
karma

View on GitHub

karma

Alert dashboard for Prometheus Alertmanager.

Alertmanager >=0.22.0 is required.

See GitHub Releases for release changelog.

Feature overview

Alertmanager UI is useful for browsing alerts and managing silences, but it’s lacking

as a dashboard tool - karma aims to fill this gap.

Alert aggregation and deduplication

Starting with the 0.7.0 release it can aggregate alerts from multiple Alertmanager

instances, running either in HA mode or separate. Unique alerts are displayed by

filtering duplicates. Each alert is tagged with the names of all Alertmanager

instances it was found at and can be filtered based on those tags (@alertmanager).

Note that @alertmanager tags will be visible only if karma is configured with

multiple Alertmanager instances. If alertmanger is configured to use HA clusters

then @cluster will be available as well, to set a custom name for each cluster see

CONFIGURATION.md.

Alert dashboard for Prometheus Alertmanager

24/09/24, 19:46 karma | Alert dashboard for Prometheus Alertmanager

https://karma-dashboard.io 1/14

https://github.com/prymitive/karma
https://prometheus.io/docs/alerting/alertmanager/
https://github.com/prymitive/karma/releases
https://prometheus.io/docs/alerting/latest/alertmanager/#high-availability
https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers

Alert visualization

Alert groups

Alerts are displayed grouped preserving group_by configuration option in

Alertmanager. Note that a unique alert group will be created for each receiver it

uses in alertmanager as they can have different group_by settings. If a group

contains multiple alerts only the first few alerts will be presented. Alerts are

expanded or hidden using - / + buttons. The default number of alerts can be

configured in the UI settings module. Each group can be collapsed to only show the

title bar using top right toggle icon. Each individual alert will show unique labels and

annotations. Labels and annotations that are shared between all alerts are moved

to the footer.

Active alerts will show recently expired silences, to allow re-silincing if needed. This

is controlled via silences:expired setting. 10m value would show silences expired

in the last 10 minutes but only for alerts that started firing more than 10 minutes

ago.

24/09/24, 19:46 karma | Alert dashboard for Prometheus Alertmanager

https://karma-dashboard.io 2/14

https://prometheus.io/docs/alerting/configuration/#route

24/09/24, 19:46 karma | Alert dashboard for Prometheus Alertmanager

https://karma-dashboard.io 3/14

Alert history

Alertmanager doesn’t currently provide any long term storage of alert events or a

way to query for historical alerts, but each Prometheus server sending alerts stores

metrics related to triggered alerts. When history:enabled is true karma will use

source fields from each alert to try querying alert related metrics on remote

Prometheus servers. The result is the number of times given alert group triggered

an alert per hour in the last 24h, displayed as 24 blocks. The darker the color the

more alerts were triggered in that hour, as compared by all other hours.

For this feature to work karma must be able to connect to all Prometheus servers

sending alerts. Be sure to set --web.external-url Prometheus flag to a publicly

reachable URL of each server.

Inhibited alerts

24/09/24, 19:46 karma | Alert dashboard for Prometheus Alertmanager

https://karma-dashboard.io 4/14

Inhibited alerts (suppressed by other alerts, see Alertmanager docs) will have a

“muted” button.

Clicking on that button will bring a modal with a list of inhibiting alerts.

Silence deduplication

If all alerts in a group were suppressed by the same silence then, to save screen

space, the silence will also be moved to the footer.

24/09/24, 19:46 karma | Alert dashboard for Prometheus Alertmanager

https://karma-dashboard.io 5/14

https://prometheus.io/docs/alerting/latest/alertmanager/#inhibition

Label based multi-grid

To help separate alerts from different environments or with different level of

severity multi-grid mode can be enabled, which adds another layer of visually

grouping alert groups. To enable this mode go to the configuration modal and

select a label name, all alerts will be grouped by that label, each label value will

have a dedicated grid, including an extra grid for alerts without that label present.

24/09/24, 19:46 karma | Alert dashboard for Prometheus Alertmanager

https://karma-dashboard.io 6/14

Silence management

24/09/24, 19:46 karma | Alert dashboard for Prometheus Alertmanager

https://karma-dashboard.io 7/14

Silence modal allows to create new silences and manage all silences already

present in Alertmanager. Silence ACL rules can be used to control silence creation

and editing, see ACLs docs for more details.

Alert overview

Clicking on the alert counter in the top left corner will open the overview modal,

which allows to quickly get an overview of the top label values for all current alerts.

24/09/24, 19:46 karma | Alert dashboard for Prometheus Alertmanager

https://karma-dashboard.io 8/14

https://karma-dashboard.io/docs/ACLs.html

Alert acknowledgement

Starting with v0.50 karma can create short lived silences to acknowledge alerts

with a single button click. To create silences that will resolve itself only after all

alerts are resolved you can use kthxbye. See configuration docs for details.

Dead Man’s Switch support

Starting with v0.78 karma can be configured to check for Dead Man’s Switch style

alerts (alert that is always firing). If no alert is found in given alertmanager karma

will show an error in the UI. See healthcheck:filters option on configuration docs

for details.

Dark mode

Starting with v0.52 release karma includes both light and dark themes. By default

it will follow browser preference using prefers-color-scheme media queries.

24/09/24, 19:46 karma | Alert dashboard for Prometheus Alertmanager

https://karma-dashboard.io 9/14

https://github.com/prymitive/kthxbye
https://karma-dashboard.io/docs/CONFIGURATION.html#alert-acknowledgement
https://en.wikipedia.org/wiki/Dead_man%27s_switch
https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers
https://developer.mozilla.org/en-US/docs/Web/CSS/@media/prefers-color-scheme

Demo

Online demo is running latest main branch. It might include features that are

experimental and not yet ready to be included.

Release notes

Release notes can be found on GitHub Release Page.

To get notifications about new karma releases go to GitHub karma page, click

Watch and select Releases only . This requires GitHub user account. To subscribe

to email notifications without GitHub account you can subscribe to the RSS feed

that GitHub provides. To get email notifications from those feeds use one of the

free services providing RSS to email notifications, like Blogtrottr.

History

I created karma while working for Cloudflare, originally it was called unsee. This

project is based on that code but the UI part was rewritten from scratch using

24/09/24, 19:46 karma | Alert dashboard for Prometheus Alertmanager

https://karma-dashboard.io 10/14

https://demo.karma-dashboard.io/
https://github.com/prymitive/karma/releases
https://github.com/prymitive/karma
https://github.com/prymitive/karma/releases.atom
https://blogtrottr.com/
https://cloudflare.com/
https://github.com/cloudflare/unsee

React. New UI required changes to the backend so the API is also incompatible.

Given that the React rewrite resulted in roughly 50% of new code and to avoid

confusion for user I’ve decided to rename it to karma, especially that the original

project wasn’t being maintained anymore.

Supported Alertmanager versions

Alertmanager’s API isn’t stable yet and can change between releases, see VERSIONS

in internal/mock/Makefile for list of all Alertmanager releases that are tested and

supported by karma. Due to API differences between those releases some features

will work differently or be missing, it’s recommended to use the latest supported

Alertmanager version.

Security

karma doesn’t in any way alter alerts in any Alertmanager instance it collects data

from. This is true for both the backend and the web UI. The web UI allows to

manage silences by sending requests to Alertmanager instances, this can be done

directly (browser to Alertmanager API) or by proxying such requests via karma

backend (browser to karma backend to Alertmanager API) if proxy mode is

enabled in karma config.

