9)


https://github.com/etcd-io/website/commit/bc148e9f1f9461a6009568a930f53f9246dee387
https://github.com/etcd-io/website/commit/bc148e9f1f9461a6009568a930f53f9246dee387
https://github.com/etcd-io/website/commit/bc148e9f1f9461a6009568a930f53f9246dee387


Data Corruption

etcd data corruption and recovery

etcd has built in automated data corruption detection to prevent member state from

diverging.

Enabling data corruption detection

Data corruption detection can be done using:

Initial check, enabled with --experimental-initial-corrupt-check  flag.

Periodic check of:

Compacted revision hash, enabled with --experimental-compact-hash-check-enabled

flag.

Latest revision hash, enabled with --experimental-corrupt-check-time  flag.

Initial check will be executed during bootstrap of etcd member. Member will compare its

persistent state vs other members and exit if there is a mismatch.

Both periodic check will be executed by the cluster leader in a cluster that is already running.

Leader will compare its persistent state vs other members and raise a CORRUPT ALARM if

there is a mismatch. Both checks serve the same purpose, however they are both worth

enabling to balance performance and time to detection.

Compacted revision hash check - requires regular compaction, minimal performance

cost, handles slow followers.

Latest revision hash check - high performance cost, doesn’t handle slow followers or

frequent compactions.

Compacted revision hash check

When enabled using --experimental-compact-hash-check-enabled  flag, check will be executed

once every minute. This can be adjusted using --experimental-compact-hash-check-time  flag

using format: 1m  - every minute, 1h  - evey hour. This check extends compaction to also

calculate checksum that can be compared between cluster members. Doesn’t cause

additional database scan making it very cheap, but requiring a regular compaction in cluster.

etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Latest revision hash check

Enabled using --experimental-corrupt-check-time  flag, requires providing an execution period

in format: 1m  - every minute, 1h  - evey hour. Recommended period is a couple of hours due

to a high performance cost. Running a check requires computing a checksum by scanning

entire etcd content at given revision.

Restoring a corrupted member

There are three ways to restore a corrupted member:

Purge member persistent state

Replace member

Restore whole cluster

After the corrupted member is restored, CORRUPT ALARM can be removed.

Purge member persistent state

Members state can be purged by:

1. Stopping the etcd instance.

2. Backing up etcd data directory.

3. Moving out the snap  subdirectory from the etcd data directory.

4. Starting etcd  with --initial-cluster-state=existing  and cluster members listed in --

initial-cluster .

Etcd member is expected to download up-to-date snapshot from the leader.

Replace member

Member can be replaced by:

1. Stopping the etcd instance.

2. Backing up the etcd data directory.

3. Removing the data directory.

4. Removing the member from cluster by running etcdctl member remove .

5. Adding it back by running etcdctl member add

6. Starting etcd  with --initial-cluster-state=existing  and cluster members listed in --

initial-cluster .

Restore whole cluster



Cluster can be restored by saving a snapshot from current leader and restoring it to all

members. Run etcdctl snapshot save  against the leader and follow restoring a cluster

procedure.

Last modified September 17, 2023: Change from it's to its (070ed10)


https://etcd.io/docs/v3.5/op-guide/recovery
https://etcd.io/docs/v3.5/op-guide/recovery
https://github.com/etcd-io/website/commit/070ed102d4a98c23efe4095f90b8c332d9c0f7a7
https://github.com/etcd-io/website/commit/070ed102d4a98c23efe4095f90b8c332d9c0f7a7
https://github.com/etcd-io/website/commit/070ed102d4a98c23efe4095f90b8c332d9c0f7a7


Benchmarks

Performance measures for etcd

Benchmarks

etcd benchmarks will be published regularly and tracked for each release below:

etcd v2.1.0-alpha

etcd v2.2.0-rc

etcd v3 demo

Memory Usage Benchmarks

It records expected memory usage in different scenarios.

etcd v2.2.0-rc

Storage Memory Usage Benchmark
Performance measures for etcd storage (in-memory index & page cache)

Watch Memory Usage Benchmark
Performance measures for etcd watchers

Benchmarking etcd v3
Performance measures for etcd v3

Benchmarking etcd v2.2.0-rc-memory
Performance measures for etcd v2.2.0-rc-memory

Benchmarking etcd v2.2.0-rc
Performance measures for etcd v2.2.0-rc

etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/benchmarks/etcd-2-1-0-alpha-benchmarks
https://etcd.io/docs/v3.5/benchmarks/etcd-2-2-0-rc-benchmarks
https://etcd.io/docs/v3.5/benchmarks/etcd-3-demo-benchmarks
https://etcd.io/docs/v3.5/benchmarks/etcd-2-2-0-rc-memory-benchmarks
https://etcd.io/docs/v3.5/benchmarks/etcd-storage-memory-benchmark/
https://etcd.io/docs/v3.5/benchmarks/etcd-3-watch-memory-benchmark/
https://etcd.io/docs/v3.5/benchmarks/etcd-3-demo-benchmarks/
https://etcd.io/docs/v3.5/benchmarks/etcd-2-2-0-rc-memory-benchmarks/
https://etcd.io/docs/v3.5/benchmarks/etcd-2-2-0-rc-benchmarks/
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Benchmarking etcd v2.2.0
Performance measures for etcd v2.2.0

Benchmarking etcd v2.1.0
Performance measures for etcd v2.1.0

Last modified June 14, 2021: Renaming content/en/next folder to content/en/v3.5. Updating

redirects, links, and config as needed. (#363) (138926b)


https://etcd.io/docs/v3.5/benchmarks/etcd-2-2-0-benchmarks/
https://etcd.io/docs/v3.5/benchmarks/etcd-2-1-0-alpha-benchmarks/
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c


Storage Memory Usage Benchmark

Performance measures for etcd storage (in-memory index & page cache)

Two components of etcd storage consume physical memory. The etcd process allocates an in-

memory index to speed key lookup. The process’s page cache, managed by the operating

system, stores recently-accessed data from disk for quick re-use.

The in-memory index holds all the keys in a B-tree  data structure, along with pointers to the

on-disk data (the values). Each key in the B-tree may contain multiple pointers, pointing to

different versions of its values. The theoretical memory consumption of the in-memory index

can hence be approximated with the formula:

N * (c1 + avg_key_size) + N * (avg_versions_of_key) * (c2 + size_of_pointer)

where c1  is the key metadata overhead and c2  is the version metadata overhead.

The graph shows the detailed structure of the in-memory index B-tree.

                                In mem index

                               +------------+
                               | key || ... |
  +--------------+             |     ||     |
  |              |             +------------+
  |              |             | v1  || ... |
  |   disk    <----------------|     ||     | Tree Node
  |              |             +------------+
  |              |             | v2  || ... |
  |           <----------------+     ||     |
  |              |             +------------+
  +--------------+       +-----+    |   |   |
                         |     |    |   |   |
                         |     +------------+
                         |
                         |
                         ^
                      ------+
                      | ... |



etcd

Docs Blog Community Install Play

https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/B-tree
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


                      |     |
                      +-----+
                      | ... | Tree Node
                      |     |
                      +-----+
                      | ... |
                      |     |
                      ------+

Page cache memory  is managed by the operating system and is not covered in detail in this

document.

Testing Environment

etcd version

git head https://github.com/etcd-

io/etcd/commit/776e9fb7be7eee5e6b58ab977c8887b4fe4d48db

GCE n1-standard-2 machine type

7.5 GB memory

2x CPUs

In-memory index memory usage

In this test, we only benchmark the memory usage of the in-memory index. The goal is to find

c1  and c2  mentioned above and to understand the hard limit of memory consumption of

the storage.

We calculate the memory usage consumption via the Go runtime.ReadMemStats. We

calculate the total allocated bytes difference before creating the index and after creating the

index. It cannot perfectly reflect the memory usage of the in-memory index itself but can

show the rough consumption pattern.

N versions key size memory usage

100K 1 64bytes 22MB

100K 5 64bytes 39MB

1M 1 64bytes 218MB

1M 5 64bytes 432MB





https://en.wikipedia.org/wiki/Page_cache
https://en.wikipedia.org/wiki/Page_cache
https://en.wikipedia.org/wiki/Page_cache
https://github.com/etcd-io/etcd/commit/776e9fb7be7eee5e6b58ab977c8887b4fe4d48db
https://github.com/etcd-io/etcd/commit/776e9fb7be7eee5e6b58ab977c8887b4fe4d48db
https://github.com/etcd-io/etcd/commit/776e9fb7be7eee5e6b58ab977c8887b4fe4d48db
https://github.com/etcd-io/etcd/commit/776e9fb7be7eee5e6b58ab977c8887b4fe4d48db


N versions key size memory usage

100K 1 256bytes 41MB

100K 5 256bytes 65MB

1M 1 256bytes 409MB

1M 5 256bytes 506MB

Based on the result, we can calculate c1=120bytes , c2=30bytes . We only need two sets of

data to calculate c1  and c2 , since they are the only unknown variable in the formula. The

c1=120bytes  and c2=30bytes  are the average value of the 4 sets of c1  and c2  we calculated.

The key metadata overhead is still relatively nontrivial (50%) for small key-value pairs.

However, this is a significant improvement over the old store, which had at least 1000%

overhead.

Overall memory usage

The overall memory usage captures how much RSS etcd consumes with the storage. The

value size should have very little impact on the overall memory usage of etcd, since we keep

values on disk and only retain hot values in memory, managed by the OS page cache.

N versions key size value size memory usage

100K 1 64bytes 256bytes 40MB

100K 5 64bytes 256bytes 89MB

1M 1 64bytes 256bytes 470MB

1M 5 64bytes 256bytes 880MB

100K 1 64bytes 1KB 102MB

100K 5 64bytes 1KB 164MB

1M 1 64bytes 1KB 587MB

1M 5 64bytes 1KB 836MB

Based on the result, we know the value size does not significantly impact the memory

consumption. There is some minor increase due to more data held in the OS page cache.



Last modified June 14, 2021: Renaming content/en/next folder to content/en/v3.5. Updating

redirects, links, and config as needed. (#363) (138926b)


https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c


Watch Memory Usage Benchmark

Performance measures for etcd watchers

NOTE: The watch features are under active development, and their memory usage may

change as that development progresses. We do not expect it to significantly increase beyond

the figures stated below.

A primary goal of etcd is supporting a very large number of watchers doing a massively large

amount of watching. etcd aims to support O(10k) clients, O(100K) watch streams (O(10)

streams per client) and O(10M) total watchings (O(100) watching per stream). The memory

consumed by each individual watching accounts for the largest portion of etcd’s overall

usage, and is therefore the focus of current and future optimizations.

Three related components of etcd watch consume physical memory: each grpc.Conn , each

watch stream, and each instance of the watching activity. grpc.Conn  maintains the actual TCP

connection and other gRPC connection state. Each grpc.Conn  consumes O(10kb) of memory,

and might have multiple watch streams attached.

Each watch stream is an independent HTTP2 connection which consumes another O(10kb) of

memory. Multiple watchings might share one watch stream.

Watching is the actual struct that tracks the changes on the key-value store. Each watching

should only consume < O(1kb).

                                          +-------+
                                          | watch |
                              +---------> | foo   |
                              |           +-------+
                       +------+-----+
                       |   stream   |
      +--------------> |            |
      |                +------+-----+     +-------+
      |                       |           | watch |
      |                       +---------> | bar   |
+-----+------+                            +-------+
|            |         +------------+
|   conn     +-------> |   stream   |
|            |         |            |
+-----+------+         +------------+
      |

etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


      |
      |
      |                +------------+
      +--------------> |   stream   |
                       |            |
                       +------------+

The theoretical memory consumption of watch can be approximated with the formula:

memory = c1 * number_of_conn + c2 * avg_number_of_stream_per_conn + c3 *

avg_number_of_watch_stream

Testing Environment

etcd version

git head https://github.com/etcd-

io/etcd/commit/185097ffaa627b909007e772c175e8fefac17af3

GCE n1-standard-2 machine type

7.5 GB memory

2x CPUs

Overall memory usage

The overall memory usage captures how much RSS  etcd consumes with the client watchers.

While the result may vary by as much as 10%, it is still meaningful, since the goal is to learn

about the rough memory usage and the pattern of allocations.

With the benchmark result, we can calculate roughly that c1 = 17kb , c2 = 18kb  and c3 =

350bytes . So each additional client connection consumes 17kb of memory and each

additional stream consumes 18kb of memory, and each additional watching only cause

350bytes. A single etcd server can maintain millions of watchings with a few GB of memory in

normal case.

clients streams per client watchings per stream total watching memory usage

1k 1 1 1k 50MB

2k 1 1 2k 90MB

5k 1 1 5k 200MB





https://github.com/etcd-io/etcd/commit/185097ffaa627b909007e772c175e8fefac17af3
https://github.com/etcd-io/etcd/commit/185097ffaa627b909007e772c175e8fefac17af3
https://github.com/etcd-io/etcd/commit/185097ffaa627b909007e772c175e8fefac17af3
https://github.com/etcd-io/etcd/commit/185097ffaa627b909007e772c175e8fefac17af3
https://en.wikipedia.org/wiki/Resident_set_size
https://en.wikipedia.org/wiki/Resident_set_size
https://en.wikipedia.org/wiki/Resident_set_size


clients streams per client watchings per stream total watching memory usage

1k 10 1 10k 217MB

2k 10 1 20k 417MB

5k 10 1 50k 980MB

1k 50 1 50k 1001MB

2k 50 1 100k 1960MB

5k 50 1 250k 4700MB

1k 50 10 500k 1171MB

2k 50 10 1M 2371MB

5k 50 10 2.5M 5710MB

1k 50 100 5M 2380MB

2k 50 100 10M 4672MB

5k 50 100 25M OOM

Last modified June 14, 2021: Renaming content/en/next folder to content/en/v3.5. Updating

redirects, links, and config as needed. (#363) (138926b)


https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c


Benchmarking etcd v3

Performance measures for etcd v3

Physical machines

GCE n1-highcpu-2 machine type

1x dedicated local SSD mounted under /var/lib/etcd

1x dedicated slow disk for the OS

1.8 GB memory

2x CPUs

etcd version 2.2.0

etcd Cluster

1 etcd member running in v3 demo mode

Testing

Use etcd v3 benchmark tool .

Performance

reading one single key

key size in bytes number of clients read QPS 90th Percentile Latency (ms)

256 1 2716 0.4

256 64 16623 6.1

256 256 16622 21.7



etcd

Docs Blog Community Install Play

https://github.com/etcd-io/etcd/tree/master/tools/benchmark
https://github.com/etcd-io/etcd/tree/master/tools/benchmark
https://github.com/etcd-io/etcd/tree/master/tools/benchmark
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


The performance is nearly the same as the one with empty server handler.

reading one single key after putting

key size in bytes number of clients read QPS 90th Percentile Latency (ms)

256 1 2269 0.5

256 64 13582 8.6

256 256 13262 47.5

The performance with empty server handler is not affected by one put. So the performance

downgrade should be caused by storage package.

Last modified June 14, 2021: Renaming content/en/next folder to content/en/v3.5. Updating

redirects, links, and config as needed. (#363) (138926b)


https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c


Benchmarking etcd v2.2.0-rc-memory

Performance measures for etcd v2.2.0-rc-memory

Physical machine

GCE n1-standard-2 machine type

1x dedicated local SSD mounted under /var/lib/etcd

1x dedicated slow disk for the OS

7.5 GB memory

2x CPUs

etcd

etcd Version: 2.2.0-rc.0+git
Git SHA: 103cb5c
Go Version: go1.5
Go OS/Arch: linux/amd64

Testing

Start 3-member etcd cluster, each of which uses 2 cores.

The length of key name is always 64 bytes, which is a reasonable length of average key bytes.

Memory Maximal Usage

etcd may use maximal memory if one follower is dead and the leader keeps sending

snapshots.

max RSS  is the maximal memory usage recorded in 3 runs.

etcd

Docs Blog Community Install Play

https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


value

bytes

key

number

data

size(MB)

max

RSS(MB)

max RSS/data rate on

leader

128 50000 6 433 72x

128 100000 12 659 54x

128 200000 24 1466 61x

1024 50000 48 1253 26x

1024 100000 96 2344 24x

1024 200000 192 4361 22x

Data Size Threshold

When etcd reaches data size threshold, it may trigger leader election easily and drop part

of proposals.

For most cases, the etcd cluster should work smoothly if it doesn’t hit the threshold. If it

doesn’t work well due to insufficient resources, decrease its data size.

value

bytes

key number

limitation

suggested data size

threshold(MB)

consumed

RSS(MB)

128 400K 48 2400

1024 300K 292 6500

Last modified June 14, 2021: Renaming content/en/next folder to content/en/v3.5. Updating

redirects, links, and config as needed. (#363) (138926b)


https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c


Benchmarking etcd v2.2.0-rc

Performance measures for etcd v2.2.0-rc

Physical machine

GCE n1-highcpu-2 machine type

1x dedicated local SSD mounted under /var/lib/etcd

1x dedicated slow disk for the OS

1.8 GB memory

2x CPUs

etcd Cluster

3 etcd 2.2.0-rc members, each runs on a single machine.

Detailed versions:

etcd Version: 2.2.0-alpha.1+git
Git SHA: 59a5a7e
Go Version: go1.4.2
Go OS/Arch: linux/amd64

Also, we use 3 etcd 2.1.0 alpha-stage members to form cluster to get base performance.

etcd’s commit head is at c7146bd5 , which is the same as the one that we use in etcd 2.1

benchmark.

Testing

Bootstrap another machine and use the hey HTTP benchmark tool  to send requests to each

etcd member. Check the benchmark hacking guide  for detailed instructions.







etcd

Docs Blog Community Install Play

https://github.com/etcd-io/etcd/commits/c7146bd5f2c73716091262edc638401bb8229144
https://github.com/etcd-io/etcd/commits/c7146bd5f2c73716091262edc638401bb8229144
https://github.com/etcd-io/etcd/commits/c7146bd5f2c73716091262edc638401bb8229144
https://etcd.io/docs/v3.5/benchmarks/etcd-2-1-0-alpha-benchmarks/
https://etcd.io/docs/v3.5/benchmarks/etcd-2-1-0-alpha-benchmarks/
https://github.com/rakyll/hey
https://github.com/rakyll/hey
https://github.com/rakyll/hey
https://github.com/etcd-io/etcd/tree/v2.3.8/hack/benchmark
https://github.com/etcd-io/etcd/tree/v2.3.8/hack/benchmark
https://github.com/etcd-io/etcd/tree/v2.3.8/hack/benchmark
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Performance

reading one single key

key size in

bytes

number of

clients

target etcd

server read QPS

90th Percentile Latency

(ms)

64 1 leader only 2804 (-5%) 0.4 (+0%)

64 64 leader only 17816

(+0%)

5.7 (-6%)

64 256 leader only 18667

(-6%)

20.4 (+2%)

256 1 leader only 2181

(-15%)

0.5 (+25%)

256 64 leader only 17435

(-7%)

6.0 (+9%)

256 256 leader only 18180

(-8%)

21.3 (+3%)

64 64 all servers 46965

(-4%)

2.1 (+0%)

64 256 all servers 55286

(-6%)

7.4 (+6%)

256 64 all servers 46603

(-6%)

2.1 (+5%)

256 256 all servers 55291

(-6%)

7.3 (+4%)

writing one single key

key size in

bytes

number of

clients

target etcd

server write QPS

90th Percentile Latency

(ms)

64 1 leader only 76 (+22%) 19.4 (-15%)

64 64 leader only 2461

(+45%)

31.8 (-32%)



key size in

bytes

number of

clients

target etcd

server write QPS

90th Percentile Latency

(ms)

64 256 leader only 4275

(+1%)

69.6 (-10%)

256 1 leader only 64 (+20%) 16.7 (-30%)

256 64 leader only 2385

(+30%)

31.5 (-19%)

256 256 leader only 4353 (-3%) 74.0 (+9%)

64 64 all servers 2005

(+81%)

49.8 (-55%)

64 256 all servers 4868

(+35%)

81.5 (-40%)

256 64 all servers 1925

(+72%)

47.7 (-59%)

256 256 all servers 4975

(+36%)

70.3 (-36%)

performance changes explanation

read QPS in most scenarios is decreased by 5~8%. The reason is that etcd records store

metrics for each store operation. The metrics is important for monitoring and debugging,

so this is acceptable.

write QPS to leader is increased by 20~30%. This is because we decouple raft main loop

and entry apply loop, which avoids them blocking each other.

write QPS to all servers is increased by 30~80% because follower could receive latest

commit index earlier and commit proposals faster.