If you wish to deploy karma as a read-only tool without giving users any ability to

modify data in Alertmanager instance, then please ensure that:

the karma process is able to connect to the Alertmanager API

read-only users are able to connect to the karma web interface

read-only users are NOT able to connect to the Alertmanager API

readonly is set to true in alertmanager:servers config section for all

alertmanager instances, this options will disable any UI elements that could

trigger updates (like silence management)

To restrict some users from creating silences or enforce some matcher rules use

silence ACL rules. This feature requires proxy to be enabled.

24/09/24, 19:46 karma | Alert dashboard for Prometheus Alertmanager

https://karma-dashboard.io 11/14

https://reactjs.org/
https://karma-dashboard.io/internal/mock/Makefile
https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers
https://karma-dashboard.io/docs/ACLs.html

Metrics

karma process metrics are accessible under /metrics path by default. If you set the

--listen.prefix option a path relative to it will be used.

Building and running

Building from source

To clone git repo and build the binary yourself run:

git clone https://github.com/prymitive/karma $GOPATH/src/github.com/prymitive
cd $GOPATH/src/github.com/prymitive/karma

To finally compile karma the binary run:

make

Note that building locally from sources requires Go, nodejs and yarn. See Docker

build options below for instructions on building from withing docker container.

Running

karma can be configured using config file, command line flags or environment

variables. Config file is the recommended method, it’s also the only way to

configure karma to use multiple Alertmanager servers for collecting alerts. To run

karma with a single Alertmanager server set ALERTMANAGER_URI environment

variable or pass --alertmanger.uri flag on the command line, with Alertmanager

URI as argument, example:

ALERTMANAGER_URI=https://alertmanager.example.com karma
karma --alertmanager.uri https://alertmanager.example.com

24/09/24, 19:46 karma | Alert dashboard for Prometheus Alertmanager

https://karma-dashboard.io 12/14

There is a make target which will compile and run a demo karma docker image:

make run-demo

By default it will listen on port 8080 and will have mock alerts.

Docker

Running pre-build docker image

Official docker images are built and hosted on Github.

Images are built automatically for:

release tags in git - ghcr.io/prymitive/karma:vX.Y.Z

main branch commits - ghcr.io/prymitive/karma:latest

NOTE karma uses uber-go/automaxprocs to automatically adjust GOMAXPROCS to

match Linux container CPU quota.

Examples

To start a release image run:

docker run -e ALERTMANAGER_URI=https://alertmanager.example.com ghcr.io/prymi

Latest release details can be found on GitHub.

To start docker image build from lastet main branch run:

docker run -e ALERTMANAGER_URI=https://alertmanager.example.com ghcr.io/prymi

24/09/24, 19:46 karma | Alert dashboard for Prometheus Alertmanager

https://karma-dashboard.io 13/14

https://github.com/users/prymitive/packages/container/package/karma
https://github.com/uber-go/automaxprocs
https://github.com/prymitive/karma/releases

Note that latest main branch might have bugs or breaking changes. Using release

images is strongly recommended for any production use.

Building a Docker image

make docker-image

This will build a Docker image locally from sources.

Health checks

/health endpoint can be used for health check probes, it always responds with 200

OK code and Pong response body.

Configuration

Please see CONFIGURATION for full list of available configuration options and

example.yaml for a config file example.

Contributing

Please see CONTRIBUTING for details.

License

Apache License 2.0, please see LICENSE.

karma is maintained by prymitive.

This page was generated by GitHub Pages.

24/09/24, 19:46 karma | Alert dashboard for Prometheus Alertmanager

https://karma-dashboard.io 14/14

https://karma-dashboard.io/docs/CONFIGURATION.html
https://karma-dashboard.io/docs/example.yaml
https://karma-dashboard.io/CONTRIBUTING.md
https://karma-dashboard.io/LICENSE
https://github.com/prymitive/karma
https://github.com/prymitive
https://pages.github.com/

Configuration options

View on GitHub

Configuration options

Config file

By default karma will try to read configuration file named karma.yaml from current

directory. Configuration file uses YAML format and it needs to have .yaml

extension. Custom filename and directory can be passed via command line flags or

environment variables:

--config.file flag or CONFIG_FILE env variable - path to the config file

Example with flags:

karma --config.file docs/example.yaml

Example with environment variables:

CONFIG_FILE="docs/example.yaml"

Authentication

authentication sections allows enabling authentication support in karma. When

set users will be required to authenticate when trying to access karma. There are

currently two supported authentication methods:

Alert dashboard for Prometheus Alertmanager

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 1/36

https://github.com/prymitive/karma
http://yaml.org/

Basic HTTP Authentication. Karma will be performing authentication using

configured list of username & password pairs. This method is only

recommended for testing.

External authentication via headers. Karma doesn’t perform any

authentication itself, it is done by a frontend service (SSO or nginx reverse

proxy) that sets a header with username on every request.

Only one method can be enabled in the config. Enabling authentication will also

force silences to be created with usernames passed from credentials. Syntax:

authentication:
 header:
 name: string
 value_re: regex
 group_name: string
 group_value_re: regex
 group_value_separator: string
 basicAuth:
 users:
 - username: string
 password: string

authentication:users:header:name - name of the header that will contain the

username. If this header is missing from a request access will be forbidden.

When set header authentication is used.

authentication:users:header:value_re - regex used to extract the username

from the request header value (when authentication:users:header:name is

set). It must include one numbered capturing group, whatever is matched by

that group will be used as the silence form author field. All regexes are

anchored. This option must be set when authentication:users:header:name is

set.

authentication:users:header:group_name - name of the header that will

contain any groups the user has.

authentication:users:header:group_value_re - Similar to

authentication:users:header:value_re , but for groups instead of usernames.

Must be set when authentication:users:header:group_name is set.

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 2/36

https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication#Basic_authentication_scheme
https://golang.org/s/re2syntax

authentication:users:header:group_value_separator - This will be used to

split the group header to multiple group names. The split is done after

evaluating the value regex. Default value is " " .

authentication:users - list of users (username & password) allowed to login.

Passwords are stored plain without any encryption. When set HTTP basic

authentication will be used.

Defaults:

authentication:
 header:
 name: ""
 value_re: ""
 basicAuth:
 users: []

Example where HTTP Basic Authentication will be used with a list of username and

password pairs set in karma config file.

authentication:
 basicAuth:
 users:
 - username: alice
 password: secret
 - username: bob
 password: moreSecret

Example where the X-Auth header will be used for authentication, raw header

value will be used as username.

authentication:
 header:
 name: X-Auth
 value_re: ^(.+)$

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 3/36

Example where the X-Auth-User and X-Auth-Groups headers will be used to set

username and list of groups. This assume that X-Auth-Groups value has Groups:

foo,bar syntax, where foo and bar are two groups user belongs to.

authentication:
 header:
 name: X-Auth-User
 value_re: ^(.+)$
 group_name: X-Auth-Groups
 group_value_re: 'Groups: (.+)'
 group_value_separator: ','

Authorization

authorization section allows to configure authorization groups used in silence ACL

rules. Syntax:

authorization:
 acl:
 silences: string
 groups:
 - name: string
 members: list of strings

acl:silences - path to silence ACL configuration file, see ACLs for details

groups - list of group definitons, each group must have a name and members

list. name will be used in silence ACL rules, members list should contain list of

user names as passed from authentication layer.

Example with two groups using basic auth users and silences ACL config:

authentication:
 basicAuth:
 users:
 - username: alice

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 4/36

https://karma-dashboard.io/docs/ACLs.md

 password: secret
 - username: bob
 password: secret
 - username: john
 password: secret
authorization:
 acl:
 silences: /etc/karma/acls.yaml
 groups:
 - name: admins
 members:
 - alice
 - bob
 - name: users
 members:
 - john

Alertmanagers

alertmanager section allows setting Alertmanager servers that should be queried

for alerts. You can configure one or more Alertmanager servers, alerts with identical

label set will be deduplicated and labeled with each Alertmanager server they were

observed at. This allows using karma to collect alerts from a pair of Alertmanager

instances running in HA mode. Syntax:

alertmanager:
 interval: duration
 servers:
 - name: string
 cluster: string
 uri: string
 external_uri: string
 timeout: duration
 proxy: bool
 readonly: bool
 tls:
 ca: string
 cert: string

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 5/36

https://prometheus.io/docs/alerting/alertmanager/#high-availability

 key: string
 insecureSkipVerify: bool
 proxy_url: string
 headers:
 any: string
 cors:
 credentials: string
 healthcheck:
 visible: bool
 filters: map (string: list of strings)

interval - how often alerts should be refreshed, a string in time.Duration

format. If set to 1m karma will query every Alertmanager server once a

minute. This is global setting applied to every Alertmanager server. All

instances will be queried in parallel. Note that the maximum value for this

option is 15m . The UI has a watchdog that tracks the timestamp of the last

pull. If the UI does not receive updates for more than 15 minutes it will print

an error and reload the page.

name - name of this Alertmanager server, will be used as a label added to

every alert in the UI and for filtering alerts using @alertmanager=NAME filter

cluster - this option can be set to give Alertmanager clusters custom names

in the UI. If there are multiple alertmanager servers configured in karma

config that are part of the same HA cluster then this option should be set to

the same value for all of them. If cluster option isn’t set a name will be

generated for each detected cluster.

uri - base URI of this Alertmanager server. Supported URI schemes are

http:// and https:// . If URI contains basic auth info

(https://user:password@alertmanager.example.com) and you don’t want it to be

visible to users then ensure proxy: true is also set in order to avoid leaking

auth information to the browser. Note: if URI contains username and

password and proxy option is NOT enabled (see below), then the username &

password information will be stripped from the URI and Authorization

header using Basic Auth will be set for all in browser requests.

external_uri - this option allows to override base URI of this Alertmanager

used for browser links and also silence requests (but only when proxy mode is

not enabled).

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 6/36

https://golang.org/pkg/time/#ParseDuration
https://prometheus.io/docs/alerting/latest/alertmanager/#high-availability

timeout - timeout for requests send to this Alertmanager server, a string in

time.Duration format.

proxy - if enabled requests from user browsers to this Alertmanager will be

proxied via karma. This applies to requests made when managing silences via

karma (creating or expiring silences). This option cannot be used when

readonly is enabled.

readonly - set this Alertmanager upstream to a read only mode. This will

disallow silence creation or editing. This option cannot be used when proxy is

enabled.

tls:ca - path to CA certificate used to establish TLS connection to this

Alertmanager instance (for URIs using https:// scheme). If unset or empty

string is set then Go will try to find system CA certificates using well known

paths.

tls:cert - path to a TLS client certificate file to use when establishing TLS

connections to this Alertmanager instance if it requires a TLS client

authentication. Note that this option requires tls:key to be also set.

tls:key - path to a TLS client key file to use when establishing TLS

connections to this Alertmanager instance if it requires a TLS client

authentication. Note that this option requires tls:cert to be also set.

tls:insecureSkipVerify - disable server certificate validation, can be set to

allow using self-signed certs, use at your own risk

proxy_url - sets a proxy for HTTP client used for making requests to the

upstream server. This can be used to access servers available via SOCKS5

proxy.

headers - a map with a list of key: values which are header: value. These

custom headers will be sent with every request to the alert manager instance.

NOTE: these headers are only sent for alertmanager requests, they are NOT

set on requests send to Prometheus server when querying alert history.

Please see history:rewrite section below if you want to set headers for

Prometheus requests.

cors:credentials - sets the CORS credentials settings for browser requests,

see docs for the list of possible values. By default credentials are included in

all requests (include), set it to omit or same-origin if Alertmanager is

configured to respond with Access-Control-Allow-Origin: * , see docs.

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 7/36

https://golang.org/pkg/time/#ParseDuration
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/API/Request/credentials
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS/Errors/CORSNotSupportingCredentials

healthcheck:visible - enable this option if you want healthcheck:filters

alerts to be visible in karma UI. An alternative to enabling this option is to

route healcheck alerts to alertmanager receiver that isn’t visible using default

karma filters.

healthcheck:filters - define healtchecks using alert filters. When set karma

will search for alerts matching defined filters and show an error if it doesn’t

match anything. This can be used with a Dead man’s switch style alert to notify

karma users that there’s a problem with alerting pipeline. Syntax for this

option is a map where key is the name of the filter set (used in the UI when

showing errors) and the value is a list of filters.

Example:

Setup always on alert in each Prometheus server (prom1 and prom2):

- alert: DeadMansSwitch
 expr: vector(1)

Add healtcheck configuration to karma:

alertmanager:
 servers:
 - name: am
 uri: https://alertmanager.example.com
 healthcheck:
 filters:
 prom1:
 - alertname=DeadMansSwitch
 - instance=prom1
 prom2:
 - alertname=DeadMansSwitch
 - instance=prom2

If any of these alerts is missing from alertmanager karma will show a warning

in the UI.

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 8/36

https://en.wikipedia.org/wiki/Dead_man%27s_switch

Note: there are multiple supported combination of URI settings which result in a

slightly different behavior. Settings that control it are:

uri - this option tells karma backend the URI that should be used to collect all

alerts and silence data from given Alertmanager instance. This setting is

required.

proxy - this option when set to true enables karma backend to proxy all

silence management requests (creating, editing or deleting silences via karma

UI), so when the user creates a silence via karma UI the browser makes a

request to karma backend, the backend then forwards this request to the

Alertmanager using the value of uri option as the URI. When this option is set

to false all browser requests will use uri value. This setting is optional,

default value for it is false .

external_uri - this option tells karma how the browser should connect to

given Alertmanager instance, it can be used for silence management requests

(creating, editing or deleting silences via karma UI) and how to generate links

to silences in Alertmanager web UI. Behavior of this option depends on the

value of proxy setting. When proxy mode is enabled:

silence management requests will use karma backend URI

silence links to Alertmanager web UI will use external_uri value as base

URI When proxy mode is disabled:

silence management requests will use external_uri value as base URI

silence links to Alertmanager web UI will use external_uri value as base

URI

Breakdown of all combination of settings:

1. Only uri is set:

uri: http://localhost:123

Karma would use those URIs for:

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 9/36

Backend
Silence

management
Silence links

http://localhost:123 http://localhost:123 http://localhost:123

2. Proxy mode is enabled:

uri: http://localhost:123
proxy: true

Karma would use those URIs for:

Backend
Silence

management
Silence links

http://localhost:123 Karma internal URI http://localhost:123

3. external_uri is set, but proxy mode is disabled:

uri: http://localhost:123
external_uri: http://example.com

Karma would use those URIs for:

Backend Silence management Silence links

http://localhost:123 http://example.com http://example.com

4. Proxy mode is enabled and external_uri is set:

uri: http://localhost:123
proxy: true
external_uri: http://example.com

Karma would use those URIs for:

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 10/36

Backend Silence management Silence links

http://localhost:123 Karma internal URI http://example.com

5. ReadOnly mode is enabled:

uri: http://localhost:123
readonly: true

Karma would use those URIs for:

Backend Silence management Silence links

http://localhost:123 Disabled http://localhost:123

Example with two production Alertmanager instances running in HA mode and a

staging instance that is also proxied and requires a custom auth header:

alertmanager:
 interval: 1m
 servers:
 - name: production1
 uri: https://alertmanager1.prod.example.com
 timeout: 20s
 proxy: false
 - name: production2
 uri: https://alertmanager2.prod.example.com
 timeout: 20s
 proxy: false
 - name: staging
 uri: https://alertmanager.staging.example.com
 timeout: 30s
 proxy: true
 tls:
 ca: /etc/ssl/staging-ca.crt
 headers:
 X-Auth-Token: aValidToken
 - name: protected
 uri: https://alertmanager-auth.prod.example.com

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 11/36

 timeout: 20s
 tls:
 cert: /etc/ssl/client.pem
 key: /etc/ssl/client.key
 - name: self-signed
 uri: https://test.example.com
 tls:
 insecureSkipVerify: true
 - name: socks5
 uri: https://internal.address
 proxy_url: socks5://proxy.local:5000

Defaults:

alertmanager:
 interval: 1m
 servers: []

There is no default for alertmanager.servers and it’s a required option for setting

multiple Alertmanager servers. For cases where only a single server needs to be

configured without a config file see Simplified Configuration.

Alert acknowledgement

Prometheus Alertmanager allows alerts to be in 3 states:

active - when alert is firing

suppressed - when alert is either silenced by a silence rule or inhibited by

another alert using inhibition rules

unprocessed - initial state for new alerts before they are checked against all

silence rules so Alertmanager doesn’t yet know if the alert should be active

or suppressed

A silence rule can be used to mark an alert as acknowledged and being worked on.

To simplify creating of such silences karma provides a one click button that will

create a silence matching alert group it was clicked for. alertAcknowledgement

allows to enable this feature and customize it’s configuration. Syntax:

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 12/36

https://prometheus.io/docs/alerting/alertmanager/#silences
https://prometheus.io/docs/alerting/alertmanager/#inhibition

alertAcknowledgement:
 enabled: bool
 duration: duration
 author: string
 comment: string

enabled - setting it to true will enable creation of short lived

acknowledgement silences.

duration - duration for acknowledgement silences, value is a string in

time.Duration format.

author - default author for acknowledgement silences. If user set the author

field on the silence form then that value will be used instead.

comment - custom comment used for acknowledgement silences (optional). If

the comment contains %NOW% it will be replaced by current timestamp with

UTC timezone, to use timestamp with local timezone use %NOWLOC% .

Defaults:

alertAcknowledgement:
 enabled: false
 duration: 15m0s
 author: karma
 comment: ACK! This alert was acknowledged using karma on %NOW%

A common problem is setting a correct duration for the silence. If set for too short it

can expire before the issue is resolved, and will require re-silencing all the alerts. If

set for too long it mask the same problem reoccurring in the future. This requires

user to expire the silence once the issue is resolved.

kthxbye is a tiny daemon that can help with managing short lived acknowledged

silences. It will continuously extend short lived acknowledgement silences if there

are alerts firing against those silences, which means that the user doesn’t need to

worry about setting proper duration for such silences. To use it run an instance of

kthxbye with every alertmanager instance or cluster and configure it to use the

same comment prefix in comment . With this setup when user clicks to acknowledge

an alert karma will create a short lived silence and kthxbye will keep that silence in

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 13/36

https://golang.org/pkg/time/#ParseDuration
https://github.com/prymitive/kthxbye

Alertmanager until there are no alerts matching it, meaning that the issue was

resolved.

Annotations

annotations section allows configuring how alert annotation are displayed in the

UI. Syntax:

annotations:
 default:
 hidden: bool
 hidden: list of strings
 visible: list of strings
 keep: list of strings
 strip: list of strings
 order: list of strings
 actions: list of strings
 enableInsecureHTML: bool

default:hidden - bool, true if all annotations should be hidden by default.

hidden - list of annotations that should be hidden by default.

visible - list of annotations that should be visible by default when

default:hidden is set to true .

keep - list of allowed annotations, if empty all annotations are allowed.

strip - list of ignored annotations.

order - custom order of annotation names. All annotations listed here will

appear first in the order specified here. Remaining annotations will be sorted

alphabetically and appended at the end.

actions - list of annotations that will be moved to alert dropdown menu. this

only applies to annotations where value is a link.

enableInsecureHTML - by default all annotation values are escaped when

rendered in users browser, to prevent any injection attacks. If this option is set

to true escaping will be disabled which allows HTML tags to be used in

annotations, but if someone manages to send alerts with annotations

containing untrusted HTML/Javascript code to your alertmanager instances

karma will allow it to be executed in your browser.

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 14/36

NOTE Enable at your own risk.

The difference between hidden / visible and keep / strip is that hidden

annotations are still accessible, but they are shown in the UI collapsed by default

(only name is visible, value is shown after clicking), while stripped annotations are

removed entirely and never presented to the user.

Example where all annotations except summary are hidden by default. If there are

additional annotation keys user will need to click on the + icon to see them.

summary annotation will always appear first in the UI, followed by help and all

other annotations (sorted alphabetically). Any annotation with name jira and a

value that is a URL will be moved to alerts dropdown menu.

annotations:
 default:
 hidden: true
 hidden: []
 visible:
 - summary
 keep: []
 strip:
 - help
 - verylong
 order:
 - summary
 - help
 actions:
 - jira

Example where all annotations except details are visible by default. If details

annotation is present on any alert user will need to click on the + icon to see it.

Additionally secret annotation is stripped and never shown in the UI.

annotations:
 default:
 hidden: false
 hidden:
 - details

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 15/36

 visible: []
 keep: []
 strip:
 - secret

Defaults:

annotations:
 default:
 hidden: false
 hidden: []
 visible: []
 keep: []
 strip: []
 order: []
 actions: []
 enableInsecureHTML: false

Filters

filters section allows configuring default set of filters used in the UI.

Syntax:

filters:
 default: list of strings

default - list of filters to use by default when user navigates to karma web UI.

Visit /help page in karma for details on available filters. Note that if a string

starts with @ YAML requires to wrap it in quotes.

Example:

filters:
 default:

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 16/36

 - "@state=active"
 - severity=critical

Defaults:

filters:
 default: []

Grid

grid section allows customizing how alert grid is rendered in the UI. Sorting

configuration can be overridden by each user via UI settings. Syntax:

grid:
 sorting:
 order: string
 reverse: bool
 label: string
 customValues:
 labels: dict
 auto:
 ignore: list of strings
 order: list of strings
 groupLimit: integer

sorting:order - default sort order for alert grid, valid values are:

disabled - no sorting, alert groups are rendered in the order they are

returned by the API

startsAt - sort by alert timestamps, most recent alert in each group will

be used when comparing each group

label - sort by labels, if the label used for sorting is not shared by all

alerts in a group then the first alert in the group will be queried for it

sorting:reverse - default value for reversed sort order

sorting:label - label name for sorting when grid:sorting:order is set to

label . Labels can be assigned custom values used only by sorting via

sorting:customValues:labels .

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 17/36

sorting:customValues:labels - when sorting using alert labels values are

compared as strings, which work for labels like cluster=A , cluster=B &

cluster=C , but not for cluster=prod , cluster=staging & cluster=dev .

Alphabetic sort would order the second case as follows: dev , prod , staging .