Last modified August 19, 2021: fix v3.5 links (#457) (cb192bf)


https://github.com/etcd-io/website/commit/cb192bf87e7641b17d5b1838098a8c10e47927ad
https://github.com/etcd-io/website/commit/cb192bf87e7641b17d5b1838098a8c10e47927ad
https://github.com/etcd-io/website/commit/cb192bf87e7641b17d5b1838098a8c10e47927ad


Benchmarking etcd v2.2.0

Performance measures for etcd v2.2.0

Physical Machines

GCE n1-highcpu-2 machine type

1x dedicated local SSD mounted as etcd data directory

1x dedicated slow disk for the OS

1.8 GB memory

2x CPUs

etcd Cluster

3 etcd 2.2.0 members, each runs on a single machine.

Detailed versions:

etcd Version: 2.2.0
Git SHA: e4561dd
Go Version: go1.5
Go OS/Arch: linux/amd64

Testing

Bootstrap another machine, outside of the etcd cluster, and run the hey  HTTP benchmark

tool  with a connection reuse patch to send requests to each etcd cluster member. See the

benchmark instructions  for the patch and the steps to reproduce our procedures.

The performance is calculated through results of 100 benchmark rounds.

Performance





etcd

Docs Blog Community Install Play

https://github.com/rakyll/hey
https://github.com/rakyll/hey
https://github.com/rakyll/hey
https://github.com/rakyll/hey
https://github.com/etcd-io/etcd/tree/v2.3.8/hack/benchmark
https://github.com/etcd-io/etcd/tree/v2.3.8/hack/benchmark
https://github.com/etcd-io/etcd/tree/v2.3.8/hack/benchmark
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Single Key Read Performance

key size

in bytes

number

of clients

target

etcd

server

average

read QPS

read QPS

stddev

average 90th

Percentile

Latency (ms)

latency

stddev

64 1 leader

only

2303 200 0.49 0.06

64 64 leader

only

15048 685 7.60 0.46

64 256 leader

only

14508 434 29.76 1.05

256 1 leader

only

2162 214 0.52 0.06

256 64 leader

only

14789 792 7.69 0.48

256 256 leader

only

14424 512 29.92 1.42

64 64 all servers 45752 2048 2.47 0.14

64 256 all servers 46592 1273 10.14 0.59

256 64 all servers 45332 1847 2.48 0.12

256 256 all servers 46485 1340 10.18 0.74

Single Key Write Performance

key size

in bytes

number

of clients

target

etcd

server

average

write QPS

write

QPS

stddev

average 90th

Percentile

Latency (ms)

latency

stddev

64 1 leader

only

55 4 24.51 13.26

64 64 leader

only

2139 125 35.23 3.40

64 256 leader

only

4581 581 70.53 10.22



key size

in bytes

number

of clients

target

etcd

server

average

write QPS

write

QPS

stddev

average 90th

Percentile

Latency (ms)

latency

stddev

256 1 leader

only

56 4 22.37 4.33

256 64 leader

only

2052 151 36.83 4.20

256 256 leader

only

4442 560 71.59 10.03

64 64 all servers 1625 85 58.51 5.14

64 256 all servers 4461 298 89.47 36.48

256 64 all servers 1599 94 60.11 6.43

256 256 all servers 4315 193 88.98 7.01

Performance Changes

Because etcd now records metrics for each API call, read QPS performance seems to see

a minor decrease in most scenarios. This minimal performance impact was judged a

reasonable investment for the breadth of monitoring and debugging information

returned.

Write QPS to cluster leaders seems to be increased by a small margin. This is because the

main loop and entry apply loops were decoupled in the etcd raft logic, eliminating several

blocks between them.

Write QPS to all members seems to be increased by a significant margin, because

followers now receive the latest commit index sooner, and commit proposals more

quickly.

Last modified June 14, 2021: Renaming content/en/next folder to content/en/v3.5. Updating

redirects, links, and config as needed. (#363) (138926b)


https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c


Benchmarking etcd v2.1.0

Performance measures for etcd v2.1.0

Physical machines

GCE n1-highcpu-2 machine type

1x dedicated local SSD mounted under /var/lib/etcd

1x dedicated slow disk for the OS

1.8 GB memory

2x CPUs

etcd version 2.1.0 alpha

etcd Cluster

3 etcd members, each runs on a single machine

Testing

Bootstrap another machine and use the hey HTTP benchmark tool  to send requests to each

etcd member. Check the benchmark hacking guide  for detailed instructions.

Performance

reading one single key

key size in

bytes

number of

clients

target etcd

server

read

QPS

90th Percentile Latency

(ms)

64 1 leader only 1534 0.7

64 64 leader only 10125 9.1





etcd

Docs Blog Community Install Play

https://github.com/rakyll/hey
https://github.com/rakyll/hey
https://github.com/rakyll/hey
https://github.com/etcd-io/etcd/tree/master/hack/benchmark
https://github.com/etcd-io/etcd/tree/master/hack/benchmark
https://github.com/etcd-io/etcd/tree/master/hack/benchmark
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


key size in

bytes

number of

clients

target etcd

server

read

QPS

90th Percentile Latency

(ms)

64 256 leader only 13892 27.1

256 1 leader only 1530 0.8

256 64 leader only 10106 10.1

256 256 leader only 14667 27.0

64 64 all servers 24200 3.9

64 256 all servers 33300 11.8

256 64 all servers 24800 3.9

256 256 all servers 33000 11.5

writing one single key

key size in

bytes

number of

clients

target etcd

server

write

QPS

90th Percentile Latency

(ms)

64 1 leader only 60 21.4

64 64 leader only 1742 46.8

64 256 leader only 3982 90.5

256 1 leader only 58 20.3

256 64 leader only 1770 47.8

256 256 leader only 4157 105.3

64 64 all servers 1028 123.4

64 256 all servers 3260 123.8

256 64 all servers 1033 121.5

256 256 all servers 3061 119.3



Last modified June 14, 2021: Renaming content/en/next folder to content/en/v3.5. Updating

redirects, links, and config as needed. (#363) (138926b)


https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c


Downgrading

Downgrading etcd clusters and applications

Downgrading etcd clusters and applications
Documentation list for downgrading etcd clusters and applications

Downgrade etcd from 3.5 to 3.4
Processes, checklists, and notes on downgrading etcd from 3.5 to 3.4

Last modified May 13, 2024: Add instructions for 3.5->3.4 downgrade. (8e96ed6)


etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/downgrades/downgrading-etcd/
https://etcd.io/docs/v3.5/downgrades/downgrade_3_5/
https://github.com/etcd-io/website/commit/8e96ed6d255e97b1a46b51d95a32e1bd155a9514
https://github.com/etcd-io/website/commit/8e96ed6d255e97b1a46b51d95a32e1bd155a9514
https://github.com/etcd-io/website/commit/8e96ed6d255e97b1a46b51d95a32e1bd155a9514
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play




Downgrading etcd clusters and
applications

Documentation list for downgrading etcd clusters and applications

This section contains documents specific to downgrading etcd clusters and applications.

Downgrading an etcd v3.x cluster

Downgrade etcd from 3.5 to 3.4

Last modified May 13, 2024: Add instructions for 3.5->3.4 downgrade. (8e96ed6)


etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/downgrades/downgrade_3_5/
https://github.com/etcd-io/website/commit/8e96ed6d255e97b1a46b51d95a32e1bd155a9514
https://github.com/etcd-io/website/commit/8e96ed6d255e97b1a46b51d95a32e1bd155a9514
https://github.com/etcd-io/website/commit/8e96ed6d255e97b1a46b51d95a32e1bd155a9514
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play




Downgrade etcd from 3.5 to 3.4

Processes, checklists, and notes on downgrading etcd from 3.5 to 3.4

In the general case, downgrading from etcd 3.5 to 3.4 can be a zero-downtime, rolling

downgrade:

one by one, stop the etcd 3.5 processes and replace them with etcd 3.4 processes

after starting any 3.4 processes, new features in 3.5 are not longer available to the

cluster

Before starting a downgrade, read through the rest of this guide to prepare.

Downgrade checklists

content/en/docs/v3.5/op-guide/authentication/rbac.md

NOTE: If your cluster enables auth, rolling downgrade from 3.5 isn’t supported because 3.5

changes a format of WAL entries related to auth . You can follow the authentification

instructions to disable auth, and delete all users first.

Highlighted breaking changes from 3.5 to 3.4:

Difference in flags

If you are using any of the following flags in your 3.5 configurations, make sure to remove,

rename, or change the default value when downgrading to 3.4.

NOTE The diff is based on version 3.5.14 and v.3.4.33. The actual diff would be dependent on

your patch version, check with diff <(etcd-3.5/bin/etcd -h | grep \\-\\-) <(etcd-

3.4/bin/etcd -h | grep \\-\\-)  first.



# flags not available in 3.4
-etcd --socket-reuse-port
-etcd --socket-reuse-address
-etcd --raft-read-timeout
-etcd --raft-write-timeout
-etcd --v2-deprecation
-etcd --client-cert-file



etcd

Docs Blog Community Install Play

https://github.com/etcd-io/etcd/pull/11943
https://github.com/etcd-io/etcd/pull/11943
https://github.com/etcd-io/etcd/pull/11943
https://etcd.io/docs/v3.5/op-guide/authentication/rbac/
https://etcd.io/docs/v3.5/op-guide/authentication/rbac/
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


etcd --logger zap

3.4 defaults to --logger=capnslog  while 3.5 defaults --logger=zap .

If you want to keep using zap , it needs to be explicitly specified.

Difference in Prometheus metrics

Server downgrade checklists

-etcd --client-key-file
-etcd --peer-client-cert-file
-etcd --peer-client-key-file
-etcd --self-signed-cert-validity
-etcd --enable-log-rotation --log-rotation-config-json=some.json
-etcd --experimental-enable-distributed-tracing --experimental-distributed-tracing-addres
-etcd --experimental-compact-hash-check-enabled --experimental-compact-hash-check-time='1
-etcd --experimental-downgrade-check-time
-etcd --experimental-memory-mlock
-etcd --experimental-txn-mode-write-with-shared-buffer
-etcd --experimental-bootstrap-defrag-threshold-megabytes
-etcd --experimental-stop-grpc-service-on-defrag

# same flag with different names
-etcd --backend-bbolt-freelist-type=map
+etcd --experimental-backend-bbolt-freelist-type=array

# same flag different defaults
-etcd --pre-vote=true
+etcd --pre-vote=false

-etcd --logger=zap
+etcd --logger=capnslog

+etcd --logger=zap --log-outputs=stderr

+# to write logs to stderr and a.log file at the same time
+etcd --logger=zap --log-outputs=stderr,a.log



# metrics not available in 3.4
-etcd_debugging_mvcc_db_compaction_last





Downgrade requirements

To ensure a smooth rolling downgrade, the running cluster must be healthy. Check the health

of the cluster by using the etcdctl endpoint health  command before proceeding.

The 3.4 version to downgrade to must be >= 3.4.32.

Preparation

Before downgrading etcd, always test the services relying on etcd in a staging environment

before deploying the downgrade to the production environment.

Before beginning, download the snapshot backup. Should something go wrong with the

downgrade, it is possible to use this backup to rollback back to existing etcd version. Please

note that the snapshot  command only backs up the v3 data. For v2 data, see backing up v2

datastore.

Before beginning, download the latest release of etcd 3.4, and make sure its version is >=

3.4.32.

Mixed versions

While downgrading, an etcd cluster supports mixed versions of etcd members, and operates

with the protocol of the lowest common version. The cluster is considered downgraded once

any of its members is downgraded to version 3.4. Internally, etcd members negotiate with

each other to determine the overall cluster version, which controls the reported version and

the supported features.

Limitations

Note: If the cluster only has v3 data and no v2 data, it is not subject to this limitation.

If the cluster is serving a v2 data set larger than 50MB, each newly downgraded member may

take up to two minutes to catch up with the existing cluster. Check the size of a recent

snapshot to estimate the total data size. In other words, it is safest to wait for 2 minutes

between downgrading each member.

For a much larger total data size, 100MB or more , this one-time process might take even

more time. Administrators of very large etcd clusters of this magnitude can feel free to

contact the etcd team  before downgrading, and we’ll be happy to provide advice on the

procedure.

Rollback



https://etcd.io/docs/v3.5/op-guide/maintenance/#snapshot-backup
https://etcd.io/docs/v2.3/admin_guide#backing-up-the-datastore
https://etcd.io/docs/v2.3/admin_guide#backing-up-the-datastore
https://groups.google.com/g/etcd-dev
https://groups.google.com/g/etcd-dev
https://groups.google.com/g/etcd-dev


If any member has been downgraded to 3.4, the cluster version will be downgraded to 3.4,

and operations will be “3.4” compatible. You would need to follow the Upgrade etcd from 3.4

to 3.5 instructions to rollback.

Please download the snapshot backup to make downgrading the cluster possible even after it

has been completely downgraded.

Downgrade procedure

This example shows how to downgrade a 3-member 3.5 etcd cluster running on a local

machine.

Step 1: check downgrade requirements

Is the cluster healthy and running 3.5.x?

Step 2: download snapshot backup from leader

Download the snapshot backup to provide a downgrade path should any problems occur.

Step 3: stop one existing etcd server

etcdctl --endpoints=localhost:2379,localhost:22379,localhost:32379 endpoint health
<<COMMENT
localhost:2379 is healthy: successfully committed proposal: took = 2.118638ms
localhost:22379 is healthy: successfully committed proposal: took = 3.631388ms
localhost:32379 is healthy: successfully committed proposal: took = 2.157051ms
COMMENT

curl http://localhost:2379/version
<<COMMENT
{"etcdserver":"3.5.0","etcdcluster":"3.5.0"}
COMMENT

curl http://localhost:22379/version
<<COMMENT
{"etcdserver":"3.5.0","etcdcluster":"3.5.0"}
COMMENT

curl http://localhost:32379/version
<<COMMENT
{"etcdserver":"3.5.0","etcdcluster":"3.5.0"}
COMMENT



https://etcd.io/docs/v3.5/upgrades/upgrade_3_5/
https://etcd.io/docs/v3.5/upgrades/upgrade_3_5/
https://etcd.io/docs/v3.5/op-guide/maintenance/#snapshot-backup
https://etcd.io/docs/v3.5/op-guide/maintenance/#snapshot-backup


Before stopping the server, check if it is the leader

If the server to be stopped is the leader, you can avoid some downtime by move-leader  to

another server before stopping this server.

When each etcd process is stopped, expected errors will be logged by other cluster members.

This is normal since a cluster member connection has been (temporarily) broken:

etcdctl --endpoints=localhost:2379,localhost:22379,localhost:32379 endpoint status -w=tab
<<COMMENT
+-----------------+------------------+---------+---------+-----------+------------+-----
|    ENDPOINT     |        ID        | VERSION | DB SIZE | IS LEADER | IS LEARNER | RAFT 
+-----------------+------------------+---------+---------+-----------+------------+-----
|  localhost:2379 | 8211f1d0f64f3269 |  3.5.13 |   20 kB |      true |      false |      
| localhost:22379 | 91bc3c398fb3c146 |  3.5.13 |   20 kB |     false |      false |      
| localhost:32379 | fd422379fda50e48 |  3.5.13 |   20 kB |     false |      false |      
+-----------------+------------------+---------+---------+-----------+------------+-----
COMMENT



etcdctl --endpoints=localhost:2379,localhost:22379,localhost:32379 move-leader 91bc3c398f

etcdctl --endpoints=localhost:2379,localhost:22379,localhost:32379 endpoint status -w=tab
<<COMMENT
+-----------------+------------------+---------+---------+-----------+------------+-----
|    ENDPOINT     |        ID        | VERSION | DB SIZE | IS LEADER | IS LEARNER | RAFT 
+-----------------+------------------+---------+---------+-----------+------------+-----
|  localhost:2379 | 8211f1d0f64f3269 |  3.5.13 |   20 kB |     false |      false |      
| localhost:22379 | 91bc3c398fb3c146 |  3.5.13 |   20 kB |      true |      false |      
| localhost:32379 | fd422379fda50e48 |  3.5.13 |   20 kB |     false |      false |      
+-----------------+------------------+---------+---------+-----------+------------+-----
COMMENT







Step 4: restart the etcd server with same configuration + --next-
cluster-version-compatible

Restart the etcd server with same configuration but with the new etcd binary and --next-

cluster-version-compatible .

The new 3.4 etcd will publish its information to the cluster. At this point, cluster will start to

operate as 3.4 protocol, which is the lowest common version.