To allow for more natural sorting sorting:valueMapping can be used to map

label values to integer values which will be used for sorting instead of original

string values. Note: this option is not available via environment variables, you

can only set it via the config file.

auto:ignore - list of label names that should never be selected as multi-grid

source label when multi-grid is configured to Automatic selection in the UI or

when ui:multiGridLabel is set to @auto .

auto:order - preferred order for selecting labels to be used as multi-grid

source label when multi-grid is configured to Automatic selection in the UI or

when ui:multiGridLabel is set to @auto . If a label name is not present in this

list labels with equal weight will be picked in alphabetic order.

groupLimit - default number of alert groups to show in the UI, loading more

will require user to click on Load more button.

Defaults:

grid:
 sorting:
 order: startsAt
 reverse: true
 label: alertname
 customValues:
 labels: {}
 auto:
 ignore: []
 order: []
 groupLimit: 40

Example with sorting using severity label and value mappings for it:

grid:
 sorting:
 order: label

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 18/36

 reverse: false
 label: severity
 customValues:
 labels:
 severity:
 critical: 1
 warning: 2
 info: 3

Alert history

history section allows to enable and configure alert history queries. When enabled

karma will use source fields to try finding remote Prometheus servers sending

alerts. If source is a link that points at a reachable Prometheus server then karma

will query its metrics to estimate how many times did that alert fire in the last 24h.

Syntax:

history:
 enabled: bool
 timeout: duration
 workers: integer
 rewrite:
 - source: regex
 uri: string
 proxy_url: string
 headers:
 any: string
 tls:
 ca: string
 cert: string
 key: string
 insecureSkipVerify: bool

enabled - enable alert history UI and backend query support

timeout - timeout for HTTP requests send to remote Prometheus servers

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 19/36

workers - number of worker threads to start, each worker handles one

outgoing HTTP request, more workers allows to handle more concurrent

queries if you have a large number of Prometheus servers sending alerts

rewrite - list of source rewrite rules applied before any request is send to

remote Prometheus. Rewrite rules can be used to modify URI or TLS settings

used by karma when connecting to Prometheus API if source field in alert

uses addresses not reachable from karma. All regexes are anchored, ${N}

syntax can be used for capture groups. You can rewrite uri to an empty string

to disable connecting to that specific Prometheus instance.

Defaults:

history:
 enabled: true
 timeout: 20s
 workers: 30
 rewrite: []

Example with rewrite rule that will replace https://prometheus.example.com with

http://localhost:9093 :

history:
 rewrite:
 - source: 'https://prometheus.example.com'
 uri: 'http://localhost:9093'

Example with rewrite rule that will replace https://*.example.com with

http://prometheus-*.internal (https://dev.example.com becomes

http://prometheus-dev.example.com):

history:
 rewrite:
 - source: 'https://(.+).example.com'
 uri: 'http://prometheus-$1.internal'

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 20/36

Example with rewrite rule that will disable sending any history queries to

http://prometheus.internal :

history:
 rewrite:
 - source: 'http://prometheus.internal'
 uri: ''

Example with rewrite rule that configures TLS settings without modifying URI:

history:
 rewrite:
 - source: '(.*)'
 uri: '$1'
 tls:
 insecureSkipVerify: true

Example with rewrite rule that configures a proxy without modifying URI:

history:
 rewrite:
 - source: '(.*)'
 uri: '$1'
 proxy_url: socks5://proxy.local:5000

Example with rewrite rule that will set an extra header for all history request send

to Prometheus server http://prometheus.example.com :

history:
 rewrite:
 - source: 'http://prometheus.example.com'
 headers:
 X-Auth: secret
 X-Foo: bar

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 21/36

Karma

karma section allows configuring miscellaneous internal options.

Syntax:

karma:
 name: string

name - name of given karma instance, this is currently used for the browser

tab title.

Defaults:

karma:
 name: karma

Labels

labels section allows configuring how alert labels will be rendered in the UI. All

labels will be parsed when collecting alerts from Alertmanager API and used when

deduplicating alerts, but some labels aren’t useful to users and so can be removed

from the UI, this is controlled by keep , keep_re , strip and strip_re options.

colors section allows configuring which labels should have colors applied to label

background in the UI. Colors can help visually identify alerts with shared labels, for

example coloring hostname label will allow to quickly spot all alerts for the same

host. Syntax:

labels:
 color:
 static: list of strings
 unique: list of strings
 custom:
 foo:
 - value: string
 value_re: regex

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 22/36

 color: string
 order: list of strings
 keep: list of strings
 keep_re: list of regex
 strip: list of strings
 strip_re: list of regex
 valueOnly: list of strings
 valueOnly_re: list of regex

color:static - list of label names that will all have the same color applied

(different than the default label color). This allows to quickly spot a specific

label that can have high range of values, but it’s important when reading the

dashboard. For example coloring the instance label allows to quickly learn

which instance is affected by given alert.

color:unique - list of label names that should have unique colors generated in

the UI.

color:custom - nested map of label names and value with colors - this allows

to configure a set of labels with custom predefined colors applied to them

rather than generated. Value is a mapping with label name -> list of dicts ,

each dict object allows setting:

value - the exact value of the label to match against

value_re - Go compatible regular expression to match against. All

regexes will be automatically anchored.

color : color to apply if either value or value_re matches

Either value or value_re is required, both can be set in which case value

with be tested first. Entries are evaluated in the order they appear in the

config file. Note: this option is not available via environment variables, you can

only set it via the config file.

order - custom order of label names. All labels listed here will appear first in

the order specified here. Remaining labels will be sorted alphabetically and

appended at the end.

keep - list of allowed labels, if both keep and keep_re are empty all labels are

allowed.

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 23/36

https://golang.org/pkg/regexp/

keep_re - list of Go compatible regular expressions to keep matching labels;

all regexes will be automatically anchored; if both keep and keep_re are

empty all labels are allowed.

strip - list of ignored labels.

strip_re - list of Go compatible regular expressions to ignore matching

labels; all regexes will be automatically anchored.

valueOnly - list of label names for which only the value will be displayed in the

UI.

valueOnly_re - list of JavaScript compatible regular expressions to display only

the value for matching labels; all regexes will be automatically anchored.

Example with static color for the job label (every job label will have the same color

regardless of the value) and unique color for the @receiver label (every @receiver

label will have color unique for each value).

labels:
 color:
 static:
 - job
 unique:
 - "@receiver"

Example where task_id label is ignored by karma:

labels:
 keep: []
 strip:
 - task_id

Example where all but instance and alertname labels are allowed:

labels:
 keep:
 - alertname
 - instance
 strip: []

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 24/36

https://golang.org/pkg/regexp/
https://golang.org/pkg/regexp/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions/Cheatsheet

Example where only labels with the prefix custom_ are allowed:

labels:
 keep: []
 keep_re:
 - 'custom_.*'

Example where severity label will have a red color for critical , yellow for

warning and blue for info :

labels:
 color:
 custom:
 "@alertmanager":
 - value: prod
 color: "#e6e"
 severity:
 - value: info
 color: "#87c4e0"
 - value: warning
 color: "#ffae42"
 - value: critical
 color: "#ff220c"

Example with a regex value, info , warning and critical will get colors as below,

but any value not matching those 3 values will use the color from .* :

labels:
 color:
 custom:
 severity:
 - value: info
 color: "#87c4e0"
 - value: warning
 color: "#ffae42"
 - value: critical
 color: "#ff220c"

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 25/36

 - value_re: ".*"
 color: "#736598"

Note: be sure to set fallback values at the end of the list, so they’re only evaluated if

there’s no exact value match

Defaults:

labels:
 color:
 static: []
 unique: []
 custom: {}
 keep: []
 keep_re: []
 strip: []
 strip_re: []
 valueOnly: []
 valueOnly_re: []

Listen

listen section allows configuring karma web server behavior. Syntax:

listen:
 address: string
 port: integer
 timeout:
 read: duration
 write: duration
 prefix: string
 tls:
 cert: string
 key: string
 cors:
 allowedOrigins: list of strings

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 26/36

address - Hostname or IP to listen on.

port - HTTP port to listen on.

timeout:read - HTTP server request read timeout

timeout:write - HTTP server response write timeout

prefix - URL root for karma, you can use to if you wish to serve it from

location other than / . This option is mostly useful when using karma behind

reverse proxy with other services on the same IP but different URL root.

tls:cert - path to a TLS certificate, enables listening on HTTPS instead of

HTTP,

tls:key - path to a TLS key, required when tls.cert is set

cors:allowedOrigins - List of origins a cross-domain request can be executed

from. An empty list means all origins are allowed.