{"level":"info","ts":"2024-05-

13T21:05:43.981445Z","caller":"membership/cluster.go:561","msg":"set initial cluster

version","cluster-id":"ef37ad9dc622a7c4","local-member-id":"8211f1d0f64f3269","cluster-

version":"3.0"}

{"level":"info","ts":"2024-05-

13T21:05:43.982188Z","caller":"api/capability.go:77","msg":"enabled capabilities for

version","cluster-version":"3.0"}

{"level":"info","ts":"2024-05-

13T21:05:43.982312Z","caller":"membership/cluster.go:549","msg":"updated cluster

{"level":"info","ts":"2024-05-14T20:25:47.051124Z","logger":"raft","caller":"etcdserver/z
{"level":"info","ts":"2024-05-14T20:25:47.051139Z","logger":"raft","caller":"etcdserver/z

^C{"level":"warn","ts":"2024-05-14T20:27:09.094119Z","caller":"rafthttp/stream.go:421","m
{"level":"warn","ts":"2024-05-14T20:27:09.09427Z","caller":"rafthttp/stream.go:421","msg
{"level":"warn","ts":"2024-05-14T20:27:09.095535Z","caller":"rafthttp/peer_status.go:66"
{"level":"warn","ts":"2024-05-14T20:27:09.43915Z","caller":"rafthttp/stream.go:223","msg
{"level":"warn","ts":"2024-05-14T20:27:11.085646Z","caller":"etcdserver/cluster_util.go:2
{"level":"warn","ts":"2024-05-14T20:27:11.085718Z","caller":"etcdserver/cluster_util.go:1
{"level":"warn","ts":"2024-05-14T20:27:13.557385Z","caller":"rafthttp/probing_status.go:6

-etcd-old --name s1 \
+etcd-new --name s1 \
  --data-dir /tmp/etcd/s1 \
  --listen-client-urls http://localhost:2379 \
  --advertise-client-urls http://localhost:2379 \
  --listen-peer-urls http://localhost:2380 \
  --initial-advertise-peer-urls http://localhost:2380 \
  --initial-cluster s1=http://localhost:2380,s2=http://localhost:22380,s3=http://localhos
  --initial-cluster-token tkn \
  --initial-cluster-state existing
  --next-cluster-version-compatible





version","cluster-id":"ef37ad9dc622a7c4","local-member-

id":"8211f1d0f64f3269","from":"3.0","from":"3.5"}

{"level":"info","ts":"2024-05-

13T21:05:43.982376Z","caller":"api/capability.go:77","msg":"enabled capabilities for

version","cluster-version":"3.5"}

{"level":"info","ts":"2024-05-

13T21:05:44.000672Z","caller":"etcdserver/server.go:2152","msg":"published local member to

cluster through raft","local-member-id":"8211f1d0f64f3269","local-member-attributes":"

{Name:infra1 ClientURLs:[http://127.0.0.1:2379]}","request-

path":"/0/members/8211f1d0f64f3269/attributes","cluster-id":"ef37ad9dc622a7c4","publish-

timeout":"7s"}

{"level":"info","ts":"2024-05-

13T21:05:46.452631Z","caller":"membership/cluster.go:549","msg":"updated cluster

version","cluster-id":"ef37ad9dc622a7c4","local-member-

id":"8211f1d0f64f3269","from":"3.5","from":"3.4"}

Verify that each member, and then the entire cluster, becomes healthy with the new 3.4 etcd

binary:

Un-downgraded members will log info like the following

{"level":"info","ts":"2024-05-13T21:05:46.450764Z","caller":"etcdserver/server.go:2633",
{"level":"info","ts":"2024-05-13T21:05:46.452419Z","caller":"membership/cluster.go:576",
{"level":"info","ts":"2024-05-13T21:05:46.452547Z","caller":"etcdserver/server.go:2652",

Step 5: repeat step 3 and step 4 for rest of the members

When all members are downgraded, check the health status and version of the cluster:

etcdctl endpoint health --endpoints=localhost:2379,localhost:22379,localhost:32379
<<COMMENT
localhost:32379 is healthy: successfully committed proposal: took = 2.337471ms
localhost:22379 is healthy: successfully committed proposal: took = 1.130717ms
localhost:2379 is healthy: successfully committed proposal: took = 2.124843ms
COMMENT



endpoint health --endpoints=localhost:2379,localhost:22379,localhost:32379
<<COMMENT
localhost:2379 is healthy: successfully committed proposal: took = 492.834µs





Last modified May 13, 2024: Add instructions for 3.5->3.4 downgrade. (8e96ed6)

localhost:22379 is healthy: successfully committed proposal: took = 1.015025ms
localhost:32379 is healthy: successfully committed proposal: took = 1.853077ms
COMMENT

curl http://localhost:2379/version
<<COMMENT
{"etcdserver":"3.4.32","etcdcluster":"3.4.0"}
COMMENT

curl http://localhost:22379/version
<<COMMENT
{"etcdserver":"3.4.32","etcdcluster":"3.4.0"}
COMMENT

curl http://localhost:32379/version
<<COMMENT
{"etcdserver":"3.4.32","etcdcluster":"3.4.0"}
COMMENT



https://github.com/etcd-io/website/commit/8e96ed6d255e97b1a46b51d95a32e1bd155a9514
https://github.com/etcd-io/website/commit/8e96ed6d255e97b1a46b51d95a32e1bd155a9514
https://github.com/etcd-io/website/commit/8e96ed6d255e97b1a46b51d95a32e1bd155a9514


Upgrading

Upgrading etcd clusters and applications

Upgrading etcd clusters and applications
Documentation list for upgrading etcd clusters and applications

Upgrade etcd from 3.4 to 3.5
Processes, checklists, and notes on upgrading etcd from 3.4 to 3.5

Upgrade etcd from 3.3 to 3.4
Processes, checklists, and notes on upgrading etcd from 3.3 to 3.4

Upgrade etcd from 3.2 to 3.3
Processes, checklists, and notes on upgrading etcd from 3.2 to 3.3

Upgrade etcd from 3.1 to 3.2
Processes, checklists, and notes on upgrading etcd from 3.1 to 3.2

Upgrade etcd from 3.0 to 3.1
Processes, checklists, and notes on upgrading etcd from 3.0 to 3.1

Upgrade etcd from 2.3 to 3.0
Processes, checklists, and notes on upgrading etcd from 2.3 to 3.0

Last modified June 14, 2021: Renaming content/en/next folder to content/en/v3.5. Updating

redirects, links, and config as needed. (#363) (138926b)


etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/upgrades/upgrading-etcd/
https://etcd.io/docs/v3.5/upgrades/upgrade_3_5/
https://etcd.io/docs/v3.5/upgrades/upgrade_3_4/
https://etcd.io/docs/v3.5/upgrades/upgrade_3_3/
https://etcd.io/docs/v3.5/upgrades/upgrade_3_2/
https://etcd.io/docs/v3.5/upgrades/upgrade_3_1/
https://etcd.io/docs/v3.5/upgrades/upgrade_3_0/
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play




Upgrading etcd clusters and applications

Documentation list for upgrading etcd clusters and applications

This section contains documents specific to upgrading etcd clusters and applications.

Upgrading an etcd v3.x cluster

Upgrade etcd from 3.0 to 3.1

Upgrade etcd from 3.1 to 3.2

Upgrade etcd from 3.2 to 3.3

Upgrade etcd from 3.3 to 3.4

Upgrade etcd from 3.4 to 3.5

Upgrading from etcd v2.3

Upgrade a v2.3 cluster to v3.0

Last modified May 13, 2024: Add instructions for 3.5->3.4 downgrade. (8e96ed6)


etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/upgrades/upgrade_3_1/
https://etcd.io/docs/v3.5/upgrades/upgrade_3_2/
https://etcd.io/docs/v3.5/upgrades/upgrade_3_3/
https://etcd.io/docs/v3.5/upgrades/upgrade_3_4/
https://etcd.io/docs/v3.5/upgrades/upgrade_3_5/
https://etcd.io/docs/v3.5/upgrades/upgrade_3_0/
https://github.com/etcd-io/website/commit/8e96ed6d255e97b1a46b51d95a32e1bd155a9514
https://github.com/etcd-io/website/commit/8e96ed6d255e97b1a46b51d95a32e1bd155a9514
https://github.com/etcd-io/website/commit/8e96ed6d255e97b1a46b51d95a32e1bd155a9514
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play




Upgrade etcd from 3.4 to 3.5

Processes, checklists, and notes on upgrading etcd from 3.4 to 3.5

In the general case, upgrading from etcd 3.4 to 3.5 can be a zero-downtime, rolling upgrade:

one by one, stop the etcd v3.4 processes and replace them with etcd v3.5 processes

after running all v3.5 processes, new features in v3.5 are available to the cluster

Before starting an upgrade, read through the rest of this guide to prepare.

Upgrade checklists

NOTE: When migrating from v2 with no v3 data , etcd server v3.2+ panics when etcd restores

from existing snapshots but no v3 ETCD_DATA_DIR/member/snap/db  file. This happens when the

server had migrated from v2 with no previous v3 data. This also prevents accidental v3 data

loss (e.g. db  file might have been moved). etcd requires that post v3 migration can only

happen with v3 data. Do not upgrade to newer v3 versions until v3.0 server contains v3 data.

NOTE: If your cluster enables auth, rolling upgrade from 3.4 or older version isn’t supported

because 3.5 changes a format of WAL entries related to auth .

Highlighted breaking changes in 3.5.

Deprecated etcd_debugging_mvcc_db_total_size_in_bytes Prometheus
metrics

v3.5 promoted etcd_debugging_mvcc_db_total_size_in_bytes  Prometheus metrics to

etcd_mvcc_db_total_size_in_bytes , in order to encourage etcd storage monitoring. And v3.5

completely deprecates etcd_debugging_mvcc_db_total_size_in_bytes .

Note that etcd_debugging_*  namespace metrics have been marked as experimental. As we

improve monitoring guide, we may promote more metrics.





-etcd_debugging_mvcc_db_total_size_in_bytes
+etcd_mvcc_db_total_size_in_bytes



etcd

Docs Blog Community Install Play

https://github.com/etcd-io/etcd/issues/9480
https://github.com/etcd-io/etcd/issues/9480
https://github.com/etcd-io/etcd/issues/9480
https://github.com/etcd-io/etcd/pull/11943
https://github.com/etcd-io/etcd/pull/11943
https://github.com/etcd-io/etcd/pull/11943
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Deprecated etcd_debugging_mvcc_put_total Prometheus metrics

v3.5 promoted etcd_debugging_mvcc_put_total  Prometheus metrics to etcd_mvcc_put_total , in

order to encourage etcd storage monitoring. And v3.5 completely deprecates

etcd_debugging_mvcc_put_total .

Note that etcd_debugging_*  namespace metrics have been marked as experimental. As we

improve monitoring guide, we may promote more metrics.

Deprecated etcd_debugging_mvcc_delete_total Prometheus metrics

v3.5 promoted etcd_debugging_mvcc_delete_total  Prometheus metrics to

etcd_mvcc_delete_total , in order to encourage etcd storage monitoring. And v3.5 completely

deprecates etcd_debugging_mvcc_delete_total .

Note that etcd_debugging_*  namespace metrics have been marked as experimental. As we

improve monitoring guide, we may promote more metrics.

Deprecated etcd_debugging_mvcc_txn_total Prometheus metrics

v3.5 promoted etcd_debugging_mvcc_txn_total  Prometheus metrics to etcd_mvcc_txn_total , in

order to encourage etcd storage monitoring. And v3.5 completely deprecates

etcd_debugging_mvcc_txn_total .

Note that etcd_debugging_*  namespace metrics have been marked as experimental. As we

improve monitoring guide, we may promote more metrics.

Deprecated etcd_debugging_mvcc_range_total Prometheus metrics

-etcd_debugging_mvcc_put_total
+etcd_mvcc_put_total



-etcd_debugging_mvcc_delete_total
+etcd_mvcc_delete_total



-etcd_debugging_mvcc_txn_total
+etcd_mvcc_txn_total





v3.5 promoted etcd_debugging_mvcc_range_total  Prometheus metrics to

etcd_mvcc_range_total , in order to encourage etcd storage monitoring. And v3.5 completely

deprecates etcd_debugging_mvcc_range_total .

Note that etcd_debugging_*  namespace metrics have been marked as experimental. As we

improve monitoring guide, we may promote more metrics.

Deprecated etcd --logger capnslog

v3.4 defaults to --logger=zap  in order to support multiple log outputs and structured logging.

etcd --logger=capnslog  has been deprecated in v3.5, and now --logger=zap  is the default.

v3.4 adds etcd --logger=zap  support for structured logging and multiple log outputs. Main

motivation is to promote automated etcd monitoring, rather than looking back server logs

when it starts breaking. Future development will make etcd log as few as possible, and make

etcd easier to monitor with metrics and alerts. etcd --logger=capnslog  will be deprecated in

v3.5.

Deprecated etcd --log-output

v3.4 renamed etcd --log-output  to --log-outputs  to support multiple log outputs.

etcd --log-output  has been deprecated in v3.5.

Deprecated etcd --debug flag (now --log-level=debug)

-etcd_debugging_mvcc_range_total
+etcd_mvcc_range_total



-etcd --logger=capnslog
+etcd --logger=zap --log-outputs=stderr

+# to write logs to stderr and a.log file at the same time
+etcd --logger=zap --log-outputs=stderr,a.log





-etcd --log-output=stderr
+etcd --log-outputs=stderr



https://github.com/etcd-io/etcd/pull/9624
https://github.com/etcd-io/etcd/pull/9624
https://github.com/etcd-io/etcd/pull/9624


etcd --debug  flag has been deprecated.

Deprecated etcd --log-package-levels

etcd --log-package-levels  flag for capnslog  has been deprecated.

Now, etcd --logger=zap  is the default.

Deprecated [CLIENT-URL]/config/local/log

/config/local/log  endpoint is being deprecated in v3.5, as is etcd --log-package-levels

flag.

Changed gRPC gateway HTTP endpoints (deprecated /v3beta)

Before

After

/v3beta  has been removed in 3.5 release.

-etcd --debug
+etcd --log-level debug



-etcd --log-package-levels 'etcdmain=CRITICAL,etcdserver=DEBUG'
+etcd --logger=zap --log-outputs=stderr



-$ curl http://127.0.0.1:2379/config/local/log -XPUT -d '{"Level":"DEBUG"}'
-# debug logging enabled



curl -L http://localhost:2379/v3beta/kv/put \
  -X POST -d '{"key": "Zm9v", "value": "YmFy"}'



curl -L http://localhost:2379/v3/kv/put \
  -X POST -d '{"key": "Zm9v", "value": "YmFy"}'





Server upgrade checklists

Upgrade requirements

To upgrade an existing etcd deployment to 3.5, the running cluster must be 3.4 or greater. If

it’s before 3.4, please upgrade to 3.4 before upgrading to 3.5.

Also, to ensure a smooth rolling upgrade, the running cluster must be healthy. Check the

health of the cluster by using the etcdctl endpoint health  command before proceeding.

Preparation

Before upgrading etcd, always test the services relying on etcd in a staging environment

before deploying the upgrade to the production environment.

Before beginning, download the snapshot backup. Should something go wrong with the

upgrade, it is possible to use this backup to downgrade back to existing etcd version. Please

note that the snapshot  command only backs up the v3 data. For v2 data, see backing up v2

datastore.

Mixed versions

While upgrading, an etcd cluster supports mixed versions of etcd members, and operates

with the protocol of the lowest common version. The cluster is only considered upgraded

once all of its members are upgraded to version 3.5. Internally, etcd members negotiate with

each other to determine the overall cluster version, which controls the reported version and

the supported features.

Limitations

Note: If the cluster only has v3 data and no v2 data, it is not subject to this limitation.

If the cluster is serving a v2 data set larger than 50MB, each newly upgraded member may

take up to two minutes to catch up with the existing cluster. Check the size of a recent

snapshot to estimate the total data size. In other words, it is safest to wait for 2 minutes

between upgrading each member.

For a much larger total data size, 100MB or more , this one-time process might take even

more time. Administrators of very large etcd clusters of this magnitude can feel free to

contact the etcd team  before upgrading, and we’ll be happy to provide advice on the

procedure.

Downgrade



https://etcd.io/docs/v3.5/upgrades/upgrade_3_3/
https://etcd.io/docs/v3.5/op-guide/maintenance/#snapshot-backup
https://etcd.io/docs/v2.3/admin_guide#backing-up-the-datastore
https://etcd.io/docs/v2.3/admin_guide#backing-up-the-datastore
https://groups.google.com/g/etcd-dev
https://groups.google.com/g/etcd-dev
https://groups.google.com/g/etcd-dev


If all members have been upgraded to v3.5, the cluster will be upgraded to v3.5, and

downgrade from this completed state is not possible. If any single member is still v3.4,

however, the cluster and its operations remains “v3.4”, and it is possible from this mixed

cluster state to return to using a v3.4 etcd binary on all members.

Please download the snapshot backup to make downgrading the cluster possible even after it

has been completely upgraded.

Upgrade procedure

This example shows how to upgrade a 3-member v3.4 etcd cluster running on a local

machine.

Step 1: check upgrade requirements

Is the cluster healthy and running v3.4.x?

Step 2: download snapshot backup from leader

Download the snapshot backup to provide a downgrade path should any problems occur.

etcd leader is guaranteed to have the latest application data, thus fetch snapshot from

leader:

etcdctl --endpoints=localhost:2379,localhost:22379,localhost:32379 endpoint health
<<COMMENT
localhost:2379 is healthy: successfully committed proposal: took = 2.118638ms
localhost:22379 is healthy: successfully committed proposal: took = 3.631388ms
localhost:32379 is healthy: successfully committed proposal: took = 2.157051ms
COMMENT

curl http://localhost:2379/version
<<COMMENT
{"etcdserver":"3.4.0","etcdcluster":"3.4.0"}
COMMENT

curl http://localhost:22379/version
<<COMMENT
{"etcdserver":"3.4.0","etcdcluster":"3.4.0"}
COMMENT

curl http://localhost:32379/version
<<COMMENT
{"etcdserver":"3.4.0","etcdcluster":"3.4.0"}
COMMENT



https://etcd.io/docs/v3.5/op-guide/maintenance/#snapshot-backup
https://etcd.io/docs/v3.5/op-guide/maintenance/#snapshot-backup


Step 3: stop one existing etcd server

When each etcd process is stopped, expected errors will be logged by other cluster members.

This is normal since a cluster member connection has been (temporarily) broken:

curl -sL http://localhost:2379/metrics | grep etcd_server_is_leader
<<COMMENT
# HELP etcd_server_is_leader Whether or not this member is a leader. 1 if is, 0 otherwise
# TYPE etcd_server_is_leader gauge
etcd_server_is_leader 1
COMMENT

curl -sL http://localhost:22379/metrics | grep etcd_server_is_leader
<<COMMENT
etcd_server_is_leader 0
COMMENT

curl -sL http://localhost:32379/metrics | grep etcd_server_is_leader
<<COMMENT
etcd_server_is_leader 0
COMMENT

etcdctl --endpoints=localhost:2379 snapshot save backup.db
<<COMMENT
{"level":"info","ts":1526585787.148433,"caller":"snapshot/v3_snapshot.go:109","msg":"crea
{"level":"info","ts":1526585787.1485257,"caller":"snapshot/v3_snapshot.go:120","msg":"fet
{"level":"info","ts":1526585787.1519694,"caller":"snapshot/v3_snapshot.go:133","msg":"fet
{"level":"info","ts":1526585787.1520295,"caller":"snapshot/v3_snapshot.go:142","msg":"sav
Snapshot saved at backup.db
COMMENT



{"level":"info","ts":1526587281.2001143,"caller":"etcdserver/server.go:2249","msg":"updat
{"level":"info","ts":1526587281.2010646,"caller":"membership/cluster.go:473","msg":"updat
{"level":"info","ts":1526587281.2012327,"caller":"api/capability.go:76","msg":"enabled ca
{"level":"info","ts":1526587281.2013083,"caller":"etcdserver/server.go:2272","msg":"clust

^C{"level":"info","ts":1526587299.0717514,"caller":"osutil/interrupt_unix.go:63","msg":"r
{"level":"info","ts":1526587299.0718873,"caller":"embed/etcd.go:285","msg":"closing etcd 
{"level":"info","ts":1526587299.0722554,"caller":"etcdserver/server.go:1341","msg":"leade
{"level":"info","ts":1526587299.0723994,"caller":"raft/raft.go:1107","msg":"7339c4e5e833c
{"level":"info","ts":1526587299.0724802,"caller":"raft/raft.go:1113","msg":"7339c4e5e833c
{"level":"info","ts":1526587299.0737045,"caller":"raft/raft.go:797","msg":"7339c4e5e833c0
{"level":"info","ts":1526587299.0737681,"caller":"raft/raft.go:656","msg":"7339c4e5e833c0
{"level":"info","ts":1526587299.073831,"caller":"raft/raft.go:882","msg":"7339c4e5e833c02





Step 4: restart the etcd server with same configuration

Restart the etcd server with same configuration but with the new etcd binary.

{"level":"info","ts":1526587299.0738947,"caller":"raft/node.go:312","msg":"raft.node: 733
{"level":"info","ts":1526587299.0748374,"caller":"raft/node.go:306","msg":"raft.node: 733
{"level":"info","ts":1526587299.1726425,"caller":"etcdserver/server.go:1362","msg":"leade
{"level":"info","ts":1526587299.1728148,"caller":"rafthttp/peer.go:333","msg":"stopping r
{"level":"warn","ts":1526587299.1751974,"caller":"rafthttp/stream.go:291","msg":"closed T
{"level":"warn","ts":1526587299.1752589,"caller":"rafthttp/stream.go:301","msg":"stopped 
{"level":"warn","ts":1526587299.177348,"caller":"rafthttp/stream.go:291","msg":"closed TC
{"level":"warn","ts":1526587299.1774004,"caller":"rafthttp/stream.go:301","msg":"stopped 
{"level":"info","ts":1526587299.177515,"caller":"rafthttp/pipeline.go:86","msg":"stopped 
{"level":"warn","ts":1526587299.1777067,"caller":"rafthttp/stream.go:436","msg":"lost TCP
{"level":"info","ts":1526587299.1778402,"caller":"rafthttp/stream.go:459","msg":"stopped 
{"level":"warn","ts":1526587299.1780295,"caller":"rafthttp/stream.go:436","msg":"lost TCP
{"level":"info","ts":1526587299.1780987,"caller":"rafthttp/stream.go:459","msg":"stopped 
{"level":"info","ts":1526587299.1781602,"caller":"rafthttp/peer.go:340","msg":"stopped re
{"level":"info","ts":1526587299.1781986,"caller":"rafthttp/peer.go:333","msg":"stopping r
{"level":"warn","ts":1526587299.1802843,"caller":"rafthttp/stream.go:291","msg":"closed T
{"level":"warn","ts":1526587299.1803446,"caller":"rafthttp/stream.go:301","msg":"stopped 
{"level":"warn","ts":1526587299.1824749,"caller":"rafthttp/stream.go:291","msg":"closed T
{"level":"warn","ts":1526587299.18255,"caller":"rafthttp/stream.go:301","msg":"stopped TC
{"level":"info","ts":1526587299.18261,"caller":"rafthttp/pipeline.go:86","msg":"stopped H
{"level":"warn","ts":1526587299.1827736,"caller":"rafthttp/stream.go:436","msg":"lost TCP
{"level":"info","ts":1526587299.182845,"caller":"rafthttp/stream.go:459","msg":"stopped s
{"level":"warn","ts":1526587299.1830168,"caller":"rafthttp/stream.go:436","msg":"lost TCP
{"level":"warn","ts":1526587299.1831107,"caller":"rafthttp/peer_status.go:65","msg":"peer
{"level":"info","ts":1526587299.1831737,"caller":"rafthttp/stream.go:459","msg":"stopped 
{"level":"info","ts":1526587299.1832306,"caller":"rafthttp/peer.go:340","msg":"stopped re
{"level":"warn","ts":1526587299.1837125,"caller":"rafthttp/http.go:424","msg":"failed to 
{"level":"warn","ts":1526587299.1840093,"caller":"rafthttp/http.go:424","msg":"failed to 
{"level":"warn","ts":1526587299.1842315,"caller":"rafthttp/http.go:424","msg":"failed to 
{"level":"warn","ts":1526587299.1844475,"caller":"rafthttp/http.go:424","msg":"failed to 
{"level":"info","ts":1526587299.2056687,"caller":"embed/etcd.go:473","msg":"stopping serv
{"level":"info","ts":1526587299.205819,"caller":"embed/etcd.go:480","msg":"stopped servin
{"level":"info","ts":1526587299.2058413,"caller":"embed/etcd.go:289","msg":"closed etcd s

-etcd-old --name s1 \
+etcd-new --name s1 \
  --data-dir /tmp/etcd/s1 \
  --listen-client-urls http://localhost:2379 \
  --advertise-client-urls http://localhost:2379 \
  --listen-peer-urls http://localhost:2380 \
  --initial-advertise-peer-urls http://localhost:2380 \
  --initial-cluster s1=http://localhost:2380,s2=http://localhost:22380,s3=http://localhos
  --initial-cluster-token tkn \





The new v3.5 etcd will publish its information to the cluster. At this point, cluster still operates

as v3.4 protocol, which is the lowest common version.

{"level":"info","ts":1526586617.1647713,"caller":"membership/cluster.go:485","msg":"set

initial cluster version","cluster-id":"7dee9ba76d59ed53","local-member-

id":"7339c4e5e833c029","cluster-version":"3.0"}

{"level":"info","ts":1526586617.1648536,"caller":"api/capability.go:76","msg":"enabled

capabilities for version","cluster-version":"3.0"}

{"level":"info","ts":1526586617.1649303,"caller":"membership/cluster.go:473","msg":"updat

ed cluster version","cluster-id":"7dee9ba76d59ed53","local-member-

id":"7339c4e5e833c029","from":"3.0","from":"3.4"}

{"level":"info","ts":1526586617.1649797,"caller":"api/capability.go:76","msg":"enabled

capabilities for version","cluster-version":"3.4"}

{"level":"info","ts":1526586617.2107732,"caller":"etcdserver/server.go:1770","msg":"publi

shed local member to cluster through raft","local-member-id":"7339c4e5e833c029","local-

member-attributes":"{Name:s1 ClientURLs:[http://localhost:2379]}","request-

path":"/0/members/7339c4e5e833c029/attributes","cluster-id":"7dee9ba76d59ed53","publish-

timeout":7}

Verify that each member, and then the entire cluster, becomes healthy with the new v3.5

etcd binary:

Un-upgraded members will log warnings like the following until the entire cluster is

upgraded.

This is expected and will cease after all etcd cluster members are upgraded to v3.5:

:41.942121 W | etcdserver: member 7339c4e5e833c029 has a higher version 3.5.0
:45.945154 W | etcdserver: the local etcd version 3.4.0 is not up-to-date

  --initial-cluster-state new

etcdctl endpoint health --endpoints=localhost:2379,localhost:22379,localhost:32379
<<COMMENT
localhost:32379 is healthy: successfully committed proposal: took = 2.337471ms
localhost:22379 is healthy: successfully committed proposal: took = 1.130717ms
localhost:2379 is healthy: successfully committed proposal: took = 2.124843ms
COMMENT





Step 5: repeat step 3 and step 4 for rest of the members

When all members are upgraded, the cluster will report upgrading to 3.5 successfully:

Member 1:

{"level":"info","ts":1526586949.0920913,"caller":"api/capability.go:76","msg":"enabled

capabilities for version","cluster-version":"3.5"}

{"level":"info","ts":1526586949.0921566,"caller":"etcdserver/server.go:2272","msg":"clust

er version is updated","cluster-version":"3.5"}

Member 2:

{"level":"info","ts":1526586949.092117,"caller":"membership/cluster.go:473","msg":"update

d cluster version","cluster-id":"7dee9ba76d59ed53","local-member-

id":"729934363faa4a24","from":"3.4","from":"3.5"}

{"level":"info","ts":1526586949.0923078,"caller":"api/capability.go:76","msg":"enabled

capabilities for version","cluster-version":"3.5"}

Member 3:

{"level":"info","ts":1526586949.0921423,"caller":"membership/cluster.go:473","msg":"updat

ed cluster version","cluster-id":"7dee9ba76d59ed53","local-member-

id":"b548c2511513015","from":"3.4","from":"3.5"}

{"level":"info","ts":1526586949.0922918,"caller":"api/capability.go:76","msg":"enabled

capabilities for version","cluster-version":"3.5"}

endpoint health --endpoints=localhost:2379,localhost:22379,localhost:32379
<<COMMENT
localhost:2379 is healthy: successfully committed proposal: took = 492.834µs
localhost:22379 is healthy: successfully committed proposal: took = 1.015025ms
localhost:32379 is healthy: successfully committed proposal: took = 1.853077ms
COMMENT

curl http://localhost:2379/version
<<COMMENT
{"etcdserver":"3.5.0","etcdcluster":"3.5.0"}
COMMENT

curl http://localhost:22379/version
<<COMMENT
{"etcdserver":"3.5.0","etcdcluster":"3.5.0"}
COMMENT

curl http://localhost:32379/version
<<COMMENT
{"etcdserver":"3.5.0","etcdcluster":"3.5.0"}





Last modified August 19, 2023: etcd-io/website#479 Use new and better canonical link to

Google Groups (cd8b01f)

COMMENT



https://github.com/etcd-io/website/commit/cd8b01f2f96d06f92d79e45e8c189606e9b81239
https://github.com/etcd-io/website/commit/cd8b01f2f96d06f92d79e45e8c189606e9b81239
https://github.com/etcd-io/website/commit/cd8b01f2f96d06f92d79e45e8c189606e9b81239
https://github.com/etcd-io/website/commit/cd8b01f2f96d06f92d79e45e8c189606e9b81239


Upgrade etcd from 3.3 to 3.4

Processes, checklists, and notes on upgrading etcd from 3.3 to 3.4

In the general case, upgrading from etcd 3.3 to 3.4 can be a zero-downtime, rolling upgrade:

one by one, stop the etcd v3.3 processes and replace them with etcd v3.4 processes

after running all v3.4 processes, new features in v3.4 are available to the cluster

Before starting an upgrade, read through the rest of this guide to prepare.

Upgrade checklists

NOTE: When migrating from v2 with no v3 data , etcd server v3.2+ panics when etcd restores

from existing snapshots but no v3 ETCD_DATA_DIR/member/snap/db  file. This happens when the

server had migrated from v2 with no previous v3 data. This also prevents accidental v3 data

loss (e.g. db  file might have been moved). etcd requires that post v3 migration can only

happen with v3 data. Do not upgrade to newer v3 versions until v3.0 server contains v3 data.

Highlighted breaking changes in 3.4.

Make ETCDCTL_API=3 etcdctl default

ETCDCTL_API=3  is now the default.



etcdctl set foo bar
Error: unknown command "set" for "etcdctl"

-etcdctl set foo bar
+ETCDCTL_API=2 etcdctl set foo bar
bar

ETCDCTL_API=3 etcdctl put foo bar
OK

-ETCDCTL_API=3 etcdctl put foo bar
+etcdctl put foo bar



etcd

Docs Blog Community Install Play

https://github.com/etcd-io/etcd/issues/9480
https://github.com/etcd-io/etcd/issues/9480
https://github.com/etcd-io/etcd/issues/9480
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Make etcd --enable-v2=false default

etcd --enable-v2=false  is now the default.

This means, unless etcd --enable-v2=true  is specified, etcd v3.4 server would not serve v2

API requests.

If v2 API were used, make sure to enable v2 API in v3.4:

Other HTTP APIs will still work (e.g. [CLIENT-URL]/metrics , [CLIENT-URL]/health , v3 gRPC

gateway).

Deprecated etcd --ca-file and etcd --peer-ca-file flags

--ca-file  and --peer-ca-file  flags are deprecated; they have been deprecated since v2.1.

Note setting this parameter will also automatically enable client cert authentication no matter

what value is set for --client-cert-auth .

Deprecated grpc.ErrClientConnClosing error

grpc.ErrClientConnClosing  has been deprecated in gRPC >= 1.10 .



-etcd
+etcd --enable-v2=true



-etcd --ca-file ca-client.crt
+etcd --trusted-ca-file ca-client.crt



-etcd --peer-ca-file ca-peer.crt
+etcd --peer-trusted-ca-file ca-peer.crt





import (
+ "go.etcd.io/etcd/clientv3"

"google.golang.org/grpc"
+ "google.golang.org/grpc/codes"
+ "google.golang.org/grpc/status"
)



https://github.com/etcd-io/etcd/pull/10935
https://github.com/etcd-io/etcd/pull/10935
https://github.com/etcd-io/etcd/pull/10935
https://github.com/grpc/grpc-go/pull/1854
https://github.com/grpc/grpc-go/pull/1854
https://github.com/grpc/grpc-go/pull/1854


Require grpc.WithBlock for client dial

The new client balancer uses an asynchronous resolver to pass endpoints to the gRPC dial

function. As a result, v3.4 client requires grpc.WithBlock  dial option to wait until the

underlying connection is up.

Deprecating etcd_debugging_mvcc_db_total_size_in_bytes Prometheus
metrics

v3.4 promotes etcd_debugging_mvcc_db_total_size_in_bytes  Prometheus metrics to

etcd_mvcc_db_total_size_in_bytes , in order to encourage etcd storage monitoring.

etcd_debugging_mvcc_db_total_size_in_bytes  is still served in v3.4 for backward compatibilities.

It will be completely deprecated in v3.5.

_, err := kvc.Get(ctx, "a")
-if err == grpc.ErrClientConnClosing {
+if clientv3.IsConnCanceled(err) {

// or
+s, ok := status.FromError(err)
+if ok {
+  if s.Code() == codes.Canceled

import (
"time"
"go.etcd.io/etcd/clientv3"

+ "google.golang.org/grpc"
)

+// "grpc.WithBlock()" to block until the underlying connection is up
ccfg := clientv3.Config{
  Endpoints:            []string{"localhost:2379"},
  DialTimeout:          time.Second,
+ DialOptions:          []grpc.DialOption{grpc.WithBlock()},
  DialKeepAliveTime:    time.Second,
  DialKeepAliveTimeout: 500 * time.Millisecond,
}



-etcd_debugging_mvcc_db_total_size_in_bytes
+etcd_mvcc_db_total_size_in_bytes



https://etcd.io/docs/v3.5/learning/design-client/


Note that etcd_debugging_*  namespace metrics have been marked as experimental. As we

improve monitoring guide, we may promote more metrics.

Deprecating etcd_debugging_mvcc_put_total Prometheus metrics

v3.4 promotes etcd_debugging_mvcc_put_total  Prometheus metrics to etcd_mvcc_put_total , in

order to encourage etcd storage monitoring.

etcd_debugging_mvcc_put_total  is still served in v3.4 for backward compatibilities. It will be

completely deprecated in v3.5.

Note that etcd_debugging_*  namespace metrics have been marked as experimental. As we

improve monitoring guide, we may promote more metrics.

Deprecating etcd_debugging_mvcc_delete_total Prometheus metrics

v3.4 promotes etcd_debugging_mvcc_delete_total  Prometheus metrics to

etcd_mvcc_delete_total , in order to encourage etcd storage monitoring.

etcd_debugging_mvcc_delete_total  is still served in v3.4 for backward compatibilities. It will be

completely deprecated in v3.5.

Note that etcd_debugging_*  namespace metrics have been marked as experimental. As we

improve monitoring guide, we may promote more metrics.

Deprecating etcd_debugging_mvcc_txn_total Prometheus metrics

v3.4 promotes etcd_debugging_mvcc_txn_total  Prometheus metrics to etcd_mvcc_txn_total , in

order to encourage etcd storage monitoring.

etcd_debugging_mvcc_txn_total  is still served in v3.4 for backward compatibilities. It will be

completely deprecated in v3.5.

-etcd_debugging_mvcc_put_total
+etcd_mvcc_put_total



-etcd_debugging_mvcc_delete_total
+etcd_mvcc_delete_total







Note that etcd_debugging_*  namespace metrics have been marked as experimental. As we

improve monitoring guide, we may promote more metrics.

Deprecating etcd_debugging_mvcc_range_total Prometheus metrics

v3.4 promotes etcd_debugging_mvcc_range_total  Prometheus metrics to

etcd_mvcc_range_total , in order to encourage etcd storage monitoring.

etcd_debugging_mvcc_range_total  is still served in v3.4 for backward compatibilities. It will be

completely deprecated in v3.5.

Note that etcd_debugging_*  namespace metrics have been marked as experimental. As we

improve monitoring guide, we may promote more metrics.

Deprecating etcd --log-output flag (now --log-outputs)

Rename etcd --log-output  to --log-outputs  to support multiple log outputs. etcd --

logger=capnslog  does not support multiple log outputs.

etcd --log-output  will be deprecated in v3.5. etcd --logger=capnslog  will be deprecated in

v3.5.

v3.4 adds etcd --logger=zap --log-outputs=stderr  support for structured logging and multiple

log outputs. Main motivation is to promote automated etcd monitoring, rather than looking

back server logs when it starts breaking. Future development will make etcd log as few as

possible, and make etcd easier to monitor with metrics and alerts. etcd --logger=capnslog

will be deprecated in v3.5.

-etcd_debugging_mvcc_txn_total
+etcd_mvcc_txn_total

-etcd_debugging_mvcc_range_total
+etcd_mvcc_range_total





-etcd --log-output=stderr
+etcd --log-outputs=stderr

+# to write logs to stderr and a.log file at the same time
+# only "--logger=zap" supports multiple writers
+etcd --logger=zap --log-outputs=stderr,a.log



https://github.com/etcd-io/etcd/pull/9624
https://github.com/etcd-io/etcd/pull/9624
https://github.com/etcd-io/etcd/pull/9624


Changed log-outputs field type in etcd --config-file to []string

Now that log-outputs  (old field name log-output ) accepts multiple writers, etcd

configuration YAML file log-outputs  field must be changed to []string  type as below:

Renamed embed.Config.LogOutput to embed.Config.LogOutputs

Renamed embed.Config.LogOutput  to embed.Config.LogOutputs  to support multiple log

outputs. And changed embed.Config.LogOutput  type from string  to []string  to support

multiple log outputs.

v3.5 deprecates capnslog

v3.5 will deprecate etcd --log-package-levels  flag for capnslog ; etcd --logger=zap --log-

outputs=stderr  will the default. v3.5 will deprecate [CLIENT-URL]/config/local/log  endpoint.

Deprecating etcd --debug flag (now --log-level=debug)

v3.4 deprecates etcd --debug  flag. Instead, use etcd --log-level=debug  flag.

Deprecated pkg/transport.TLSInfo.CAFile field

 # Specify 'stdout' or 'stderr' to skip journald logging even when running under systemd
-log-output: default
+log-outputs: [default]







import "github.com/coreos/etcd/embed"

cfg := &embed.Config{Debug: false}
-cfg.LogOutput = "stderr"
+cfg.LogOutputs = []string{"stderr"}



-etcd
+etcd --logger zap





-etcd --debug
+etcd --logger zap --log-level debug



https://github.com/etcd-io/etcd/pull/9624
https://github.com/etcd-io/etcd/pull/9624
https://github.com/etcd-io/etcd/pull/9624
https://github.com/etcd-io/etcd/pull/9579
https://github.com/etcd-io/etcd/pull/9579
https://github.com/etcd-io/etcd/pull/9579
https://github.com/etcd-io/etcd/pull/10947
https://github.com/etcd-io/etcd/pull/10947
https://github.com/etcd-io/etcd/pull/10947


Deprecated pkg/transport.TLSInfo.CAFile  field.

Changed embed.Config.SnapCount to embed.Config.SnapshotCount

To be consistent with the flag name etcd --snapshot-count , embed.Config.SnapCount  field has

been renamed to embed.Config.SnapshotCount :

Changed etcdserver.ServerConfig.SnapCount to
etcdserver.ServerConfig.SnapshotCount

To be consistent with the flag name etcd --snapshot-count ,

etcdserver.ServerConfig.SnapCount  field has been renamed to

etcdserver.ServerConfig.SnapshotCount :

Changed function signature in package wal

import "github.com/coreos/etcd/pkg/transport"

tlsInfo := transport.TLSInfo{
    CertFile: "/tmp/test-certs/test.pem",
    KeyFile: "/tmp/test-certs/test-key.pem",
-   CAFile: "/tmp/test-certs/trusted-ca.pem",
+   TrustedCAFile: "/tmp/test-certs/trusted-ca.pem",
}
tlsConfig, err := tlsInfo.ClientConfig()
if err != nil {
    panic(err)
}



import "github.com/coreos/etcd/embed"

cfg := embed.NewConfig()
-cfg.SnapCount = 100000
+cfg.SnapshotCount = 100000



import "github.com/coreos/etcd/etcdserver"

srvcfg := etcdserver.ServerConfig{
-  SnapCount: 100000,
+  SnapshotCount: 100000,





Changed wal  function signatures to support structured logger.

Changed IntervalTree type in package pkg/adt

pkg/adt.IntervalTree  is now defined as an interface .

Deprecated embed.Config.SetupLogging

embed.Config.SetupLogging  has been removed in order to prevent wrong logging

configuration, and now set up automatically.

import "github.com/coreos/etcd/wal"
+import "go.uber.org/zap"

+lg, _ = zap.NewProduction()

-wal.Open(dirpath, snap)
+wal.Open(lg, dirpath, snap)

-wal.OpenForRead(dirpath, snap)
+wal.OpenForRead(lg, dirpath, snap)

-wal.Repair(dirpath)
+wal.Repair(lg, dirpath)

-wal.Create(dirpath, metadata)
+wal.Create(lg, dirpath, metadata)



import (
    "fmt"

    "go.etcd.io/etcd/pkg/adt"
)

func main() {
-    ivt := &adt.IntervalTree{}
+    ivt := adt.NewIntervalTree()







Changed gRPC gateway HTTP endpoints (replaced /v3beta with /v3)

Before

After

Requests to /v3beta  endpoints will redirect to /v3 , and /v3beta  will be removed in 3.5

release.