Example where karma would listen for HTTP requests on http://1.2.3.4:80/karma/

listen:
 address: 1.2.3.4
 port: 80
 prefix: /karma/

Example where karma would listen for HTTPS requests on https://1.2.3.4:443/

listen:
 address: 1.2.3.4
 port: 443
 tls:
 cert: server.pem
 key: server.key

Defaults:

listen:
 address: "0.0.0.0"
 port: 8080
 prefix: /
 tls:

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 27/36

 cert: ""
 key: ""
 cors:
 allowedOrigins: []

Log

log section allows configuring logging subsystem. Syntax:

log:
 config: bool
 level: string
 format: string
 requests: bool
 timestamp: bool

config - if set to true karma will log used configuration on startup

level - log level to set for karma, possible values are debug , info , warning ,

error , fatal and panic .

format - controls how log messages are formatted, possible values are text

and json . If set to json each log will be a JSON object

requests - if set to true karma will log all requests

timestamp - if set to true all log messages will include a timestamp

Defaults:

log:
 config: false
 level: info
 format: text
 requests: false
 timestamp: false

Silences

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 28/36

silences section allows specifying to configure silence post post-processing.

Syntax:

silences:
 expired: duration
 comments:
 linkDetect:
 rules: list of link detection rules

expired - controls how long expired silences are shown on active alerts. If

expired is set to 5m silences expired in the last 5 minutes will be shown. Set it

to zero or a negative value to disable showing expired silences.

comments:linkDetect:rules - allows to specify a list of rules to detect links

inside silence comments. It’s intended to find ticket system ID strings and turn

them into links. Each rule must specify:

regex - regular expression that matches ticket system IDs. Each regex

must contain at least one capture group (regex) . All regexes will be

automatically anchored.

uriTemplate - template string that will be used to generate a link. Each

template must include $1 which will be replaced with text matched by

the regex .

Examples where alerts that got unsilenced will show silences expired in the last 15

minutes:

silences:
 expired: 15m

Examples where alerts that got unsilenced will not show recently expired silences:

silences:
 expired: -1m

Example where a string DEVOPS-123 inside a comment would be rendered as a link

to a JIRA ticket https://jira.example.com/browse/DEVOPS-123 .

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 29/36

silences:
 comments:
 linkDetect:
 rules:
 - regex: "(DEVOPS-[0-9]+)"
 uriTemplate: https://jira.example.com/browse/$1

Receivers

receivers section allows configuring how alerts from different receivers are

handled by karma. If alerts are routed to multiple receivers they can be duplicated

in the UI, each instance will have different value for @receiver . Syntax:

receivers:
 keep: list of strings
 strip: list of strings

keep - list of receivers name that are allowed, if empty all receivers are

allowed.

strip - list of receiver names that will not be shown in the UI.

Example where alerts that are routed to the alertmanage2es receiver are ignored

by karma.

receivers:
 strip:
 - alertmanage2es

Defaults:

receivers:
 strip: []

Silence form

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 30/36

silenceForm section allows customizing silence form behavior.

Syntax:

silenceForm:
 defaultAlertmanagers: list of strings
 strip:
 labels: list of strings

defaultAlertmanagers - list of Alertmanager names that will be used as default

when creating a new silence. If selected alertmanager is part of a cluster then

the whole cluster will be used in the silence form.

strip:labels - list of labels to ignore when populating silence form from

individual alerts or group of alerts. This allows to create silences matching only

unique labels, like instance or host , ignoring any common labels like job .

Example where job label won’t be auto populated in the silence form.

silenceForm:
 strip:
 labels:
 - job

Example where alertmanagers prod1 and prod2 will be the default ones when

creating a new silence

silenceForm:
 defaultAlertmanagers:
 - prod1
 - prod2

UI defaults

ui section allows configuring default values for UI settings controled via the

configuration modal. Those defaults can be overwritten by use via UI controls.

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 31/36

Syntax:

ui:
 refresh: duration
 hideFiltersWhenIdle: bool
 colorTitlebar: bool
 theme: string
 animations: bool
 minimalGroupWidth: integer
 alertsPerGroup: integer
 collapseGroups: string
 multiGridLabel: string
 multiGridSortReverse: bool

refresh - default refresh interval, this tells the UI how often karma API should

be queried

hideFiltersWhenIdle - if enabled filter bar will be hidden after some user

inactivity

colorTitlebar - if enabled alert group title bar color will be set to follow alerts

in that group

theme - default theme, possible values:

light - bright theme

dark - dark theme

auto - follows browser preferences using prefers-color-scheme media

queries

Default value is auto .

animations - enables UI animations

minimalGroupWidth - minimal width (in pixels) for each alert group rendered

on the grid. This value is used to calculate the number of columns rendered

on the grid.

alertsPerGroup - default number of alerts to show for each group

collapseGroups - controls if alert groups will default to being rendered

expanded or collapsed (only title bar is visible). Valid values:

expanded - groups are always expanded

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 32/36

https://developer.mozilla.org/en-US/docs/Web/CSS/@media/prefers-color-scheme

collapsed - groups are always collapsed

collapsedOnMobile - groups are expanded on desktop and collapsed on

mobile browsers

multiGridLabel - when set to a label name it enables multi-grid support. With

multi-grid karma will have a dedicated grid for each value of this label, all

alerts sharing that value will be placed on the same grid. There will be extra

grid for alerts without that label. Grid sorting options will be used to sort the

list of grids. This option accepts additional special values:

@auto - grid label will be selected automatically

@alertmanager - one grid per alertmanager configured in karma config

@cluster - one grid per alertmanager cluster

@receiver - one grid per alertmanager receiver

multiGridSortReverse - when multi-grid is enabled set to true the order in

which grids are displayed.

Defaults:

ui:
 refresh: 30s
 hideFiltersWhenIdle: true
 colorTitlebar: false
 theme: "auto"
 animations: true
 minimalGroupWidth: 420
 alertsPerGroup: 5
 collapseGroups: collapsedOnMobile
 multiGridLabel: ""
 multiGridSortReverse: false

Customizing karma

In order to keep the core code simple karma doesn’t support any way of extending

provided functionality. There is however possibility to inject custom CSS &

JavaScript code, which can be used to either override built in CSS styles or integrate

with extra services.

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 33/36

custom:
 css: string
 js: string

css - path to a CSS file

js - path to JavaScript file

Example:

custom:
 css: /theme/custom.css
 js: /assets/custom.js

Use at your own risk and be aware that used CSS class names might change without

warning. This feature is provided as is without any guarantees.

Command line flags

Config file options are mapped to command line flags, so alertmanager:interval

config file key is accessible as --alertmanager.interval flag, run karma --help to

see a full list. Exceptions for passing flags:

jira - this option is a list of maps and it’s only available when using config file.

There’s no support for configuring multiple Alertmanager servers using flags, but it’s

possible to configure a single Alertmanager instance this way, see the Simplified

Configuration section.