Deprecated container image tags

latest  and minor version images tags are deprecated:

Server upgrade checklists

import "github.com/coreos/etcd/embed"

cfg := &embed.Config{Debug: false}
-cfg.SetupLogging()

curl -L http://localhost:2379/v3beta/kv/put \
  -X POST -d '{"key": "Zm9v", "value": "YmFy"}'



curl -L http://localhost:2379/v3/kv/put \
  -X POST -d '{"key": "Zm9v", "value": "YmFy"}'



-docker pull gcr.io/etcd-development/etcd:latest
+docker pull gcr.io/etcd-development/etcd:v3.4.0

-docker pull gcr.io/etcd-development/etcd:v3.4
+docker pull gcr.io/etcd-development/etcd:v3.4.0

-docker pull gcr.io/etcd-development/etcd:v3.4
+docker pull gcr.io/etcd-development/etcd:v3.4.1

-docker pull gcr.io/etcd-development/etcd:v3.4
+docker pull gcr.io/etcd-development/etcd:v3.4.2





Upgrade requirements

To upgrade an existing etcd deployment to 3.4, the running cluster must be 3.3 or greater. If

it’s before 3.3, please upgrade to 3.3 before upgrading to 3.4.

Also, to ensure a smooth rolling upgrade, the running cluster must be healthy. Check the

health of the cluster by using the etcdctl endpoint health  command before proceeding.

Preparation

Before upgrading etcd, always test the services relying on etcd in a staging environment

before deploying the upgrade to the production environment.

Before beginning, download the snapshot backup. Should something go wrong with the

upgrade, it is possible to use this backup to downgrade back to existing etcd version. Please

note that the snapshot  command only backs up the v3 data. For v2 data, see backing up v2

datastore.

Mixed versions

While upgrading, an etcd cluster supports mixed versions of etcd members, and operates

with the protocol of the lowest common version. The cluster is only considered upgraded

once all of its members are upgraded to version 3.4. Internally, etcd members negotiate with

each other to determine the overall cluster version, which controls the reported version and

the supported features.

Limitations

Note: If the cluster only has v3 data and no v2 data, it is not subject to this limitation.

If the cluster is serving a v2 data set larger than 50MB, each newly upgraded member may

take up to two minutes to catch up with the existing cluster. Check the size of a recent

snapshot to estimate the total data size. In other words, it is safest to wait for 2 minutes

between upgrading each member.

For a much larger total data size, 100MB or more , this one-time process might take even

more time. Administrators of very large etcd clusters of this magnitude can feel free to

contact the etcd team  before upgrading, and we’ll be happy to provide advice on the

procedure.

Downgrade

If all members have been upgraded to v3.4, the cluster will be upgraded to v3.4, and

downgrade from this completed state is not possible. If any single member is still v3.3,



https://etcd.io/docs/v3.5/upgrades/upgrade_3_3/
https://etcd.io/docs/v3.5/op-guide/maintenance/#snapshot-backup
https://etcd.io/docs/v2.3/admin_guide/#backing-up-the-datastore
https://etcd.io/docs/v2.3/admin_guide/#backing-up-the-datastore
https://groups.google.com/g/etcd-dev
https://groups.google.com/g/etcd-dev
https://groups.google.com/g/etcd-dev


however, the cluster and its operations remains “v3.3”, and it is possible from this mixed

cluster state to return to using a v3.3 etcd binary on all members.

Please download the snapshot backup to make downgrading the cluster possible even after it

has been completely upgraded.

Upgrade procedure

This example shows how to upgrade a 3-member v3.3 etcd cluster running on a local

machine.

Step 1: check upgrade requirements

Is the cluster healthy and running v3.3.x?

Step 2: download snapshot backup from leader

Download the snapshot backup to provide a downgrade path should any problems occur.

etcd leader is guaranteed to have the latest application data, thus fetch snapshot from

leader:

etcdctl --endpoints=localhost:2379,localhost:22379,localhost:32379 endpoint health
<<COMMENT
localhost:2379 is healthy: successfully committed proposal: took = 2.118638ms
localhost:22379 is healthy: successfully committed proposal: took = 3.631388ms
localhost:32379 is healthy: successfully committed proposal: took = 2.157051ms
COMMENT

curl http://localhost:2379/version
<<COMMENT
{"etcdserver":"3.3.5","etcdcluster":"3.3.0"}
COMMENT

curl http://localhost:22379/version
<<COMMENT
{"etcdserver":"3.3.5","etcdcluster":"3.3.0"}
COMMENT

curl http://localhost:32379/version
<<COMMENT
{"etcdserver":"3.3.5","etcdcluster":"3.3.0"}
COMMENT



https://etcd.io/docs/v3.5/op-guide/maintenance/#snapshot-backup
https://etcd.io/docs/v3.5/op-guide/maintenance/#snapshot-backup


Step 3: stop one existing etcd server

When each etcd process is stopped, expected errors will be logged by other cluster members.

This is normal since a cluster member connection has been (temporarily) broken:

curl -sL http://localhost:2379/metrics | grep etcd_server_is_leader
<<COMMENT
# HELP etcd_server_is_leader Whether or not this member is a leader. 1 if is, 0 otherwise
# TYPE etcd_server_is_leader gauge
etcd_server_is_leader 1
COMMENT

curl -sL http://localhost:22379/metrics | grep etcd_server_is_leader
<<COMMENT
etcd_server_is_leader 0
COMMENT

curl -sL http://localhost:32379/metrics | grep etcd_server_is_leader
<<COMMENT
etcd_server_is_leader 0
COMMENT

etcdctl --endpoints=localhost:2379 snapshot save backup.db
<<COMMENT
{"level":"info","ts":1526585787.148433,"caller":"snapshot/v3_snapshot.go:109","msg":"crea
{"level":"info","ts":1526585787.1485257,"caller":"snapshot/v3_snapshot.go:120","msg":"fet
{"level":"info","ts":1526585787.1519694,"caller":"snapshot/v3_snapshot.go:133","msg":"fet
{"level":"info","ts":1526585787.1520295,"caller":"snapshot/v3_snapshot.go:142","msg":"sav
Snapshot saved at backup.db
COMMENT



10.237579 I | etcdserver: updating the cluster version from 3.0 to 3.3
10.238315 N | etcdserver/membership: updated the cluster version from 3.0 to 3.3
10.238451 I | etcdserver/api: enabled capabilities for version 3.3

^C21.192174 N | pkg/osutil: received interrupt signal, shutting down...
21.192459 I | etcdserver: 7339c4e5e833c029 starts leadership transfer from 7339c4e5e833c0
21.192569 I | raft: 7339c4e5e833c029 [term 8] starts to transfer leadership to 729934363f
21.192619 I | raft: 7339c4e5e833c029 sends MsgTimeoutNow to 729934363faa4a24 immediately 
WARNING: 2018/05/17 12:45:21 grpc: addrConn.resetTransport failed to create client transp
WARNING: 2018/05/17 12:45:21 grpc: addrConn.transportMonitor exits due to: grpc: the conn
21.193589 I | raft: 7339c4e5e833c029 [term: 8] received a MsgVote message with higher ter
21.193626 I | raft: 7339c4e5e833c029 became follower at term 9
21.193651 I | raft: 7339c4e5e833c029 [logterm: 8, index: 9, vote: 0] cast MsgVote for 729
21.193675 I | raft: raft.node: 7339c4e5e833c029 lost leader 7339c4e5e833c029 at term 9





Step 4: restart the etcd server with same configuration

Restart the etcd server with same configuration but with the new etcd binary.

21.194424 I | raft: raft.node: 7339c4e5e833c029 elected leader 729934363faa4a24 at term 9
21.292898 I | etcdserver: 7339c4e5e833c029 finished leadership transfer from 7339c4e5e833
21.292975 I | rafthttp: stopping peer 729934363faa4a24...
21.293206 I | rafthttp: closed the TCP streaming connection with peer 729934363faa4a24 (s
21.293225 I | rafthttp: stopped streaming with peer 729934363faa4a24 (writer)
21.293437 I | rafthttp: closed the TCP streaming connection with peer 729934363faa4a24 (s
21.293459 I | rafthttp: stopped streaming with peer 729934363faa4a24 (writer)
21.293514 I | rafthttp: stopped HTTP pipelining with peer 729934363faa4a24
21.293590 W | rafthttp: lost the TCP streaming connection with peer 729934363faa4a24 (str
21.293610 I | rafthttp: stopped streaming with peer 729934363faa4a24 (stream MsgApp v2 re
21.293680 W | rafthttp: lost the TCP streaming connection with peer 729934363faa4a24 (str
21.293700 I | rafthttp: stopped streaming with peer 729934363faa4a24 (stream Message read
21.293711 I | rafthttp: stopped peer 729934363faa4a24
21.293720 I | rafthttp: stopping peer b548c2511513015...
21.293987 I | rafthttp: closed the TCP streaming connection with peer b548c2511513015 (st
21.294063 I | rafthttp: stopped streaming with peer b548c2511513015 (writer)
21.294467 I | rafthttp: closed the TCP streaming connection with peer b548c2511513015 (st
21.294561 I | rafthttp: stopped streaming with peer b548c2511513015 (writer)
21.294742 I | rafthttp: stopped HTTP pipelining with peer b548c2511513015
21.294867 W | rafthttp: lost the TCP streaming connection with peer b548c2511513015 (stre
21.294892 I | rafthttp: stopped streaming with peer b548c2511513015 (stream MsgApp v2 rea
21.294990 W | rafthttp: lost the TCP streaming connection with peer b548c2511513015 (stre
21.295004 E | rafthttp: failed to read b548c2511513015 on stream Message (context cancele
21.295013 I | rafthttp: peer b548c2511513015 became inactive
21.295024 I | rafthttp: stopped streaming with peer b548c2511513015 (stream Message reade
21.295035 I | rafthttp: stopped peer b548c2511513015

-etcd-old --name s1 \
+etcd-new --name s1 \
  --data-dir /tmp/etcd/s1 \
  --listen-client-urls http://localhost:2379 \
  --advertise-client-urls http://localhost:2379 \
  --listen-peer-urls http://localhost:2380 \
  --initial-advertise-peer-urls http://localhost:2380 \
  --initial-cluster s1=http://localhost:2380,s2=http://localhost:22380,s3=http://localhos
  --initial-cluster-token tkn \
+ --initial-cluster-state new \
+ --logger zap \
+ --log-outputs stderr





The new v3.4 etcd will publish its information to the cluster. At this point, cluster still operates

as v3.3 protocol, which is the lowest common version.

{"level":"info","ts":1526586617.1647713,"caller":"membership/cluster.go:485","msg":"set

initial cluster version","cluster-id":"7dee9ba76d59ed53","local-member-

id":"7339c4e5e833c029","cluster-version":"3.0"}

{"level":"info","ts":1526586617.1648536,"caller":"api/capability.go:76","msg":"enabled

capabilities for version","cluster-version":"3.0"}

{"level":"info","ts":1526586617.1649303,"caller":"membership/cluster.go:473","msg":"updat

ed cluster version","cluster-id":"7dee9ba76d59ed53","local-member-

id":"7339c4e5e833c029","from":"3.0","from":"3.3"}

{"level":"info","ts":1526586617.1649797,"caller":"api/capability.go:76","msg":"enabled

capabilities for version","cluster-version":"3.3"}

{"level":"info","ts":1526586617.2107732,"caller":"etcdserver/server.go:1770","msg":"publi

shed local member to cluster through raft","local-member-id":"7339c4e5e833c029","local-

member-attributes":"{Name:s1 ClientURLs:[http://localhost:2379]}","request-

path":"/0/members/7339c4e5e833c029/attributes","cluster-id":"7dee9ba76d59ed53","publish-

timeout":7}

Verify that each member, and then the entire cluster, becomes healthy with the new v3.4

etcd binary:

Un-upgraded members will log warnings like the following until the entire cluster is

upgraded.

This is expected and will cease after all etcd cluster members are upgraded to v3.4:

:41.942121 W | etcdserver: member 7339c4e5e833c029 has a higher version 3.4.0
:45.945154 W | etcdserver: the local etcd version 3.3.5 is not up-to-date

Step 5: repeat step 3 and step 4 for rest of the members

etcdctl endpoint health --endpoints=localhost:2379,localhost:22379,localhost:32379
<<COMMENT
localhost:32379 is healthy: successfully committed proposal: took = 2.337471ms
localhost:22379 is healthy: successfully committed proposal: took = 1.130717ms
localhost:2379 is healthy: successfully committed proposal: took = 2.124843ms
COMMENT





When all members are upgraded, the cluster will report upgrading to 3.4 successfully:

Member 1:

{"level":"info","ts":1526586949.0920913,"caller":"api/capability.go:76","msg":"enabled

capabilities for version","cluster-version":"3.4"}

{"level":"info","ts":1526586949.0921566,"caller":"etcdserver/server.go:2272","msg":"clust

er version is updated","cluster-version":"3.4"}

Member 2:

{"level":"info","ts":1526586949.092117,"caller":"membership/cluster.go:473","msg":"update

d cluster version","cluster-id":"7dee9ba76d59ed53","local-member-

id":"729934363faa4a24","from":"3.3","from":"3.4"}

{"level":"info","ts":1526586949.0923078,"caller":"api/capability.go:76","msg":"enabled

capabilities for version","cluster-version":"3.4"}

Member 3:

{"level":"info","ts":1526586949.0921423,"caller":"membership/cluster.go:473","msg":"updat

ed cluster version","cluster-id":"7dee9ba76d59ed53","local-member-

id":"b548c2511513015","from":"3.3","from":"3.4"}

{"level":"info","ts":1526586949.0922918,"caller":"api/capability.go:76","msg":"enabled

capabilities for version","cluster-version":"3.4"}

endpoint health --endpoints=localhost:2379,localhost:22379,localhost:32379
<<COMMENT
localhost:2379 is healthy: successfully committed proposal: took = 492.834µs
localhost:22379 is healthy: successfully committed proposal: took = 1.015025ms
localhost:32379 is healthy: successfully committed proposal: took = 1.853077ms
COMMENT

curl http://localhost:2379/version
<<COMMENT
{"etcdserver":"3.4.0","etcdcluster":"3.4.0"}
COMMENT

curl http://localhost:22379/version
<<COMMENT
{"etcdserver":"3.4.0","etcdcluster":"3.4.0"}
COMMENT

curl http://localhost:32379/version
<<COMMENT
{"etcdserver":"3.4.0","etcdcluster":"3.4.0"}
COMMENT





Last modified September 29, 2023: Added note that --trusted-ca-file also enables client cert

authentication Co-authored-by: James Blair <mail@jamesblair.net> (a412dd6)


https://github.com/etcd-io/website/commit/a412dd6efc552aa382fb584c7d625122ad8a91fe
https://github.com/etcd-io/website/commit/a412dd6efc552aa382fb584c7d625122ad8a91fe
https://github.com/etcd-io/website/commit/a412dd6efc552aa382fb584c7d625122ad8a91fe
https://github.com/etcd-io/website/commit/a412dd6efc552aa382fb584c7d625122ad8a91fe


Upgrade etcd from 3.2 to 3.3

Processes, checklists, and notes on upgrading etcd from 3.2 to 3.3

In the general case, upgrading from etcd 3.2 to 3.3 can be a zero-downtime, rolling upgrade:

one by one, stop the etcd v3.2 processes and replace them with etcd v3.3 processes

after running all v3.3 processes, new features in v3.3 are available to the cluster

Before starting an upgrade, read through the rest of this guide to prepare.

Upgrade checklists

NOTE: When migrating from v2 with no v3 data , etcd server v3.2+ panics when etcd restores

from existing snapshots but no v3 ETCD_DATA_DIR/member/snap/db  file. This happens when the

server had migrated from v2 with no previous v3 data. This also prevents accidental v3 data

loss (e.g. db  file might have been moved). etcd requires that post v3 migration can only

happen with v3 data. Do not upgrade to newer v3 versions until v3.0 server contains v3 data.

NOTE: if you enable auth and use lease(lease ttl is small), it has a high probability to

encounter issue  that will result in data inconsistency. It is strongly recommended upgrading

to 3.2.31+ firstly to fix this problem, and then upgrade to 3.3. In addition, if the user without

permission sends a LeaseRevoke  request to the 3.3 node during the upgrade process, it may

still cause data corruption, so it is best to ensure that your environment doesn’t exist such

abnormal calls before upgrading, see #11691  for detail.

Highlighted breaking changes in 3.3.

Changed value type of etcd --auto-compaction-retention flag to string

Changed --auto-compaction-retention  flag to accept string values  with finer granularity .

Now that --auto-compaction-retention  accepts string values, etcd configuration YAML file

auto-compaction-retention  field must be changed to string  type. Previously, --config-file

etcd.config.yaml  can have auto-compaction-retention: 24  field, now must be auto-

compaction-retention: "24"  or auto-compaction-retention: "24h" . If configured as --auto-

compaction-mode periodic --auto-compaction-retention "24h" , the time duration value for --

auto-compaction-retention  flag must be valid for time.ParseDuration  function in Go.







 





etcd

Docs Blog Community Install Play

https://github.com/etcd-io/etcd/issues/9480
https://github.com/etcd-io/etcd/issues/9480
https://github.com/etcd-io/etcd/issues/9480
https://github.com/etcd-io/etcd/issues/11689
https://github.com/etcd-io/etcd/issues/11689
https://github.com/etcd-io/etcd/issues/11689
https://github.com/etcd-io/etcd/pull/11691
https://github.com/etcd-io/etcd/pull/11691
https://github.com/etcd-io/etcd/pull/11691
https://github.com/etcd-io/etcd/pull/8563
https://github.com/etcd-io/etcd/pull/8563
https://github.com/etcd-io/etcd/pull/8563
https://github.com/etcd-io/etcd/issues/8503
https://github.com/etcd-io/etcd/issues/8503
https://github.com/etcd-io/etcd/issues/8503
https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Changed etcdserver.EtcdServer.ServerConfig to
*etcdserver.EtcdServer.ServerConfig

etcdserver.EtcdServer  has changed the type of its member field *etcdserver.ServerConfig  to

etcdserver.ServerConfig . And etcdserver.NewServer  now takes etcdserver.ServerConfig ,

instead of *etcdserver.ServerConfig .

Before and after (e.g. k8s.io/kubernetes/test/e2e_node/services/etcd.go )

Added embed.Config.LogOutput struct

Note that this field has been renamed to embed.Config.LogOutputs  in []string  type in

v3.4. Please see v3.4 upgrade guide for more details.

Field LogOutput  is added to embed.Config :

# etcd.config.yaml
+auto-compaction-mode: periodic
-auto-compaction-retention: 24
+auto-compaction-retention: "24"
+# Or
+auto-compaction-retention: "24h"





import "github.com/coreos/etcd/etcdserver"

type EtcdServer struct {
*etcdserver.EtcdServer

- config *etcdserver.ServerConfig
+ config etcdserver.ServerConfig
}

func NewEtcd(dataDir string) *EtcdServer {
- config := &etcdserver.ServerConfig{
+ config := etcdserver.ServerConfig{

DataDir: dataDir,
        ...