Environment variables

Environment variables are mapped in a similar way as command line flags,

alertmanager:interval is accessible as ALERTMANAGER_INTERVAL env. Exceptions for

passing flags:

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 34/36

HOST - used by gin webserver, same effect as setting listen:address config

option

PORT - used by gin webserver, same effect as setting listen:port config

option

There’s no support for configuring multiple alertmanager servers using

environment variables, but it’s possible to configure a single Alertmanager instance

this way, see the Simplified Configuration section.

Simplified Configuration

To configure multiple Alertmanager instances karma requires a config file, but for a

single Alertmanager instance cases it’s possible to configure all Alertmanager server

options that are set for alertmanager.servers config section using only flags or

environment variables.

Alertmanager URI

To set the uri key from alertmanager.servers map ALERTMANAGER_URI env or --

alertmanager.uri flag can be used. Examples:

ALERTMANAGER_URI=https://alertmanager.example.com karma
karma --alertmanager.uri https://alertmanager.example.com

Alertmanager external URI

To set the external_uri key from alertmanager.servers map

ALERTMANAGER_EXTERNAL_URI env or --alertmanager.external_uri flag can be used.

Examples:

ALERTMANAGER_EXTERNAL_URI=https://alertmanager.example.com karma
karma --alertmanager.external_uri https://alertmanager.example.com

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 35/36

Alertmanager name

To set the name key from alertmanager.servers map ALERTMANAGER_NAME env or --

alertmanager.name flag can be used. Examples:

ALERTMANAGER_NAME=single karma
karma --alertmanager.name single

Alertmanager timeout

To set the timeout key from alertmanager.servers map ALERTMANAGER_TIMEOUT env

or --alertmanager.timeout flag can be used. Examples:

ALERTMANAGER_TIMEOUT=10s karma
karma --alertmanager.timeout 10s

Alertmanager request proxy

To set the proxy key from alertmanager.servers map ALERTMANAGER_PROXY env or

--alertmanager.proxy flag can be used. Examples:

ALERTMANAGER_PROXY=true karma
karma --alertmanager.proxy

karma is maintained by prymitive.

This page was generated by GitHub Pages.

24/09/24, 19:47 Configuration options | karma

https://karma-dashboard.io/docs/CONFIGURATION.html#alertmanagers 36/36

https://github.com/prymitive/karma
https://github.com/prymitive
https://pages.github.com/

Silence Access Control Lists

View on GitHub

Silence Access Control Lists

Intro

Karma provides ability to setup ACLs for silences created by users. This can be used

to limit what kind of silences each user is allowed to create, which can help to avoid,

for example, Team A accidentally silencing alerts for Team B , or blocking

engineering team from creating any silence at all, leaving that ability only to the sys

admin / SRE team.

Example Alertmanager silence:

{
 "matchers": [
 {
 "name": "alertname",
 "value": "Test Alert",
 "isRegex": false,
 "isEqual": true
 },
 {
 "name": "cluster",
 "value": "prod",
 "isRegex": false,
 "isEqual": true
 },
 {
 "name": "instance",
 "value": "server1",

Alert dashboard for Prometheus Alertmanager

24/09/24, 19:49 Silence Access Control Lists | karma

https://karma-dashboard.io/docs/ACLs.html 1/11

https://github.com/prymitive/karma

 "isRegex": false,
 "isEqual": true
 }
],
 "startsAt": "2020-03-09T20:11:00.000Z",
 "endsAt": "2020-03-09T21:11:00.000Z",
 "createdBy": "me@example.com",
 "comment": "Silence Test Alert on server1"
}

It would be applied to all alerts with name Test Alert and where label cluster is

equal to prod . An ACL rule could be used to restrict silence creation based on

matched labels, so for example only selected users would be allowed to silence this

specific alert.

Requirements

For ACLs to work a few configuring options are required:

authorization:acl:silences is set with acl config file path, there’s no support

for configuring ACLs via environment variables

proxy must be enabled in karma configuration for each Alertmanager server

where ACLs will be applied. proxy: true tells karma UI to proxy all silence

operation requests (creating, editing & deleting silences) via karma backend.

Since ACLs are applied in the proxy code it needs to be enabled to take effect.

It is recommended to block ability for users to connect directly to

Alertmanager servers to avoid bypassing ACL rules (alertmanager accepts all

silences).

Optional configuration:

authentication if configured user based matching of ACLs can be used,

Header authentication with a frontend authentication proxy that passes

usernames via header is recommended. This can be done with nginx

configured as an authentication reverse proxy or proxy services like

Cloudflare Access.

24/09/24, 19:49 Silence Access Control Lists | karma

https://karma-dashboard.io/docs/ACLs.html 2/11

authorization:groups must be configured if group polices will be used. This

configuration maps users into groups, allowing to use those groups in ACL

rules.

Regex silences

Alertmanager silences allow to use regex rules which can make it tricky to apply

ACLs to those silences.

Silence example using regex:

{
 "matchers": [
 {
 "name": "alertname",
 "value": "Test Alert",
 "isRegex": false,
 "isEqual": true
 },
 {
 "name": "cluster",
 "value": "staging|prod",
 "isRegex": true,
 "isEqual": true
 }
],
 "startsAt": "2020-03-09T20:11:00.000Z",
 "endsAt": "2020-03-09T21:11:00.000Z",
 "createdBy": "me@example.com",
 "comment": "Silence Test Alert in staging & prod cluster"
}

The difference compared to the previous example is that the cluster label is now

matched using staging|prod regex, so any alert with cluster label equal to

staging or prod will be matched. This is a simple example, regexes allow to create

very complex matching rules.

24/09/24, 19:49 Silence Access Control Lists | karma

https://karma-dashboard.io/docs/ACLs.html 3/11

The effect on ACL rules can be illustrated with this example: let’s say we have a

group that should never be allowed to create any silence for prod cluster, so a

silence like the one below should be blocked:

{
 "matchers": [
 {
 "name": "alertname",
 "value": "Test Alert",
 "isRegex": false,
 "isEqual": true
 },
 {
 "name": "cluster",
 "value": "prod",
 "isRegex": false,
 "isEqual": true
 }
],
 "startsAt": "2020-03-09T20:11:00.000Z",
 "endsAt": "2020-03-09T21:11:00.000Z",
 "createdBy": "me@example.com",
 "comment": "Silence Test Alert in prod cluster"
}

But if we would create an ACL rule that simply blocks silences with matcher:

{
 "name": "cluster",
 "value": "prod",
 "isRegex": false,
 "isEqual": true
}

then any user could bypass that with a regex matcher like:

{
 "name": "cluster",

24/09/24, 19:49 Silence Access Control Lists | karma

https://karma-dashboard.io/docs/ACLs.html 4/11

 "value": "pro[d]",
 "isRegex": true,
 "isEqual": true
}

Because of that it is highly recommended to block regex silences, which can be

done with an ACL rule. Since rules are evaluated in the order they are listed in the

config file it is best to set this as the very first rule. See examples below to learn

how to block regex silences.