}
return &EtcdServer{config: config}

}

func (e *EtcdServer) Start() error {
var err error
e.EtcdServer, err = etcdserver.NewServer(e.config)

    ...



https://github.com/kubernetes/kubernetes/blob/release-1.8/test/e2e_node/services/etcd.go#L50-L55
https://github.com/kubernetes/kubernetes/blob/release-1.8/test/e2e_node/services/etcd.go#L50-L55
https://github.com/kubernetes/kubernetes/blob/release-1.8/test/e2e_node/services/etcd.go#L50-L55
https://etcd.io/docs/v3.5/upgrades/upgrade_3_4/


Before gRPC server warnings were logged in etcdserver.

WARNING: 2017/11/02 11:35:51 grpc: addrConn.resetTransport failed to create client transp
WARNING: 2017/11/02 11:35:51 grpc: addrConn.resetTransport failed to create client transp

From v3.3, gRPC server logs are disabled by default.

Note that embed.Config.SetupLogging  method has been deprecated in v3.4. Please see

v3.4 upgrade guide for more details.

Set embed.Config.Debug  field to true  to enable gRPC server logs.

Changed /health endpoint response

Previously, [endpoint]:[client-port]/health  returned manually marshaled JSON value. 3.3

now defines etcdhttp.Health  struct.

Note that in v3.3.0-rc.0, v3.3.0-rc.1, and v3.3.0-rc.2, etcdhttp.Health  has boolean type

"health"  and "errors"  fields. For backward compatibilities, we reverted "health"  field to

string  type and removed "errors"  field. Further health information will be provided in

separate APIs.

package embed

type Config struct {
 Debug bool `json:"debug"`
 LogPkgLevels string `json:"log-package-levels"`
+ LogOutput string `json:"log-output"`
 ...



import "github.com/coreos/etcd/embed"

cfg := &embed.Config{Debug: false}
cfg.SetupLogging()





$ curl http://localhost:2379/health
{"health":"true"}



https://etcd.io/docs/v3.5/upgrades/upgrade_3_4/
https://pkg.go.dev/github.com/etcd-io/etcd/etcdserver/api/etcdhttp#Health
https://pkg.go.dev/github.com/etcd-io/etcd/etcdserver/api/etcdhttp#Health
https://pkg.go.dev/github.com/etcd-io/etcd/etcdserver/api/etcdhttp#Health


Changed gRPC gateway HTTP endpoints (replaced /v3alpha with
/v3beta)

Before

After

Requests to /v3alpha  endpoints will redirect to /v3beta , and /v3alpha  will be removed in

3.4 release.

Changed maximum request size limits

3.3 now allows custom request size limits for both server and client side. In previous

versions(v3.2.10, v3.2.11), client response size was limited to only 4 MiB.

Server-side request limits can be configured with --max-request-bytes  flag:

Or configure embed.Config.MaxRequestBytes  field:

curl -L http://localhost:2379/v3alpha/kv/put \
  -X POST -d '{"key": "Zm9v", "value": "YmFy"}'



curl -L http://localhost:2379/v3beta/kv/put \
  -X POST -d '{"key": "Zm9v", "value": "YmFy"}'



# limits request size to 1.5 KiB
etcd --max-request-bytes 1536

# client writes exceeding 1.5 KiB will be rejected
etcdctl put foo [LARGE VALUE...]
# etcdserver: request is too large



import "github.com/coreos/etcd/embed"
import "github.com/coreos/etcd/etcdserver/api/v3rpc/rpctypes"

// limit requests to 5 MiB
cfg := embed.NewConfig()
cfg.MaxRequestBytes = 5 * 1024 * 1024





If not specified, server-side limit defaults to 1.5 MiB.

Client-side request limits must be configured based on server-side limits.

If not specified, client-side send limit defaults to 2 MiB (1.5 MiB + gRPC overhead bytes)

and receive limit to math.MaxInt32 . Please see clientv3 godoc  for more detail.

// client writes exceeding 5 MiB will be rejected
_, err := cli.Put(ctx, "foo", [LARGE VALUE...])
err == rpctypes.ErrRequestTooLarge

# limits request size to 1 MiB
etcd --max-request-bytes 1048576



import "github.com/coreos/etcd/clientv3"

cli, _ := clientv3.New(clientv3.Config{
    Endpoints: []string{"127.0.0.1:2379"},
    MaxCallSendMsgSize: 2 * 1024 * 1024,
    MaxCallRecvMsgSize: 3 * 1024 * 1024,
})

// client writes exceeding "--max-request-bytes" will be rejected from etcd server
_, err := cli.Put(ctx, "foo", strings.Repeat("a", 1*1024*1024+5))
err == rpctypes.ErrRequestTooLarge

// client writes exceeding "MaxCallSendMsgSize" will be rejected from client-side
_, err = cli.Put(ctx, "foo", strings.Repeat("a", 5*1024*1024))
err.Error() == "rpc error: code = ResourceExhausted desc = grpc: trying to send message l

// some writes under limits
for i := range []int{0,1,2,3,4} {
    _, err = cli.Put(ctx, fmt.Sprintf("foo%d", i), strings.Repeat("a", 1*1024*1024-500))
    if err != nil {
        panic(err)
    }
}
// client reads exceeding "MaxCallRecvMsgSize" will be rejected from client-side
_, err = cli.Get(ctx, "foo", clientv3.WithPrefix())
err.Error() == "rpc error: code = ResourceExhausted desc = grpc: received message larger 





https://pkg.go.dev/github.com/etcd-io/etcd/clientv3#Config
https://pkg.go.dev/github.com/etcd-io/etcd/clientv3#Config
https://pkg.go.dev/github.com/etcd-io/etcd/clientv3#Config


Changed raw gRPC client wrapper function signatures

3.3 changes the function signatures of clientv3  gRPC client wrapper. This change was

needed to support custom grpc.CallOption  on message size limits .

Before and after

Changed clientv3 Snapshot API error type

Previously, clientv3 Snapshot  API returned raw [ grpc/*status.statusError ] type error. v3.3

now translates those errors to corresponding public error types, to be consistent with other

APIs.

Before



-func NewKVFromKVClient(remote pb.KVClient) KV {
+func NewKVFromKVClient(remote pb.KVClient, c *Client) KV {

-func NewClusterFromClusterClient(remote pb.ClusterClient) Cluster {
+func NewClusterFromClusterClient(remote pb.ClusterClient, c *Client) Cluster {

-func NewLeaseFromLeaseClient(remote pb.LeaseClient, keepAliveTimeout time.Duration) Leas
+func NewLeaseFromLeaseClient(remote pb.LeaseClient, c *Client, keepAliveTimeout time.Dur

-func NewMaintenanceFromMaintenanceClient(remote pb.MaintenanceClient) Maintenance {
+func NewMaintenanceFromMaintenanceClient(remote pb.MaintenanceClient, c *Client) Mainten

-func NewWatchFromWatchClient(wc pb.WatchClient) Watcher {
+func NewWatchFromWatchClient(wc pb.WatchClient, c *Client) Watcher {



import "context"

// reading snapshot with canceled context should error out
ctx, cancel := context.WithCancel(context.Background())
rc, _ := cli.Snapshot(ctx)
cancel()
_, err := io.Copy(f, rc)
err.Error() == "rpc error: code = Canceled desc = context canceled"

// reading snapshot with deadline exceeded should error out
ctx, cancel = context.WithTimeout(context.Background(), time.Second)
defer cancel()
rc, _ = cli.Snapshot(ctx)
time.Sleep(2 * time.Second)
_, err = io.Copy(f, rc)



https://github.com/etcd-io/etcd/pull/9047
https://github.com/etcd-io/etcd/pull/9047
https://github.com/etcd-io/etcd/pull/9047


After

Changed etcdctl lease timetolive command output

Previously, lease timetolive LEASE_ID  command on expired lease prints -1s  for remaining

seconds. 3.3 now outputs clearer messages.

Before

After

Changed golang.org/x/net/context imports

clientv3  has deprecated golang.org/x/net/context . If a project vendors

golang.org/x/net/context  in other code (e.g. etcd generated protocol buffer code) and

imports github.com/coreos/etcd/clientv3 , it requires Go 1.9+ to compile.

err.Error() == "rpc error: code = DeadlineExceeded desc = context deadline exceeded"

import "context"

// reading snapshot with canceled context should error out
ctx, cancel := context.WithCancel(context.Background())
rc, _ := cli.Snapshot(ctx)
cancel()
_, err := io.Copy(f, rc)
err == context.Canceled

// reading snapshot with deadline exceeded should error out
ctx, cancel = context.WithTimeout(context.Background(), time.Second)
defer cancel()
rc, _ = cli.Snapshot(ctx)
time.Sleep(2 * time.Second)
_, err = io.Copy(f, rc)
err == context.DeadlineExceeded



lease 2d8257079fa1bc0c granted with TTL(0s), remaining(-1s)


lease 2d8257079fa1bc0c already expired




Before

After

Changed gRPC dependency

3.3 now requires grpc/grpc-go v1.7.5 .

Deprecated grpclog.Logger

grpclog.Logger  has been deprecated in favor of grpclog.LoggerV2 . clientv3.Logger  is now

grpclog.LoggerV2 .

Before

After

Deprecated grpc.ErrClientConnTimeout

Previously, grpc.ErrClientConnTimeout  error is returned on client dial time-outs. 3.3 instead

returns context.DeadlineExceeded  (see #8504 ).

Before

import "golang.org/x/net/context"
cli.Put(context.Background(), "f", "v")



import "context"
cli.Put(context.Background(), "f", "v")







import "github.com/coreos/etcd/clientv3"
clientv3.SetLogger(log.New(os.Stderr, "grpc: ", 0))



import "github.com/coreos/etcd/clientv3"
import "google.golang.org/grpc/grpclog"
clientv3.SetLogger(grpclog.NewLoggerV2(os.Stderr, os.Stderr, os.Stderr))

// log.New above cannot be used (not implement grpclog.LoggerV2 interface)





https://github.com/grpc/grpc-go/releases
https://github.com/grpc/grpc-go/releases
https://github.com/grpc/grpc-go/releases
https://github.com/grpc/grpc-go/blob/master/grpclog/loggerv2.go
https://github.com/grpc/grpc-go/blob/master/grpclog/loggerv2.go
https://github.com/grpc/grpc-go/blob/master/grpclog/loggerv2.go
https://github.com/etcd-io/etcd/issues/8504
https://github.com/etcd-io/etcd/issues/8504
https://github.com/etcd-io/etcd/issues/8504


After

Changed official container registry

etcd now uses gcr.io/etcd-development/etcd  as a primary container registry, and

quay.io/coreos/etcd  as secondary.

Before

After

Upgrades to >= v3.3.14

v3.3.14  had to include some features from 3.4, while trying to minimize the difference

between client balancer implementation. This release fixes “kube-apiserver 1.13.x refuses to

work when first etcd-server is not available” (kubernetes#72102) .

// expect dial time-out on ipv4 blackhole
_, err := clientv3.New(clientv3.Config{
    Endpoints:   []string{"http://254.0.0.1:12345"},
    DialTimeout: 2 * time.Second
})
if err == grpc.ErrClientConnTimeout {

// handle errors
}



_, err := clientv3.New(clientv3.Config{
    Endpoints:   []string{"http://254.0.0.1:12345"},
    DialTimeout: 2 * time.Second
})
if err == context.DeadlineExceeded {

// handle errors
}







docker pull quay.io/coreos/etcd:v3.2.5


docker pull gcr.io/etcd-development/etcd:v3.3.0






https://gcr.io/etcd-development/etcd
https://gcr.io/etcd-development/etcd
https://gcr.io/etcd-development/etcd
https://quay.io/coreos/etcd
https://quay.io/coreos/etcd
https://quay.io/coreos/etcd
https://github.com/etcd-io/etcd/releases/tag/v3.3.14
https://github.com/etcd-io/etcd/releases/tag/v3.3.14
https://github.com/etcd-io/etcd/releases/tag/v3.3.14
https://github.com/kubernetes/kubernetes/issues/72102
https://github.com/kubernetes/kubernetes/issues/72102
https://github.com/kubernetes/kubernetes/issues/72102
https://github.com/kubernetes/kubernetes/issues/72102


grpc.ErrClientConnClosing  has been deprecated in gRPC >= 1.10 .

The new client balancer uses an asynchronous resolver to pass endpoints to the gRPC dial

function. As a result, v3.3.14  or later requires grpc.WithBlock  dial option to wait until the

underlying connection is up.

Please see CHANGELOG  for a full list of changes.

Server upgrade checklists



import (
+ "go.etcd.io/etcd/clientv3"

"google.golang.org/grpc"
+ "google.golang.org/grpc/codes"
+ "google.golang.org/grpc/status"
)

_, err := kvc.Get(ctx, "a")
-if err == grpc.ErrClientConnClosing {
+if clientv3.IsConnCanceled(err) {

// or
+s, ok := status.FromError(err)
+if ok {
+  if s.Code() == codes.Canceled





import (
"time"
"go.etcd.io/etcd/clientv3"

+ "google.golang.org/grpc"
)

+// "grpc.WithBlock()" to block until the underlying connection is up
ccfg := clientv3.Config{
  Endpoints:            []string{"localhost:2379"},
  DialTimeout:          time.Second,
+ DialOptions:          []grpc.DialOption{grpc.WithBlock()},
  DialKeepAliveTime:    time.Second,
  DialKeepAliveTimeout: 500 * time.Millisecond,
}





https://github.com/grpc/grpc-go/pull/1854
https://github.com/grpc/grpc-go/pull/1854
https://github.com/grpc/grpc-go/pull/1854
https://etcd.io/docs/v3.5/learning/design-client/
https://github.com/etcd-io/etcd/releases/tag/v3.3.14
https://github.com/etcd-io/etcd/releases/tag/v3.3.14
https://github.com/etcd-io/etcd/releases/tag/v3.3.14
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.3.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.3.md
https://github.com/etcd-io/etcd/blob/master/CHANGELOG-3.3.md


Upgrade requirements

To upgrade an existing etcd deployment to 3.3, the running cluster must be 3.2 or greater. If

it’s before 3.2, please upgrade to 3.2 before upgrading to 3.3.

Also, to ensure a smooth rolling upgrade, the running cluster must be healthy. Check the

health of the cluster by using the etcdctl endpoint health  command before proceeding.

Preparation

Before upgrading etcd, always test the services relying on etcd in a staging environment

before deploying the upgrade to the production environment.

Before beginning, backup the etcd data. Should something go wrong with the upgrade, it is

possible to use this backup to downgrade back to existing etcd version. Please note that the

snapshot  command only backs up the v3 data. For v2 data, see backing up v2 datastore.

Mixed versions

While upgrading, an etcd cluster supports mixed versions of etcd members, and operates

with the protocol of the lowest common version. The cluster is only considered upgraded

once all of its members are upgraded to version 3.3. Internally, etcd members negotiate with

each other to determine the overall cluster version, which controls the reported version and

the supported features.

Limitations

Note: If the cluster only has v3 data and no v2 data, it is not subject to this limitation.

If the cluster is serving a v2 data set larger than 50MB, each newly upgraded member may

take up to two minutes to catch up with the existing cluster. Check the size of a recent

snapshot to estimate the total data size. In other words, it is safest to wait for 2 minutes

between upgrading each member.

For a much larger total data size, 100MB or more , this one-time process might take even

more time. Administrators of very large etcd clusters of this magnitude can feel free to

contact the etcd team  before upgrading, and we’ll be happy to provide advice on the

procedure.

Downgrade

If all members have been upgraded to v3.3, the cluster will be upgraded to v3.3, and

downgrade from this completed state is not possible. If any single member is still v3.2,

however, the cluster and its operations remains “v3.2”, and it is possible from this mixed

cluster state to return to using a v3.2 etcd binary on all members.



https://etcd.io/docs/v3.5/upgrades/upgrade_3_2/
https://etcd.io/docs/v3.5/op-guide/maintenance/#snapshot-backup
https://etcd.io/docs/v2.3/admin_guide/#backing-up-the-datastore
https://groups.google.com/g/etcd-dev
https://groups.google.com/g/etcd-dev
https://groups.google.com/g/etcd-dev


Please backup the data directory of all etcd members to make downgrading the cluster

possible even after it has been completely upgraded.

Upgrade procedure

This example shows how to upgrade a 3-member v3.2 etcd cluster running on a local

machine.

1. Check upgrade requirements

Is the cluster healthy and running v3.2.x?

$ ETCDCTL_API=3 etcdctl endpoint health --endpoints=localhost:2379,localhost:22379,localh
localhost:2379 is healthy: successfully committed proposal: took = 6.600684ms
localhost:22379 is healthy: successfully committed proposal: took = 8.540064ms
localhost:32379 is healthy: successfully committed proposal: took = 8.763432ms

$ curl http://localhost:2379/version
{"etcdserver":"3.2.7","etcdcluster":"3.2.0"}

2. Stop the existing etcd process

When each etcd process is stopped, expected errors will be logged by other cluster members.

This is normal since a cluster member connection has been (temporarily) broken:

14:13:31.491746 I | raft: c89feb932daef420 [term 3] received MsgTimeoutNow from 6d4f535ba
14:13:31.491769 I | raft: c89feb932daef420 became candidate at term 4
14:13:31.491788 I | raft: c89feb932daef420 received MsgVoteResp from c89feb932daef420 at 
14:13:31.491797 I | raft: c89feb932daef420 [logterm: 3, index: 9] sent MsgVote request to
14:13:31.491805 I | raft: c89feb932daef420 [logterm: 3, index: 9] sent MsgVote request to
14:13:31.491815 I | raft: raft.node: c89feb932daef420 lost leader 6d4f535bae3ab960 at ter
14:13:31.524084 I | raft: c89feb932daef420 received MsgVoteResp from 6d4f535bae3ab960 at 
14:13:31.524108 I | raft: c89feb932daef420 [quorum:2] has received 2 MsgVoteResp votes an
14:13:31.524123 I | raft: c89feb932daef420 became leader at term 4
14:13:31.524136 I | raft: raft.node: c89feb932daef420 elected leader c89feb932daef420 at 
14:13:31.592650 W | rafthttp: lost the TCP streaming connection with peer 6d4f535bae3ab96
14:13:31.592825 W | rafthttp: lost the TCP streaming connection with peer 6d4f535bae3ab96
14:13:31.693275 E | rafthttp: failed to dial 6d4f535bae3ab960 on stream Message (dial tcp
14:13:31.693289 I | rafthttp: peer 6d4f535bae3ab960 became inactive
14:13:31.936678 W | rafthttp: lost the TCP streaming connection with peer 6d4f535bae3ab96

It’s a good idea at this point to backup the etcd data to provide a downgrade path should any

problems occur:

https://etcd.io/docs/v3.5/op-guide/maintenance/#snapshot-backup
https://etcd.io/docs/v3.5/op-guide/maintenance/#snapshot-backup


$ etcdctl snapshot save backup.db

3. Drop-in etcd v3.3 binary and start the new etcd process

The new v3.3 etcd will publish its information to the cluster:

14:14:25.363225 I | etcdserver: published {Name:s1 ClientURLs:[http://localhost:2379]} to

Verify that each member, and then the entire cluster, becomes healthy with the new v3.3

etcd binary:

$ ETCDCTL_API=3 /etcdctl endpoint health --endpoints=localhost:2379,localhost:22379,local
localhost:22379 is healthy: successfully committed proposal: took = 5.540129ms
localhost:32379 is healthy: successfully committed proposal: took = 7.321771ms
localhost:2379 is healthy: successfully committed proposal: took = 10.629901ms

Upgraded members will log warnings like the following until the entire cluster is upgraded.

This is expected and will cease after all etcd cluster members are upgraded to v3.3:

14:15:17.071804 W | etcdserver: member c89feb932daef420 has a higher version 3.3.0
14:15:21.073110 W | etcdserver: the local etcd version 3.2.7 is not up-to-date
14:15:21.073142 W | etcdserver: member 6d4f535bae3ab960 has a higher version 3.3.0
14:15:21.073157 W | etcdserver: the local etcd version 3.2.7 is not up-to-date
14:15:21.073164 W | etcdserver: member c89feb932daef420 has a higher version 3.3.0

4. Repeat step 2 to step 3 for all other members

5. Finish

When all members are upgraded, the cluster will report upgrading to 3.3 successfully:

14:15:54.536901 N | etcdserver/membership: updated the cluster version from 3.2 to 3.3
14:15:54.537035 I | etcdserver/api: enabled capabilities for version 3.3

$ ETCDCTL_API=3 /etcdctl endpoint health --endpoints=localhost:2379,localhost:22379,local
localhost:2379 is healthy: successfully committed proposal: took = 2.312897ms
localhost:22379 is healthy: successfully committed proposal: took = 2.553476ms
localhost:32379 is healthy: successfully committed proposal: took = 2.517902ms



Last modified August 19, 2023: etcd-io/website#479 Use new and better canonical link to

Google Groups (cd8b01f)


https://github.com/etcd-io/website/commit/cd8b01f2f96d06f92d79e45e8c189606e9b81239
https://github.com/etcd-io/website/commit/cd8b01f2f96d06f92d79e45e8c189606e9b81239
https://github.com/etcd-io/website/commit/cd8b01f2f96d06f92d79e45e8c189606e9b81239
https://github.com/etcd-io/website/commit/cd8b01f2f96d06f92d79e45e8c189606e9b81239


Upgrade etcd from 3.1 to 3.2

Processes, checklists, and notes on upgrading etcd from 3.1 to 3.2

In the general case, upgrading from etcd 3.1 to 3.2 can be a zero-downtime, rolling upgrade:

one by one, stop the etcd v3.1 processes and replace them with etcd v3.2 processes

after running all v3.2 processes, new features in v3.2 are available to the cluster

Before starting an upgrade, read through the rest of this guide to prepare.

Upgrade checklists

NOTE: When migrating from v2 with no v3 data , etcd server v3.2+ panics when etcd restores

from existing snapshots but no v3 ETCD_DATA_DIR/member/snap/db  file. This happens when the

server had migrated from v2 with no previous v3 data. This also prevents accidental v3 data

loss (e.g. db  file might have been moved). etcd requires that post v3 migration can only

happen with v3 data. Do not upgrade to newer v3 versions until v3.0 server contains v3 data.

Highlighted breaking changes in 3.2.

Changed default snapshot-count value

Higher --snapshot-count  holds more Raft entries in memory until snapshot, thus causing

recurrent higher memory usage . Since leader retains latest Raft entries for longer, a slow

follower has more time to catch up before leader snapshot. --snapshot-count  is a tradeoff

between higher memory usage and better availabilities of slow followers.

Since v3.2, the default value of --snapshot-count  has changed from from 10,000 to 100,000 .

Changed gRPC dependency (>=3.2.10)

3.2.10 or later now requires grpc/grpc-go v1.7.5  (<=3.2.9 requires v1.2.1 ).

Deprecated grpclog.Logger

grpclog.Logger  has been deprecated in favor of grpclog.LoggerV2 . clientv3.Logger  is now

grpclog.LoggerV2 .











etcd

Docs Blog Community Install Play

https://github.com/etcd-io/etcd/issues/9480
https://github.com/etcd-io/etcd/issues/9480
https://github.com/etcd-io/etcd/issues/9480
https://github.com/kubernetes/kubernetes/issues/60589#issuecomment-371977156
https://github.com/kubernetes/kubernetes/issues/60589#issuecomment-371977156
https://github.com/kubernetes/kubernetes/issues/60589#issuecomment-371977156
https://github.com/etcd-io/etcd/pull/7160
https://github.com/etcd-io/etcd/pull/7160
https://github.com/etcd-io/etcd/pull/7160
https://github.com/grpc/grpc-go/releases
https://github.com/grpc/grpc-go/releases
https://github.com/grpc/grpc-go/releases
https://github.com/grpc/grpc-go/blob/master/grpclog/loggerv2.go
https://github.com/grpc/grpc-go/blob/master/grpclog/loggerv2.go
https://github.com/grpc/grpc-go/blob/master/grpclog/loggerv2.go
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Before

After

Deprecated grpc.ErrClientConnTimeout

Previously, grpc.ErrClientConnTimeout  error is returned on client dial time-outs. 3.2 instead

returns context.DeadlineExceeded  (see #8504 ).

Before

After

import "github.com/coreos/etcd/clientv3"
clientv3.SetLogger(log.New(os.Stderr, "grpc: ", 0))



import "github.com/coreos/etcd/clientv3"
import "google.golang.org/grpc/grpclog"
clientv3.SetLogger(grpclog.NewLoggerV2(os.Stderr, os.Stderr, os.Stderr))

// log.New above cannot be used (not implement grpclog.LoggerV2 interface)





// expect dial time-out on ipv4 blackhole
_, err := clientv3.New(clientv3.Config{
    Endpoints:   []string{"http://254.0.0.1:12345"},
    DialTimeout: 2 * time.Second
})
if err == grpc.ErrClientConnTimeout {

// handle errors
}



_, err := clientv3.New(clientv3.Config{
    Endpoints:   []string{"http://254.0.0.1:12345"},
    DialTimeout: 2 * time.Second
})
if err == context.DeadlineExceeded {

// handle errors
}



https://github.com/etcd-io/etcd/issues/8504
https://github.com/etcd-io/etcd/issues/8504
https://github.com/etcd-io/etcd/issues/8504


Changed maximum request size limits (>=3.2.10)

3.2.10 and 3.2.11 allow custom request size limits in server side. >=3.2.12 allows custom

request size limits for both server and client side. In previous versions(v3.2.10, v3.2.11),

client response size was limited to only 4 MiB.

Server-side request limits can be configured with --max-request-bytes  flag:

Or configure embed.Config.MaxRequestBytes  field:

If not specified, server-side limit defaults to 1.5 MiB.

Client-side request limits must be configured based on server-side limits.

# limits request size to 1.5 KiB
etcd --max-request-bytes 1536

# client writes exceeding 1.5 KiB will be rejected
etcdctl put foo [LARGE VALUE...]
# etcdserver: request is too large



import "github.com/coreos/etcd/embed"
import "github.com/coreos/etcd/etcdserver/api/v3rpc/rpctypes"

// limit requests to 5 MiB
cfg := embed.NewConfig()
cfg.MaxRequestBytes = 5 * 1024 * 1024

// client writes exceeding 5 MiB will be rejected
_, err := cli.Put(ctx, "foo", [LARGE VALUE...])
err == rpctypes.ErrRequestTooLarge



# limits request size to 1 MiB
etcd --max-request-bytes 1048576



import "github.com/coreos/etcd/clientv3"

cli, _ := clientv3.New(clientv3.Config{
    Endpoints: []string{"127.0.0.1:2379"},
    MaxCallSendMsgSize: 2 * 1024 * 1024,





If not specified, client-side send limit defaults to 2 MiB (1.5 MiB + gRPC overhead bytes)

and receive limit to math.MaxInt32 . Please see clientv3 godoc  for more detail.

Changed raw gRPC client wrappers

3.2.12 or later changes the function signatures of clientv3  gRPC client wrapper. This change

was needed to support custom grpc.CallOption  on message size limits .

Before and after

    MaxCallRecvMsgSize: 3 * 1024 * 1024,
})

// client writes exceeding "--max-request-bytes" will be rejected from etcd server
_, err := cli.Put(ctx, "foo", strings.Repeat("a", 1*1024*1024+5))
err == rpctypes.ErrRequestTooLarge

// client writes exceeding "MaxCallSendMsgSize" will be rejected from client-side
_, err = cli.Put(ctx, "foo", strings.Repeat("a", 5*1024*1024))
err.Error() == "rpc error: code = ResourceExhausted desc = grpc: trying to send message l

// some writes under limits
for i := range []int{0,1,2,3,4} {
    _, err = cli.Put(ctx, fmt.Sprintf("foo%d", i), strings.Repeat("a", 1*1024*1024-500))
    if err != nil {
        panic(err)
    }
}
// client reads exceeding "MaxCallRecvMsgSize" will be rejected from client-side
_, err = cli.Get(ctx, "foo", clientv3.WithPrefix())
err.Error() == "rpc error: code = ResourceExhausted desc = grpc: received message larger 





-func NewKVFromKVClient(remote pb.KVClient) KV {
+func NewKVFromKVClient(remote pb.KVClient, c *Client) KV {

-func NewClusterFromClusterClient(remote pb.ClusterClient) Cluster {
+func NewClusterFromClusterClient(remote pb.ClusterClient, c *Client) Cluster {

-func NewLeaseFromLeaseClient(remote pb.LeaseClient, keepAliveTimeout time.Duration) Leas
+func NewLeaseFromLeaseClient(remote pb.LeaseClient, c *Client, keepAliveTimeout time.Dur

-func NewMaintenanceFromMaintenanceClient(remote pb.MaintenanceClient) Maintenance {
+func NewMaintenanceFromMaintenanceClient(remote pb.MaintenanceClient, c *Client) Mainten



https://pkg.go.dev/github.com/etcd-io/etcd/clientv3#Config
https://pkg.go.dev/github.com/etcd-io/etcd/clientv3#Config
https://pkg.go.dev/github.com/etcd-io/etcd/clientv3#Config
https://github.com/etcd-io/etcd/pull/9047
https://github.com/etcd-io/etcd/pull/9047
https://github.com/etcd-io/etcd/pull/9047


Changed clientv3.Lease.TimeToLive API

Previously, clientv3.Lease.TimeToLive  API returned lease.ErrLeaseNotFound  on non-existent

lease ID. 3.2 instead returns TTL=-1 in its response and no error (see #7305 ).

Before

After

Moved clientv3.NewFromConfigFile to clientv3.yaml.NewConfig

clientv3.NewFromConfigFile  is moved to yaml.NewConfig .

Before

After

-func NewWatchFromWatchClient(wc pb.WatchClient) Watcher {
+func NewWatchFromWatchClient(wc pb.WatchClient, c *Client) Watcher {



// when leaseID does not exist
resp, err := TimeToLive(ctx, leaseID)
resp == nil
err == lease.ErrLeaseNotFound



// when leaseID does not exist
resp, err := TimeToLive(ctx, leaseID)
resp.TTL == -1
err == nil



import "github.com/coreos/etcd/clientv3"
clientv3.NewFromConfigFile



import clientv3yaml "github.com/coreos/etcd/clientv3/yaml"
clientv3yaml.NewConfig



https://github.com/etcd-io/etcd/pull/7305
https://github.com/etcd-io/etcd/pull/7305
https://github.com/etcd-io/etcd/pull/7305


Change in --listen-peer-urls and --listen-client-urls

3.2 now rejects domains names for --listen-peer-urls  and --listen-client-urls  (3.1 only

prints out warnings), since domain name is invalid for network interface binding. Make sure

that those URLs are properly formatted as scheme://IP:port .

See issue #6336  for more contexts.

Server upgrade checklists

Upgrade requirements

To upgrade an existing etcd deployment to 3.2, the running cluster must be 3.1 or greater. If

it’s before 3.1, please upgrade to 3.1 before upgrading to 3.2.

Also, to ensure a smooth rolling upgrade, the running cluster must be healthy. Check the

health of the cluster by using the etcdctl endpoint health  command before proceeding.

Preparation

Before upgrading etcd, always test the services relying on etcd in a staging environment

before deploying the upgrade to the production environment.

Before beginning, backup the etcd data. Should something go wrong with the upgrade, it is

possible to use this backup to downgrade back to existing etcd version. Please note that the

snapshot  command only backs up the v3 data. For v2 data, see backing up v2 datastore.

Mixed versions

While upgrading, an etcd cluster supports mixed versions of etcd members, and operates

with the protocol of the lowest common version. The cluster is only considered upgraded

once all of its members are upgraded to version 3.2. Internally, etcd members negotiate with

each other to determine the overall cluster version, which controls the reported version and

the supported features.

Limitations

Note: If the cluster only has v3 data and no v2 data, it is not subject to this limitation.

If the cluster is serving a v2 data set larger than 50MB, each newly upgraded member may

take up to two minutes to catch up with the existing cluster. Check the size of a recent

snapshot to estimate the total data size. In other words, it is safest to wait for 2 minutes

between upgrading each member.



https://github.com/etcd-io/etcd/issues/6336
https://github.com/etcd-io/etcd/issues/6336
https://github.com/etcd-io/etcd/issues/6336
https://etcd.io/docs/v3.5/upgrades/upgrade_3_1
https://etcd.io/docs/v3.5/op-guide/maintenance#snapshot-backup
https://etcd.io/docs/v2.3/admin_guide#backing-up-the-datastore


For a much larger total data size, 100MB or more , this one-time process might take even

more time. Administrators of very large etcd clusters of this magnitude can feel free to

contact the etcd team  before upgrading, and we’ll be happy to provide advice on the

procedure.

Downgrade

If all members have been upgraded to v3.2, the cluster will be upgraded to v3.2, and

downgrade from this completed state is not possible. If any single member is still v3.1,

however, the cluster and its operations remains “v3.1”, and it is possible from this mixed

cluster state to return to using a v3.1 etcd binary on all members.

Please backup the data directory of all etcd members to make downgrading the cluster

possible even after it has been completely upgraded.

Upgrade procedure

This example shows how to upgrade a 3-member v3.1 etcd cluster running on a local

machine.

1. Check upgrade requirements

Is the cluster healthy and running v3.1.x?

$ ETCDCTL_API=3 etcdctl endpoint health --endpoints=localhost:2379,localhost:22379,localh
localhost:2379 is healthy: successfully committed proposal: took = 6.600684ms
localhost:22379 is healthy: successfully committed proposal: took = 8.540064ms
localhost:32379 is healthy: successfully committed proposal: took = 8.763432ms

$ curl http://localhost:2379/version
{"etcdserver":"3.1.7","etcdcluster":"3.1.0"}

2. Stop the existing etcd process

When each etcd process is stopped, expected errors will be logged by other cluster members.

This is normal since a cluster member connection has been (temporarily) broken:

2017-04-27 14:13:31.491746 I | raft: c89feb932daef420 [term 3] received MsgTimeoutNow fro
2017-04-27 14:13:31.491769 I | raft: c89feb932daef420 became candidate at term 4
2017-04-27 14:13:31.491788 I | raft: c89feb932daef420 received MsgVoteResp from c89feb932
2017-04-27 14:13:31.491797 I | raft: c89feb932daef420 [logterm: 3, index: 9] sent MsgVote
2017-04-27 14:13:31.491805 I | raft: c89feb932daef420 [logterm: 3, index: 9] sent MsgVote
2017-04-27 14:13:31.491815 I | raft: raft.node: c89feb932daef420 lost leader 6d4f535bae3a
2017-04-27 14:13:31.524084 I | raft: c89feb932daef420 received MsgVoteResp from 6d4f535ba



https://groups.google.com/g/etcd-dev
https://groups.google.com/g/etcd-dev
https://groups.google.com/g/etcd-dev
https://etcd.io/docs/v3.5/op-guide/maintenance#snapshot-backup


2017-04-27 14:13:31.524108 I | raft: c89feb932daef420 [quorum:2] has received 2 MsgVoteRe
2017-04-27 14:13:31.524123 I | raft: c89feb932daef420 became leader at term 4
2017-04-27 14:13:31.524136 I | raft: raft.node: c89feb932daef420 elected leader c89feb932
2017-04-27 14:13:31.592650 W | rafthttp: lost the TCP streaming connection with peer 6d4f
2017-04-27 14:13:31.592825 W | rafthttp: lost the TCP streaming connection with peer 6d4f
2017-04-27 14:13:31.693275 E | rafthttp: failed to dial 6d4f535bae3ab960 on stream Messag
2017-04-27 14:13:31.693289 I | rafthttp: peer 6d4f535bae3ab960 became inactive
2017-04-27 14:13:31.936678 W | rafthttp: lost the TCP streaming connection with peer 6d4f

It’s a good idea at this point to backup the etcd data to provide a downgrade path should any

problems occur:

$ etcdctl snapshot save backup.db

3. Drop-in etcd v3.2 binary and start the new etcd process

The new v3.2 etcd will publish its information to the cluster:

2017-04-27 14:14:25.363225 I | etcdserver: published {Name:s1 ClientURLs:[http://localhos

Verify that each member, and then the entire cluster, becomes healthy with the new v3.2

etcd binary:

$ ETCDCTL_API=3 /etcdctl endpoint health --endpoints=localhost:2379,localhost:22379,local
localhost:22379 is healthy: successfully committed proposal: took = 5.540129ms
localhost:32379 is healthy: successfully committed proposal: took = 7.321771ms
localhost:2379 is healthy: successfully committed proposal: took = 10.629901ms

Upgraded members will log warnings like the following until the entire cluster is upgraded.

This is expected and will cease after all etcd cluster members are upgraded to v3.2:

2017-04-27 14:15:17.071804 W | etcdserver: member c89feb932daef420 has a higher version 3
2017-04-27 14:15:21.073110 W | etcdserver: the local etcd version 3.1.7 is not up-to-date
2017-04-27 14:15:21.073142 W | etcdserver: member 6d4f535bae3ab960 has a higher version 3
2017-04-27 14:15:21.073157 W | etcdserver: the local etcd version 3.1.7 is not up-to-date
2017-04-27 14:15:21.073164 W | etcdserver: member c89feb932daef420 has a higher version 3

4. Repeat step 2 to step 3 for all other members

5. Finish

https://etcd.io/docs/v3.5/op-guide/maintenance#snapshot-backup


When all members are upgraded, the cluster will report upgrading to 3.2 successfully:

2017-04-27 14:15:54.536901 N | etcdserver/membership: updated the cluster version from 3
2017-04-27 14:15:54.537035 I | etcdserver/api: enabled capabilities for version 3.2

$ ETCDCTL_API=3 /etcdctl endpoint health --endpoints=localhost:2379,localhost:22379,local
localhost:2379 is healthy: successfully committed proposal: took = 2.312897ms
localhost:22379 is healthy: successfully committed proposal: took = 2.553476ms
localhost:32379 is healthy: successfully committed proposal: took = 2.517902ms

Last modified August 19, 2023: etcd-io/website#479 Use new and better canonical link to

Google Groups (cd8b01f)


https://github.com/etcd-io/website/commit/cd8b01f2f96d06f92d79e45e8c189606e9b81239
https://github.com/etcd-io/website/commit/cd8b01f2f96d06f92d79e45e8c189606e9b81239
https://github.com/etcd-io/website/commit/cd8b01f2f96d06f92d79e45e8c189606e9b81239
https://github.com/etcd-io/website/commit/cd8b01f2f96d06f92d79e45e8c189606e9b81239


Upgrade etcd from 3.0 to 3.1

Processes, checklists, and notes on upgrading etcd from 3.0 to 3.1

In the general case, upgrading from etcd 3.0 to 3.1 can be a zero-downtime, rolling upgrade:

one by one, stop the etcd v3.0 processes and replace them with etcd v3.1 processes

after running all v3.1 processes, new features in v3.1 are available to the cluster

Before starting an upgrade, read through the rest of this guide to prepare.

Upgrade checklists

NOTE: When migrating from v2 with no v3 data , etcd server v3.2+ panics when etcd restores

from existing snapshots but no v3 ETCD_DATA_DIR/member/snap/db  file. This happens when the

server had migrated from v2 with no previous v3 data. This also prevents accidental v3 data

loss (e.g. db  file might have been moved). etcd requires that post v3 migration can only

happen with v3 data. Do not upgrade to newer v3 versions until v3.0 server contains v3 data.