Configuration syntax

rules - list of silence ACL rules, rules are evaluated in the order they appear

in this list

Rule syntax:

action: string
reason: string
scope:
 groups: list of strings
 alertmanagers: list of strings
 filters: list of filters
matchers:
 required: list of silence matchers

action - this is the name of the action to take if given ACL matches all the

conditions. Valid actions are:

allow - skip all other ACLs and allow silence to be created

block - skip all other ACLs and block silences from being created

requireMatcher - block silence if it doesn’t have all of matchers specified

in matchers:required

reason - message that will be returned to the user if this ACL blocks any

silence

scope - this section contains all conditions required to apply given ACL rule to

specific silence, if it’s skipped then ACL rule will be applied to all users and

24/09/24, 19:49 Silence Access Control Lists | karma

https://karma-dashboard.io/docs/ACLs.html 5/11

every silence

scope:groups - list of group names from authorization:groups , if no group is

specified here then this ACL will be applied to all users

scope:alertmanagers - list of alertmanager names as specified in

alertmanager:servers , if no name is specified here then this ACL will be

applied to silences for all alertmanager servers

scope:filters - list of matcher filters evaluated when checking if this ACL

should be applied to given silence. Those filters can be used to enforce ACL

rules only to some silences and are compared against silence matchers. All

filters must be matching for given silence for ACL rule to be applied. Syntax:

name: string
name_re: regex
value: string
value_re: regex
isRegex: bool
isEqual: bool

Every rule must have name or name_re AND value or value_re .

Filter works by comparing:

name and name_re with silence matcher name .

value and value_re with silence matcher value .

isRegex on the filter with isRegex on silence matcher, if isRegex is not

set on a filter then that filter will match silences with both true and

false value on silence isRegex .

isEqual on the filter with isEqual on silence matcher, if isEqual is not

set on a filter then that filter will match silences with both true and

false value on a silence isEqual .

See examples below. All regexes will be automatically anchored.

matchers:required - list of additional matchers that must be part of the

silence if it matches groups, alertmanagers and filters. This is only used if

action is set to requireMatcher . All regexes will be automatically anchored.

Syntax for each requireMatcher entry:

24/09/24, 19:49 Silence Access Control Lists | karma

https://karma-dashboard.io/docs/ACLs.html 6/11

name: string
name_re: regex
value: string
value_re: regex
isRegex: bool
isEqual: bool

Fields:

name - name to match, silence will be required to have a matcher with

this exact name.

name_re - name regex to match against, silence will be required to have

a matcher with name field that matches this regex.

value - value to match, silence will be required to have a matcher with

this exact value.

value_re - value regex to match against, silence will be required to have

a matcher with value field that matches this regex.

isRegex - value of silence matcher isRegex , if not set on a required

matcher then any value of isRegex on a silence will be allowed.

isEqual - value of silence matcher isEqual , if not set on a required

matcher then any value of isEqual on a silence will be allowed.

A single entry cannot have both name & name_re or value & value_re set at

the same time.

Examples

Block all silences

This rule will match all silence and block it.

rules:
 - action: block
 reason: silences are blocked
 scope:

24/09/24, 19:49 Silence Access Control Lists | karma

https://karma-dashboard.io/docs/ACLs.html 7/11

 filters:
 - name_re: .+
 value_re: .+

Block silences using regex matchers

This rule will match all silence with any matcher using regexes (isRegex: true on

the matcher) and block it.

rules:
 - action: block
 reason: all regex silences are blocked, use only concrete label names and
 scope:
 filters:
 - name_re: .+
 value_re: .+
 isRegex: true

Block negative matchers on silences

This rule will match all silence with isEqual: false and block it.

rules:
 - action: block
 reason: silences are blocked
 scope:
 filters:
 - name_re: .+
 value_re: .+
 isEqual: false

Allow admin group to create any silence

24/09/24, 19:49 Silence Access Control Lists | karma

https://karma-dashboard.io/docs/ACLs.html 8/11

rules:
 - action: allow
 reason: admins are allowed
 scope:
 groups:
 - admins

Allow only admins group to create silences with cluster=prod

First allow all members of the admins group to create any silence, then block

silences with cluster=prod . Since ACL rules are evaluated in the order specified

and first allow or block rule stops other rule processing this will allow admins to

create cluster=prod silences while everyone else is blocked from it. Disabling regex

rules as first steps prevents users from bypassing those ACLs with regex silences.

rules:
 - action: block
 reason: all regex silences are blocked, use only concrete label names and
 scope:
 filters:
 - name_re: .+
 value_re: .+
 isRegex: true
 - action: allow
 reason: admins are allowed
 scope:
 groups:
 - admins
 - action: block
 reason: only admins can create silences with cluster=prod
 scope:
 filters:
 - name: cluster
 value: prod
 isEqual: true

24/09/24, 19:49 Silence Access Control Lists | karma

https://karma-dashboard.io/docs/ACLs.html 9/11

Require postgresAdmins group to always specify db=postgres in

silences

Block postgresAdmins members from creating silences unless they add

db=postgres to the list of matchers.

rules:
 - action: requireMatcher
 reason: postgres admins must add db=postgres to all silences
 scope:
 groups:
 - postgresAdmins
 matchers:
 required:
 - name: db
 value: postgres
 isEqual: true

Require devTeam group to specify instance=server1-3

Block devTeam members from creating silences unless they target one of the

servers they own.

rules:
 - action: requireMatcher
 reason: devTeam can only silence owned servers
 scope:
 groups:
 - devTeam
 matchers:
 required:
 - name: instance
 value_re: server[1-3]
 isEqual: true

Require everyone to always specify team matcher in silences

24/09/24, 19:49 Silence Access Control Lists | karma

https://karma-dashboard.io/docs/ACLs.html 10/11

Block anyone from creating silences unless they add team matcher with some

value.

rules:
 - action: requireMatcher
 reason: team label is required for all silences
 matchers:
 required:
 - name: team
 value_re: .+

karma is maintained by prymitive.

This page was generated by GitHub Pages.

24/09/24, 19:49 Silence Access Control Lists | karma

https://karma-dashboard.io/docs/ACLs.html 11/11

https://github.com/prymitive/karma
https://github.com/prymitive
https://pages.github.com/

alertmanager:
 interval: 60s
 servers:
 - name: local
 uri: http://localhost:9093
 timeout: 10s
 proxy: true
 readonly: false
 headers:
 X-Auth-Test: some-token-or-other-string
 - name: client-auth
 uri: https://localhost:9093
 timeout: 10s
 tls:
 ca: /etc/ssl/certs/ca-bundle.crt
 cert: /etc/karma/client.pem
 key: /etc/karma/client.key
annotations:
 default:
 hidden: false
 hidden:
 - help
 visible: []
custom:
 css: /custom.css
 js: /custom.js
debug: false
filters:
 default:
 - "@receiver=by-cluster-service"
karma:
 name: karma-prod
labels:
 color:
 static:
 - job
 unique:
 - cluster
 - instance
 - "@receiver"
 keep: []
 strip: []
listen:
 address: "0.0.0.0"
 port: 8080
 prefix: /
 cors:
 allowedOrigins:
 - https://example.com
log:
 config: false
 level: info
silences:
 comments:
 linkDetect:
 rules:

24/09/24, 19:50 karma-dashboard.io/docs/example.yaml

https://karma-dashboard.io/docs/example.yaml 1/2

 - regex: "(DEVOPS-[0-9]+)"
 uriTemplate: https://jira.example.com/browse/$1
receivers:
 keep: []
 strip: []
silenceForm:
 strip:
 labels:
 - job
 defaultAlertmanagers:
 - local
ui:
 refresh: 30s
 hideFiltersWhenIdle: true
 colorTitlebar: false
 minimalGroupWidth: 420
 alertsPerGroup: 5
 collapseGroups: collapsedOnMobile

24/09/24, 19:50 karma-dashboard.io/docs/example.yaml

https://karma-dashboard.io/docs/example.yaml 2/2

	karma _ Alert dashboard for Prometheus Alertmanager
	Configuration options _ karma
	Silence Access Control Lists _ karma
	example