Monitoring

Following metrics from v3.0.x have been deprecated in favor of go-grpc-prometheus :

etcd_grpc_requests_total

etcd_grpc_requests_failed_total

etcd_grpc_active_streams

etcd_grpc_unary_requests_duration_seconds

Upgrade requirements

To upgrade an existing etcd deployment to 3.1, the running cluster must be 3.0 or greater. If

it’s before 3.0, please upgrade to 3.0 before upgrading to 3.1.

Also, to ensure a smooth rolling upgrade, the running cluster must be healthy. Check the

health of the cluster by using the etcdctl endpoint health  command before proceeding.

Preparation





etcd

Docs Blog Community Install Play

https://github.com/etcd-io/etcd/issues/9480
https://github.com/etcd-io/etcd/issues/9480
https://github.com/etcd-io/etcd/issues/9480
https://github.com/grpc-ecosystem/go-grpc-prometheus
https://github.com/grpc-ecosystem/go-grpc-prometheus
https://github.com/grpc-ecosystem/go-grpc-prometheus
https://etcd.io/docs/v3.5/upgrades/upgrade_3_0
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Before upgrading etcd, always test the services relying on etcd in a staging environment

before deploying the upgrade to the production environment.

Before beginning, backup the etcd data. Should something go wrong with the upgrade, it is

possible to use this backup to downgrade back to existing etcd version. Please note that the

snapshot  command only backs up the v3 data. For v2 data, see backing up v2 datastore.

Mixed versions

While upgrading, an etcd cluster supports mixed versions of etcd members, and operates

with the protocol of the lowest common version. The cluster is only considered upgraded

once all of its members are upgraded to version 3.1. Internally, etcd members negotiate with

each other to determine the overall cluster version, which controls the reported version and

the supported features.

Limitations

Note: If the cluster only has v3 data and no v2 data, it is not subject to this limitation.

If the cluster is serving a v2 data set larger than 50MB, each newly upgraded member may

take up to two minutes to catch up with the existing cluster. Check the size of a recent

snapshot to estimate the total data size. In other words, it is safest to wait for 2 minutes

between upgrading each member.

For a much larger total data size, 100MB or more , this one-time process might take even

more time. Administrators of very large etcd clusters of this magnitude can feel free to

contact the etcd team  before upgrading, and we’ll be happy to provide advice on the

procedure.

Downgrade

If all members have been upgraded to v3.1, the cluster will be upgraded to v3.1, and

downgrade from this completed state is not possible. If any single member is still v3.0,

however, the cluster and its operations remains “v3.0”, and it is possible from this mixed

cluster state to return to using a v3.0 etcd binary on all members.

Please backup the data directory of all etcd members to make downgrading the cluster

possible even after it has been completely upgraded.

Upgrade procedure

This example shows how to upgrade a 3-member v3.0 etcd cluster running on a local

machine.



https://etcd.io/docs/v3.5/op-guide/maintenance/#snapshot-backup
https://etcd.io/docs/v2.3/admin_guide#backing-up-the-datastore
https://groups.google.com/g/etcd-dev
https://groups.google.com/g/etcd-dev
https://groups.google.com/g/etcd-dev
https://etcd.io/docs/v3.5/op-guide/maintenance#snapshot-backup


1. Check upgrade requirements

Is the cluster healthy and running v3.0.x?

$ ETCDCTL_API=3 etcdctl endpoint health --endpoints=localhost:2379,localhost:22379,localh
localhost:2379 is healthy: successfully committed proposal: took = 6.600684ms
localhost:22379 is healthy: successfully committed proposal: took = 8.540064ms
localhost:32379 is healthy: successfully committed proposal: took = 8.763432ms

$ curl http://localhost:2379/version
{"etcdserver":"3.0.16","etcdcluster":"3.0.0"}

2. Stop the existing etcd process

When each etcd process is stopped, expected errors will be logged by other cluster members.

This is normal since a cluster member connection has been (temporarily) broken:

2017-01-17 09:34:18.352662 I | raft: raft.node: 1640829d9eea5cfb elected leader 1640829d9
2017-01-17 09:34:18.359630 W | etcdserver: failed to reach the peerURL(http://localhost:2
2017-01-17 09:34:18.359679 W | etcdserver: cannot get the version of member fd32987dcd051
2017-01-17 09:34:18.548116 W | rafthttp: lost the TCP streaming connection with peer fd32
2017-01-17 09:34:19.147816 W | rafthttp: lost the TCP streaming connection with peer fd32
2017-01-17 09:34:34.364907 W | etcdserver: failed to reach the peerURL(http://localhost:2

It’s a good idea at this point to backup the etcd data to provide a downgrade path should any

problems occur:

$ etcdctl snapshot save backup.db

3. Drop-in etcd v3.1 binary and start the new etcd process

The new v3.1 etcd will publish its information to the cluster:

2017-01-17 09:36:00.996590 I | etcdserver: published {Name:my-etcd-1 ClientURLs:[http://l

Verify that each member, and then the entire cluster, becomes healthy with the new v3.1

etcd binary:

$ ETCDCTL_API=3 /etcdctl endpoint health --endpoints=localhost:2379,localhost:22379,local
localhost:22379 is healthy: successfully committed proposal: took = 5.540129ms

https://etcd.io/docs/v3.5/op-guide/maintenance#snapshot-backup


localhost:32379 is healthy: successfully committed proposal: took = 7.321671ms
localhost:2379 is healthy: successfully committed proposal: took = 10.629901ms

Upgraded members will log warnings like the following until the entire cluster is upgraded.

This is expected and will cease after all etcd cluster members are upgraded to v3.1:

2017-01-17 09:36:38.406268 W | etcdserver: the local etcd version 3.0.16 is not up-to-dat
2017-01-17 09:36:38.406295 W | etcdserver: member fd32987dcd0511e0 has a higher version 3
2017-01-17 09:36:42.407695 W | etcdserver: the local etcd version 3.0.16 is not up-to-dat
2017-01-17 09:36:42.407730 W | etcdserver: member fd32987dcd0511e0 has a higher version 3

4. Repeat step 2 to step 3 for all other members

5. Finish

When all members are upgraded, the cluster will report upgrading to 3.1 successfully:

2017-01-17 09:37:03.100015 I | etcdserver: updating the cluster version from 3.0 to 3.1
2017-01-17 09:37:03.104263 N | etcdserver/membership: updated the cluster version from 3
2017-01-17 09:37:03.104374 I | etcdserver/api: enabled capabilities for version 3.1

$ ETCDCTL_API=3 /etcdctl endpoint health --endpoints=localhost:2379,localhost:22379,local
localhost:2379 is healthy: successfully committed proposal: took = 2.312897ms
localhost:22379 is healthy: successfully committed proposal: took = 2.553476ms
localhost:32379 is healthy: successfully committed proposal: took = 2.516902ms

Last modified August 19, 2023: etcd-io/website#479 Use new and better canonical link to

Google Groups (cd8b01f)


https://github.com/etcd-io/website/commit/cd8b01f2f96d06f92d79e45e8c189606e9b81239
https://github.com/etcd-io/website/commit/cd8b01f2f96d06f92d79e45e8c189606e9b81239
https://github.com/etcd-io/website/commit/cd8b01f2f96d06f92d79e45e8c189606e9b81239
https://github.com/etcd-io/website/commit/cd8b01f2f96d06f92d79e45e8c189606e9b81239


Upgrade etcd from 2.3 to 3.0

Processes, checklists, and notes on upgrading etcd from 2.3 to 3.0

In the general case, upgrading from etcd 2.3 to 3.0 can be a zero-downtime, rolling upgrade:

one by one, stop the etcd v2.3 processes and replace them with etcd v3.0 processes

after running all v3.0 processes, new features in v3.0 are available to the cluster

Before starting an upgrade, read through the rest of this guide to prepare.

Upgrade checklists

NOTE: When migrating from v2 with no v3 data , etcd server v3.2+ panics when etcd restores

from existing snapshots but no v3 ETCD_DATA_DIR/member/snap/db  file. This happens when the

server had migrated from v2 with no previous v3 data. This also prevents accidental v3 data

loss (e.g. db  file might have been moved). etcd requires that post v3 migration can only

happen with v3 data. Do not upgrade to newer v3 versions until v3.0 server contains v3 data.

Upgrade requirements

To upgrade an existing etcd deployment to 3.0, the running cluster must be 2.3 or greater. If

it’s before 2.3, please upgrade to 2.3  before upgrading to 3.0.

Also, to ensure a smooth rolling upgrade, the running cluster must be healthy. Check the

health of the cluster by using the etcdctl cluster-health  command before proceeding.

Preparation

Before upgrading etcd, always test the services relying on etcd in a staging environment

before deploying the upgrade to the production environment.

Before beginning, backup the etcd data directory. Should something go wrong with the

upgrade, it is possible to use this backup to downgrade back to existing etcd version.

Mixed versions





etcd

Docs Blog Community Install Play

https://github.com/etcd-io/etcd/issues/9480
https://github.com/etcd-io/etcd/issues/9480
https://github.com/etcd-io/etcd/issues/9480
https://github.com/etcd-io/etcd/releases/tag/v2.3.8
https://github.com/etcd-io/etcd/releases/tag/v2.3.8
https://github.com/etcd-io/etcd/releases/tag/v2.3.8
https://etcd.io/docs/v2.3/admin_guide#backing-up-the-datastore
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


While upgrading, an etcd cluster supports mixed versions of etcd members, and operates

with the protocol of the lowest common version. The cluster is only considered upgraded

once all of its members are upgraded to version 3.0. Internally, etcd members negotiate with

each other to determine the overall cluster version, which controls the reported version and

the supported features.

Limitations

It might take up to 2 minutes for the newly upgraded member to catch up with the existing

cluster when the total data size is larger than 50MB. Check the size of a recent snapshot to

estimate the total data size. In other words, it is safest to wait for 2 minutes between

upgrading each member.

For a much larger total data size, 100MB or more , this one-time process might take even

more time. Administrators of very large etcd clusters of this magnitude can feel free to

contact the etcd team  before upgrading, and we’ll be happy to provide advice on the

procedure.

Downgrade

If all members have been upgraded to v3.0, the cluster will be upgraded to v3.0, and

downgrade from this completed state is not possible. If any single member is still v2.3,

however, the cluster and its operations remains “v2.3”, and it is possible from this mixed

cluster state to return to using a v2.3 etcd binary on all members.

Please backup the data directory of all etcd members to make downgrading the cluster

possible even after it has been completely upgraded.

Upgrade procedure

This example details the upgrade of a three-member v2.3 etcd cluster running on a local

machine.

1. Check upgrade requirements.

Is the cluster healthy and running v.2.3.x?

$ etcdctl cluster-health
member 6e3bd23ae5f1eae0 is healthy: got healthy result from http://localhost:22379
member 924e2e83e93f2560 is healthy: got healthy result from http://localhost:32379
member 8211f1d0f64f3269 is healthy: got healthy result from http://localhost:12379
cluster is healthy



https://groups.google.com/g/etcd-dev
https://groups.google.com/g/etcd-dev
https://groups.google.com/g/etcd-dev
https://etcd.io/docs/v2.3/admin_guide#backing-up-the-datastore


$ curl http://localhost:2379/version
{"etcdserver":"2.3.x","etcdcluster":"2.3.8"}

2. Stop the existing etcd process

When each etcd process is stopped, expected errors will be logged by other cluster members.

This is normal since a cluster member connection has been (temporarily) broken:

2016-06-27 15:21:48.624124 E | rafthttp: failed to dial 8211f1d0f64f3269 on stream Messag
2016-06-27 15:21:48.624175 I | rafthttp: the connection with 8211f1d0f64f3269 became inac

It’s a good idea at this point to backup the etcd data directory to provide a downgrade path

should any problems occur:

$ etcdctl backup \
      --data-dir /var/lib/etcd \
      --backup-dir /tmp/etcd_backup

3. Drop-in etcd v3.0 binary and start the new etcd process

The new v3.0 etcd will publish its information to the cluster:

09:58:25.938673 I | etcdserver: published {Name:infra1 ClientURLs:[http://localhost:12379

Verify that each member, and then the entire cluster, becomes healthy with the new v3.0

etcd binary:

$ etcdctl cluster-health
member 6e3bd23ae5f1eae0 is healthy: got healthy result from http://localhost:22379
member 924e2e83e93f2560 is healthy: got healthy result from http://localhost:32379
member 8211f1d0f64f3269 is healthy: got healthy result from http://localhost:12379
cluster is healthy

Upgraded members will log warnings like the following until the entire cluster is upgraded.

This is expected and will cease after all etcd cluster members are upgraded to v3.0:

2016-06-27 15:22:05.679644 W | etcdserver: the local etcd version 2.3.7 is not up-to-date
2016-06-27 15:22:05.679660 W | etcdserver: member 8211f1d0f64f3269 has a higher version 3

https://etcd.io/docs/v2.3/admin_guide#backing-up-the-datastore


4. Repeat step 2 to step 3 for all other members

5. Finish

When all members are upgraded, the cluster will report upgrading to 3.0 successfully:

2016-06-27 15:22:19.873751 N | membership: updated the cluster version from 2.3 to 3.0
2016-06-27 15:22:19.914574 I | api: enabled capabilities for version 3.0.0

$ ETCDCTL_API=3 etcdctl endpoint health
127.0.0.1:12379 is healthy: successfully committed proposal: took = 18.440155ms
127.0.0.1:32379 is healthy: successfully committed proposal: took = 13.651368ms
127.0.0.1:22379 is healthy: successfully committed proposal: took = 18.513301ms

Further considerations

etcdctl environment variables have been updated. If ETCDCTL_API=2 etcdctl cluster-

health  works properly but ETCDCTL_API=3 etcdctl endpoints health  responds with Error:

grpc: timed out when dialing , be sure to use the new variable names .

Known Issues

etcd < v3.1 does not work properly if built with Go > v1.7. See Issue 6951  for additional

information.

If an error such as transport: http2Client.notifyError got notified that the client

transport was broken unexpected EOF.  shows up in the etcd server logs, be sure etcd is a

pre-built release or built with (etcd v3.1+ & go v1.7+) or (etcd <v3.1 & go v1.6.x).

Adding a v3 node to v2.3 cluster during upgrades is not supported and could trigger

panics. See Issue 7249  for additional information. Mixed versions of etcd members are

only allowed during v3 migration. Finish upgrades before making any membership

changes.

Last modified August 19, 2023: etcd-io/website#479 Use new and better canonical link to

Google Groups (cd8b01f)









https://github.com/etcd-io/etcd/tree/master/etcdctl#etcdctl
https://github.com/etcd-io/etcd/tree/master/etcdctl#etcdctl
https://github.com/etcd-io/etcd/tree/master/etcdctl#etcdctl
https://github.com/etcd-io/etcd/issues/6951
https://github.com/etcd-io/etcd/issues/6951
https://github.com/etcd-io/etcd/issues/6951
https://github.com/etcd-io/etcd/issues/7429
https://github.com/etcd-io/etcd/issues/7429
https://github.com/etcd-io/etcd/issues/7429
https://github.com/etcd-io/website/commit/cd8b01f2f96d06f92d79e45e8c189606e9b81239
https://github.com/etcd-io/website/commit/cd8b01f2f96d06f92d79e45e8c189606e9b81239
https://github.com/etcd-io/website/commit/cd8b01f2f96d06f92d79e45e8c189606e9b81239
https://github.com/etcd-io/website/commit/cd8b01f2f96d06f92d79e45e8c189606e9b81239


Triage

Managing changes in etcd

Issue triage guidelines

PR management

Last modified June 14, 2021: Renaming content/en/next folder to content/en/v3.5. Updating

redirects, links, and config as needed. (#363) (138926b)


etcd

Docs Blog Community Install Play

https://etcd.io/docs/v3.5/triage/issues/
https://etcd.io/docs/v3.5/triage/prs/
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://github.com/etcd-io/website/commit/138926b5de44b5116fdbe63830eeaf73596e4c2c
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play




Issue triage guidelines

Purpose

Speed up issue management.

The etcd  issues are listed at https://github.com/etcd-io/etcd/issues  and are identified with

labels. For example, an issue that is identified as a bug will eventually be set to label area/bug

. New issues will start out without any labels, but typically etcd  maintainers and active

contributors add labels based on their findings. The detailed list of labels can be found at

https://github.com/kubernetes/kubernetes/labels

Following are few predetermined searches on issues for convenience:

Bugs

Help Wanted

Longest untriaged issues

Issue Triage Meeting

Scope

These guidelines serves as a primary document for triaging an incoming issues in etcd .

Everyone is welcome to help manage issues and PRs but the work and responsibilities

discussed in this document are created with etcd  maintainers and active contributors in

mind.

Validate if an issue is a bug

Validate if the issue is indeed a bug. If not, add a comment with findings and close trivial

issue. For non-trivial issue, wait to hear back from issue reporter and see if there is any

objection. If issue reporter does not reply in 30 days, close the issue. If the problem can not

be reproduced or require more information, leave a comment for the issue reporter.













etcd

Docs Blog Community Install Play

https://github.com/etcd-io/etcd/issues
https://github.com/etcd-io/etcd/issues
https://github.com/etcd-io/etcd/issues
https://github.com/kubernetes/kubernetes/labels
https://github.com/kubernetes/kubernetes/labels
https://github.com/kubernetes/kubernetes/labels
https://github.com/etcd-io/etcd/labels/area%2Fbug
https://github.com/etcd-io/etcd/labels/area%2Fbug
https://github.com/etcd-io/etcd/labels/area%2Fbug
https://github.com/etcd-io/etcd/labels/Help%20Wanted
https://github.com/etcd-io/etcd/labels/Help%20Wanted
https://github.com/etcd-io/etcd/labels/Help%20Wanted
https://github.com/etcd-io/etcd/issues?utf8=%E2%9C%93&q=is%3Aopen+sort%3Aupdated-asc+
https://github.com/etcd-io/etcd/issues?utf8=%E2%9C%93&q=is%3Aopen+sort%3Aupdated-asc+
https://github.com/etcd-io/etcd/issues?utf8=%E2%9C%93&q=is%3Aopen+sort%3Aupdated-asc+
https://etcd.io/community/#community-meetings
https://etcd.io/community/#community-meetings
https://etcd.io/community/#community-meetings
https://etcd.io/
https://etcd.io/docs/latest/
https://etcd.io/blog/
https://etcd.io/community/
https://etcd.io/docs/latest/install/
http://play.etcd.io/play


Inactive issues

Issues that lack enough information from the issue reporter should be closed if issue

reporter do not provide information in 60 days.

Duplicate issues

If an issue is a duplicate, add a comment stating so along with a reference for the original

issue and close it.

Issues that don’t belong to etcd

Sometime issues are reported that actually belongs to other projects that etcd  use. For

example, grpc  or golang  issues. Such issues should be addressed by asking reporter to

open issues in appropriate other project. Close the issue unless a maintainer and issue

reporter see a need to keep it open for tracking purpose.

Verify important labels are in place

Make sure that issue has label on areas it belongs to, proper assignees are added and

milestone is identified. If any of these labels are missing, add one. If labels can not be

assigned due to limited privilege or correct label can not be decided, that’s fine, contact

maintainers if needed.

Poke issue owner if needed

If an issue owned by a developer has no PR created in 30 days, contact the issue owner and

ask for a PR or to release ownership if needed.

Last modified November 8, 2023: Update website to callout the issue triage meeting (f3d54c7)


https://github.com/etcd-io/website/commit/f3d54c7fd742d5bdc4e420132649d1274883f2e0
https://github.com/etcd-io/website/commit/f3d54c7fd742d5bdc4e420132649d1274883f2e0
https://github.com/etcd-io/website/commit/f3d54c7fd742d5bdc4e420132649d1274883f2e0
https://github.com/etcd-io/website/commit/f3d54c7fd742d5bdc4e420132649d1274883f2e0





	Sem nome
	Install



